-
公开(公告)号:CN108491857B
公开(公告)日:2022-08-09
申请号:CN201810141262.8
申请日:2018-02-11
Applicant: 中国矿业大学
Abstract: 本发明公开了一种视域重叠的多摄像机目标匹配方法,具体如下;根据摄像机1和摄像机2的前5帧信息计算两台摄像机的视野分界线;提取摄像机1视频中的前景目标,根据多特征融合规则将各个前景目标的特征进行融合获得融合后的特征向量;计算摄像机1中各目标在摄像机2中的投影点,确定待匹配目标的可靠区域后,再计算可靠区域内多特征融合向量;计算多特征融合向量的欧式距离,完成视域重叠的多摄像机目标匹配,距离最近且在设定阈值范围内的目标为匹配目标,保存视野分界线参数;更新视野分界线参数,从当前视频帧的前5帧中选取2组参数,再结合当前帧的视野分界线参数进行线性加权,并对视野分界线模型进行更新。
-
公开(公告)号:CN110428450B
公开(公告)日:2021-11-16
申请号:CN201910707197.5
申请日:2019-08-01
Applicant: 中国矿业大学
Abstract: 本发明涉及一种应用于矿井巷道移动巡检图像的尺度自适应目标跟踪方法,属于目标跟踪技术领域,解决了现有矿井目标跟踪算法在目标剧烈变化、遮挡、背景干扰等场景下无法获取较好的跟踪效果的问题。步骤如下:接收矿井巷道移动巡检视频帧序列的当前视频帧,根据上一帧的目标跟踪位置及尺度信息,得到当前视频帧中的待检测图像块;提取当前视频帧中待检测图像块的HOG特征及LQC特征,分别利用HOG特征相关滤波器和LQC特征相关滤波器计算得到HOG特征响应图及LQC特征响应图;对HOG特征响应图及LQC特征响应图进行加权融合响应,将加权融合响应结果中的最大值位置确定为当前视频帧的目标位置;利用尺度滤波器对目标位置进行尺度估计,得到当前视频帧的尺度信息。
-
公开(公告)号:CN111814711A
公开(公告)日:2020-10-23
申请号:CN202010681652.1
申请日:2020-07-15
Applicant: 中国矿业大学
Abstract: 本发明涉及一种应用于矿井机器视觉的图像特征快速匹配方法及系统,属于矿井安全技术领域,解决了现有技术对矿井异常情况检测效率低、实时性差且准确率低的问题。该方法包括对待分析图像进行去噪处理;并进行超像素分割,获得多个图像块;计算每一图像块的信息熵,获得信息熵大于第一预设阈值的图像块;利用SURF算法提取图像块的特征点,从而获取待分析图像的特征点集;采用Harr小波法对特征点集中的特征点进行描述,获得待分析图像的特征点描述符集;基于待分析图像的特征点描述符集将待分析图像特征点集中的特征点与目标图像的特征点进行匹配,以确认矿井是否发生异常。该方法能够快速准确的检测矿井是佛发生异常,有利于对矿井异常技术处理。
-
公开(公告)号:CN111768437A
公开(公告)日:2020-10-13
申请号:CN202010614124.4
申请日:2020-06-30
Applicant: 中国矿业大学
Abstract: 本发明涉及一种用于矿井巡检机器人的图像立体匹配方法及装置,属于立体匹配技术领域,解决了现有图像立体匹配方法对重复纹理区域与弱纹理区域的匹配精度较差的问题。获取物体的左视图和右视图分别作为参考图像和目标图像,对参考图像和目标图像分别进行逐像素邻域替换,得到参考图像和目标图像中每一像素点对应的灰度图;分别获取参考图像和目标图像灰度图对应的二进制码,并基于二进制码计算得到代价量;基于代价量对参考图像和目标图像分别进行匹配代价聚合,得到去除噪声的匹配代价;基于去除噪声的匹配代价,得到物体的视差图,提高了立体匹配的精度和质量。
-
公开(公告)号:CN111767960A
公开(公告)日:2020-10-13
申请号:CN202010627488.6
申请日:2020-07-02
Applicant: 中国矿业大学
Abstract: 本发明涉及一种应用于图像三维重建的图像匹配方法及系统,属于图像匹配技术领域,解决了现有技术中图像匹配算法存在的特征提取速度慢或检测到的特征点不具有旋转不变性、精确匹配过程计算量大以及匹配效率低等问题。方法步骤包括:获取并预处理参考图像和待匹配图像;利用AKEZE算法分别获得预处理后的参考图像和待匹配图像的特征点,并生成特征点对应的特征描述符;基于参考图像和待匹配图像的特征描述符之间的欧式距离,得到参考图像和待匹配图像的粗匹配特征点对集合;获取参考图像和待匹配图像的粗匹配特征点集的平均值,并基于平均值构建几何矩阵及距离度量模型,获得精度匹配特征点对,并完成参考图像和待匹配图像之间的匹配。
-
公开(公告)号:CN119671855A
公开(公告)日:2025-03-21
申请号:CN202411809637.5
申请日:2024-12-10
Applicant: 中国矿业大学
IPC: G06T3/4053 , G06T3/4046 , G06V10/42 , G06V10/44 , G06V10/80 , G06V10/82 , G06N3/045 , G06N3/0464
