-
公开(公告)号:CN112523782A
公开(公告)日:2021-03-19
申请号:CN202011582286.0
申请日:2020-12-28
Applicant: 山东高速集团有限公司 , 山东大学 , 中国矿业大学(北京) , 山东天勤矿山机械设备有限公司
Inventor: 周磊生 , 江贝 , 张田涛 , 刘悦 , 迟朝明 , 黄玉兵 , 程浩 , 彭俊强 , 王琦 , 高红科 , 秦乾 , 蒋振华 , 王悦 , 许硕 , 辛忠欣 , 薛浩杰 , 魏华勇 , 马玉琨 , 吴文瑞 , 曾昭楠 , 边文辉 , 李鲁宁
IPC: E21D11/10 , E21D9/10 , E21D11/18 , E21D11/40 , E21D20/00 , G01B11/30 , E21B49/00 , H04N5/225 , B08B1/00 , G03B17/08
Abstract: 本发明涉及隧道施工组合机构及施工装置,包括安装臂,所述安装臂端部设置有夹具,所述夹具能够夹持固定拱架,所述安装臂的外圆周面可拆卸连接有钻进机构,所述钻进机构用于对围岩进行钻探,所述安装臂的外圆周面连接有喷嘴,所述喷嘴通过输浆管与供浆机构连接,供浆机构能够将浆液通过输浆管输送至喷嘴,并由喷嘴喷出,对隧道进行喷射养护,本发明的施工组合机构及施工装置能够实现一机多用,提高了施工效率。
-
公开(公告)号:CN116595809A
公开(公告)日:2023-08-15
申请号:CN202310875544.1
申请日:2023-07-18
Applicant: 中国矿业大学(北京)
Abstract: 本发明公开了地下工程围岩钻进卸压‑探测评价方法,涉及地下工程技术领域,解决了现有钻孔卸压无法有效防治冲击地压的问题,提高了钻孔卸压的精度和效果,具体方案如下:进行围岩原位钻进测试,获取随钻参数;根据随钻参数,确定围岩的岩体等效抗压强度;在现场进行围岩地应力测试,以确定围岩原岩应力;根据岩体等效抗压强度和围岩原岩应力,确定围岩的冲击地压等级,并根据冲击地压等级进行钻孔卸压控制设计;根据钻孔卸压控制设计的参数进行钻孔卸压,确定卸压后的围岩冲击等级,评价钻孔卸压效果;根据评价结果动态优化钻孔卸压控制设计参数。
-
公开(公告)号:CN116499879A
公开(公告)日:2023-07-28
申请号:CN202310754907.6
申请日:2023-06-26
Applicant: 中国矿业大学(北京) , 北京力岩科技有限公司
Abstract: 本发明公开了地下工程围岩能量测试与岩爆吸能控制方法,涉及地下工程安全技术领域,包括:获取巷道围岩钻进过程中的随钻参数,结合岩爆能量测试模型得到单位体积围岩的岩爆能量;获取支护构件的性能参数,确定支护构件的屈服荷载和能量吸收量;根据围岩重量和支护构件的屈服荷载得到强度设计支护参数;根据岩爆能量和支护构件的能量吸收量得到能量设计支护参数;结合围岩强度设计支护参数和能量设计支护参数,确定围岩支护设计方案。本发明在传统强度支护设计的基础上,考虑能量释放对支护设计的影响,建立基于强度‑能量综合判据的围岩岩爆吸能控制支护设计方法;能够降低煤矿动力灾害发生风险,保证施工安全。
-
公开(公告)号:CN116025356A
公开(公告)日:2023-04-28
申请号:CN202310309948.4
申请日:2023-03-28
Applicant: 中国矿业大学(北京)
IPC: E21C41/18 , E21D20/00 , E21D19/02 , E21D11/15 , E21D11/18 , E21D11/10 , E21D9/00 , E21F15/00 , E21B49/00
Abstract: 本发明属于地下工程安全技术领域,公开了一种开采补偿控制方法。所述方法包括:利用智能钻进设备对巷道围岩进行数字钻进测试,获取所述巷道围岩的随钻参数;根据所述巷道围岩的随钻参数,确定所述巷道围岩的抗拉强度;根据所述巷道围岩的顶板垮落矸石初始碎胀系数、碎胀拟合系数和碎胀时长,确定所述巷道围岩的顶板垮落矸石碎胀系数;根据所述巷道围岩的抗拉强度、所述顶板垮落矸石碎胀系数、预先获取的开采面积和采矿体积,确定巷道顶板的切顶参数;基于所述切顶参数,对所述巷道顶板进行定向预裂切缝,利用垮落碎胀的矸石对采空区进行补偿。本发明可实现深部煤炭资源的绿色安全开采。
-
公开(公告)号:CN114778304B
公开(公告)日:2022-09-20
申请号:CN202210716433.1
申请日:2022-06-23
Applicant: 中国矿业大学(北京) , 北京力岩科技有限公司
Abstract: 本发明涉及岩爆试验技术领域,特别涉及一种岩爆控制试验方法与装备。该岩爆控制试验方法包括如下步骤:在锚杆上设置第一应变测试传感器,将应力测试传感器安装在锚杆上,将锚杆锚固至试验试件上,将第二应变测试传感器安装在试验试件上;通过传力装置对试验试件的所有外表面施加荷载,并通过第一应变测试传感器、第二应变测试传感器、以及应力测试传感器记录数据;保压一段时间后,撤销试验试件的第一外表面上的传力装置,若发生岩爆则实验终止;若未发生岩爆,则通过传力装置对垂直于第一外表面的第二外表面施加荷载或扰动波直至发生岩爆。本发明可以用于研究锚固支护对岩爆的控制效果和控制机制。
-
公开(公告)号:CN116611154B
公开(公告)日:2023-09-12
申请号:CN202310854023.8
申请日:2023-07-13
Applicant: 中国矿业大学(北京)
IPC: G06F30/13 , G06F30/20 , G06F17/10 , G06F119/02
Abstract: 本发明公开了深井多维降能减震和多级吸能抗震方法,属于煤炭开采安全控制技术领域,包括建立围岩能量计算模型,计算设计巷道围岩破断时的最大能量释放量;获取卸压方法卸压参数,得出多维降能减震基础参数;确定多维降能减震设计方案,得出巷道剩余聚集能量;建立多级吸能抗震设计能量计算模型,计算设计巷道吸能支护设计最小总吸收能量;获取吸能支护构件性能参数,得出多级吸能抗震基础参数;确定最优吸能支护基础参数和巷道多维降能减震设计基础参数,形成巷道深井多维降能减震设计方案和多级吸能抗震设计方案。本发明相较于基于围岩和支护构件强度的设计方法,更能反应深井巷道防冲的本质和核心,对于维护巷道稳定更有保障。
-
公开(公告)号:CN115577567B
公开(公告)日:2023-04-14
申请号:CN202211421487.1
申请日:2022-11-15
Applicant: 中国矿业大学(北京) , 山东能源集团有限公司
IPC: G06F30/20 , G06F111/04 , G06F119/14
Abstract: 本发明涉及一种深部地下工程岩爆防治方法和系统,涉及地下工程安全技术领域。所述方法包括:开展深部岩石岩爆试验获取围岩的岩爆峰值应力,开展岩石力学性质测试获取围岩的应力应变数据和峰值应变;根据岩爆峰值应力、应力应变数据和峰值应变,确定围岩的岩爆能量;根据岩爆能量,确定围岩的岩爆等级;根据岩爆等级,确定对应的围岩岩爆控制设计方案。采用本发明可以针对性地采取围岩岩爆控制措施,降低岩爆发生风险。
-
公开(公告)号:CN115467662A
公开(公告)日:2022-12-13
申请号:CN202211421359.7
申请日:2022-11-15
Applicant: 中国矿业大学(北京) , 山东能源集团有限公司
IPC: E21C39/00
Abstract: 本发明公开了岩体碎胀特性原位测试与评价方法,涉及岩土工程勘察技术领域,包括设定钻进角度并在切顶后形成的碎胀矸石区域按顺时针等角度设定预钻进方向;利用围岩智能数字钻机按照预钻进方向对碎胀矸石进行数字钻进,监测随钻参数的变化情况,绘制随钻参数随钻进深度的变化曲线;随钻参数代入岩体强度随钻测试模型,得到碎胀矸石的等效抗压强度变化曲线;根据随钻参数和等效抗压强度变化曲线中剧烈波动段的范围和波动程度确定碎胀矸石的碎胀范围,得到垮落后的岩体体积;根据垮落后的岩体体积与垮落前的岩体体积比值得到岩体碎胀系数;根据岩体碎胀效果对切顶参数进行优化,得到碎胀效果的定量评价方案。能够对岩体碎胀效果进行原位测试与评价。
-
公开(公告)号:CN114839024B
公开(公告)日:2022-09-20
申请号:CN202210778022.5
申请日:2022-07-04
Applicant: 中国矿业大学(北京) , 北京力岩科技有限公司
Abstract: 本发明涉及岩土工程勘察技术领域,尤其涉及一种破碎岩体特性随钻测试与评价方法,所述破碎岩体特性随钻测试与评价方法采用破碎岩体随钻试验系统对破碎岩体进行室内钻进试验得到随钻参数,根据建立的岩体强度随钻测试模型得到破碎岩体等效抗压强度,并根据破碎岩体和完整岩体的等效抗压强度建立基于随钻参数的等效强度随钻弱化系数计算公式,进行现场钻进试验,根据得到的等效强度随钻弱化系数对现场岩体的破碎程度进行评价,同时根据随钻参数和等效抗压强度波动的范围和波动的程度,定量评价破碎岩体的破碎范围。
-
公开(公告)号:CN114547810A
公开(公告)日:2022-05-27
申请号:CN202210436788.5
申请日:2022-04-25
Applicant: 中国矿业大学(北京) , 北京力岩科技有限公司
Abstract: 本发明涉及一种煤矿动力灾害高预应力吸能控制设计方法,涉及地下工程安全技术领域。所述方法包括:获取巷道围岩钻进过程中的随钻参数和目标支护构件的性能参数;根据随钻参数,确定巷道单位长度对应的围岩积聚能量;根据性能参数,确定目标支护构件的最小能量吸收量;根据巷道单位长度对应的围岩积聚能量、目标支护构件的最小能量吸收量、预先存储的巷道单位长度其它支护构件的能量吸收量、预设安全系数、预设的动力灾害发生临界能量和预设的巷道断面支护长度,确定巷道单位长度内目标支护构件的设计参数。采用本发明可以降低煤矿动力灾害发生的风险。
-
-
-
-
-
-
-
-
-