Abstract: 本发明公开了用于井下移动设备的轻量化图像超分辨率重建系统及方法,属于图像重建技术领域;包括:浅层特征提取模块、深层特征提取模块、特征聚合模块以及图像重建模块;深层特征提取模块包括高频增强蒸馏块,高频增强蒸馏块包括特征细化模块、多尺度信息蒸馏模块和信息融合模块;特征细化模块包括三个串联的高频增强残差块。本发明采用信息蒸馏架构,在特征提取主干中采用双路分支结构,对输入特征进行通道分割,降低计算量,利用全局特征提取和高频增强分支提升网络对细节信息的捕获能力,高效地提取深层信息;采用多尺度信息蒸馏方法,对特征提取主干细化后的特征进行多尺度高频信息蒸馏,并利用混合特征增强块融合蒸馏后的多尺度高频信息。
-
公开(公告)号:CN118781016B
公开(公告)日:2025-03-14
申请号:CN202410877834.4
申请日:2024-07-02
Applicant: 中国矿业大学
IPC: G06T5/73 , G06T5/60 , G06N3/0455 , G06N3/0464 , G06N3/0895
Abstract: 本发明属于图像去雾技术领域,提出一种矿井尘雾环境下自适应图像去雾增强方法及系统。首先建立包括图像分级预处理模块、自适应处理模块和优化模块的图像处理模型;将通过图像分级预处理模块处理之后的图像输入自适应处理模块;通过图像优化模块对经过自适应处理模块处理之后的图像进一步优化;输出优化之后的图像。本发明在实际运用中可以对矿井尘雾环境下图像的精确、高效和稳定去雾,显著提升了图像质量和煤矿安全隐患识别的能力。
-
公开(公告)号:CN119205568A
公开(公告)日:2024-12-27
申请号:CN202411360043.0
申请日:2024-09-27
Applicant: 中国矿业大学
IPC: G06T5/73 , G06T5/60 , G06T7/00 , G06V10/77 , G06V10/82 , G06N3/0464 , G06N3/09 , G06N3/0455 , G06N3/0895 , G06N3/042
Abstract: 一种矿井机载视频图像的去运动模糊方法及系统,步骤:构建基于卷积神经网络的面向真实场景的盲图像质量评价模块,并借助所述模块提取图像中与质量相关的质量特征;构建基于码本的特征预测模块,通过矢量编码的方式预训练一个包含高质量特征码本的特征预测网络,基于模糊图像的质量特征进行预测编码,从而获得图像的高质量先验知识;将获得的高质量先验知识经维度对齐后嵌入到去模糊模块编码特征中,经解码器解码后获得恢复后的清晰图像。系统包括图像采集模块、盲图像质量评价模块、特征预测模块和去模糊模块。本发明能够快速处理图像视频流失真、有效适应矿井下环境,提高后续图像处理和分析准确性,提高矿区作业的安全性和效率。
-
公开(公告)号:CN117173024B
公开(公告)日:2024-04-16
申请号:CN202311213700.4
申请日:2023-09-20
Applicant: 中国矿业大学
IPC: G06T3/4069 , G06T3/4046 , G06T3/4007 , G06V10/44 , G06V10/80 , G06V10/82 , G06N3/045 , G06N3/0464 , G06N3/047 , G06N3/048
Abstract: 本发明属于图像超分辨率重建技术领域,涉及一种基于整体注意力的矿井图像超分辨率重建系统及方法;浅层特征输入到深层特征提取模块,深层特征提取模块由N个信息蒸馏块堆叠组成;层间融合注意力机制模块由M个层间金字塔注意力以金字塔结构组成,并通过1×1卷积层来降低维度以减少计算量和参数量,然后输入到3×3卷积层,并引入长跳跃连接,输出融合结果作为上采样及重建模块的输入;得到高分辨率图像;以信息蒸馏网络为框架,引入增强型自校准卷积可以有效地平衡好计算效率和网络性能,更满足现实应用的需求;层间融合注意力机制对多个信息蒸馏块的输出特征图自适应地分配权重,在融合处理后输入重建模块以实现不同深度特征图地充分利用。
-
公开(公告)号:CN116977220B
公开(公告)日:2024-02-13
申请号:CN202310985961.1
申请日:2023-08-07
Applicant: 中国矿业大学
IPC: G06T5/73 , G06T5/60 , G06T7/00 , G06N3/0455 , G06N3/0464 , G06N3/08
Abstract: 质量先验知识,提高了模型的去模糊效果和泛化本发明属于图像去模糊处理技术领域,具体 性能。地说,是一种基于图像质量启发的盲图像去运动模糊算法,基于去模糊算法旨在提高图像质量以及去模糊过程缺乏先验知识的事实,提出了图像质量先验引导的盲图像去运动模糊算法。具体而言,首先,借助基于深度神经网络的无参考图像质量评价模型提取包含质量信息的深度特征作为先验知识。然后,采用特征预测策略将先验知识嵌入图像去模糊模型的编码器中。最后,采用编码器复用策略将图像去模糊模型中解码器的(56)对比文件Tianshu Song等.Knowledge-Guided BlindImage Quality Assessment with FewTraining Samples《.IEEE Transactions onMultimedia》.2022,第1-12页.Manri Cheon等.Perceptual ImageQuality Assessment with Transformers.《CVPR》.2021,第433-442页.Siddhant Sahu等.Blind Deblurringusing Deep Learning: A Survey《.arXiv:1907.10128v1》.2019,第1-9页.
-
-
-
-
-
-
-
-
-