-
公开(公告)号:CN103759941A
公开(公告)日:2014-04-30
申请号:CN201410042639.6
申请日:2014-01-29
Applicant: 哈尔滨工业大学
IPC: G01M13/02
Abstract: 一种精密主轴回转精度检测装置及方法,属于精密主轴回转误差测量技术领域。本发明所述的装置包括原子力显微镜AFM、平面样品、手动二维调整台、二维电动位移台和精密主轴控制器,其中,AFM与平面样品配合使用获得刻划形貌图,平面样品固定在手动二维调整台的上部,手动二维调整台的底部与被测精密主轴的上端连接,被测精密主轴的下端与二维电动位移台连接。本发明实施例将通过原子力显微镜的纳米刻划加工和检测一体化的优势,在检测过程中无需采用基准零件,操作简单,并且可以使测量精度达到纳米量级,同时可检测精密主轴的径向和轴向回转误差,提高了精密主轴回转误差的精度。
-
公开(公告)号:CN119997795A
公开(公告)日:2025-05-13
申请号:CN202510049472.4
申请日:2025-01-13
Applicant: 哈尔滨工业大学
Abstract: 一种基于纳米铣削加工阵列纳通道结构的纳流体忆阻器制备方法,属于忆阻器制备技术领域。所述方法为:上层微通道采用紫外光刻技术制备;下层微通道为通过紫外光刻在硅片表面制备柔性掩膜版,非曝光区域的光刻胶溶解脱落,暴露出硅基底,在硅基底加工得到微通道结构,将光刻胶全部去除后,得带有微通道的硅基底;纳米铣削加工由原子力显微镜系统及二维压电陶瓷促动器实现;将带有凸微通道的硅片作为模板进行转印后,得带有微通道的PDMS片;将带有纳通道阵列的硅片作为模板进行二次转印得带有纳米通道和微米通道的PDMS片;将两个PDMS片通过氧等离子体处理的方式进行键合。本发明方法流程简单、快速高效、结构稳定、一致性好且可大量复制、生物兼容性好。
-
公开(公告)号:CN119861118A
公开(公告)日:2025-04-22
申请号:CN202510016920.0
申请日:2025-01-06
Applicant: 哈尔滨工业大学
Abstract: 一种利用纳米线阵列制备的可寻址纳米电极及其方法,属于纳米电极技术领域。基底上有纳米线阵列、金属引线、金属垫及铜丝,纳米线阵列与基底平齐,纳米线阵列与金属引线连接,金属引线与金属垫连接,金属垫与铜丝连接,铜丝伸出至基底外侧;纳米线阵列、金属引线、金属垫及铜丝上有树脂层。方法如下:基底制备;纳米线阵列加工;金属引线及金属垫加工;可寻址纳米电极加工;电化学性能测试。本发明可以重复高效地制备具有高一致性的纳米线阵列,加工的纳米线阵列具有超长尺寸且尺寸间距可控,较易转移和定位,便于后续封装。简单、高效、低成本制备可寻址纳米电极,实现可寻址纳米电极多领域应用。
-
公开(公告)号:CN113406165B
公开(公告)日:2023-08-29
申请号:CN202110672096.6
申请日:2021-06-17
Abstract: 一种基于振动模式的电化学检测装置控制系统及检测方法,涉及一种电化学检测系统及检测方法。检测装置固定在Z向位移台上,X‑Y二维气浮平台上固定三维压电位移台,信号发生器控制激振压电陶瓷环的振动,电容式位移传感器测得激振压电陶瓷环的位移变化经电荷放大器处理后传递给锁相放大器,PID控制器将锁相放大器提取的电压幅值信号运算处理后对压电促动器进行控制,压电促动器、X‑Y二维气浮平台和三维压电位移台为上位机提供实时信号,上位机通过UMAC控制器控制Z向位移台、X‑Y二维气浮平台和三维压电位移台。探针以振动模式接近被测样品表面,减小相互作用力不易损坏,Z向闭环反馈功能保证距离恒定,检测更加准确。
-
公开(公告)号:CN111948267B
公开(公告)日:2023-07-18
申请号:CN202010844645.9
申请日:2020-08-20
Applicant: 哈尔滨工业大学
Abstract: 一种利用超长纳米线制备电化学纳米点阵列电极的方法,属于纳米电极制备技术领域。本发明是为了简单高效可重复地制备纳米点阵列电极,在含微米沟槽阵列的硅模板上浇注PDMS;在固化完成的PDMS模具上浇注树脂,得到带有微米沟槽阵列的树脂块;在树脂块上沉积一层金属薄膜,用树脂包埋,进行纳米切片,将单个含纳米线阵列的树脂薄片或多个与空树脂薄片交替堆叠的含纳米线阵列的树脂薄片转移至基底上,将导线搭接固定在纳米线阵列的表面,加入树脂封装,将未搭接导线的一端修块抛光,得到纳米点阵列电极。本发明避免了邻近电极的电容和扩散层重叠,且通过对纳米线端面再次修块抛光可获得新的干净的纳米点阵列,有利于纳米点阵列电极的长期重复使用。
-
公开(公告)号:CN114411152A
公开(公告)日:2022-04-29
申请号:CN202210023523.2
申请日:2022-01-10
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种基于AFM纳米铣削及化学腐蚀加工的表面增强拉曼基底制备方法,所述方法包括如下步骤:步骤(1)采用磁控溅射法在基底表面依次制备金膜、银膜和金膜;步骤(2)基于AFM的纳米铣削加工系统,在金‑银‑金复合膜表面纳米铣削加工周期纳米结构;步骤(3)将纳米铣削加工得到的周期纳米结构放入浓硝酸中,对周期纳米结构边缘裸露的银层进行化学腐蚀,从而制备得到中空的纳米腔;步骤(4)以化学腐蚀后的带有纳米腔的复合膜周期阵列结构作为拉曼增强基底。该方法可以快速高效的制备结构特征尺寸可控、等离子体共振可调、一致性好的拉曼增强基底。
-
公开(公告)号:CN113426500A
公开(公告)日:2021-09-24
申请号:CN202110791031.3
申请日:2021-07-13
Applicant: 哈尔滨工业大学
IPC: B01L3/00
Abstract: 本发明公开了一种基于纳米波纹结构的纳流控芯片的制备方法,所述方法包括如下步骤:步骤一、使用AFM在聚碳酸酯薄膜表面进行往复扫描加工,通过控制探针的运动轨迹得到纳米波纹结构;步骤二、以PDMS和固化剂为转印材料,通过PDMS转印得到带有纳米通道阵列的PDMS片;步骤三、采用光刻法在单晶硅基底上加工微通道结构,通过PDMS转印得到带有微通道的PDMS片;步骤四、采用氧等离子体清洗机对带有纳米通道阵列的PDMS片和带有微通道的PDMS片进行键合,得到带有纳米通道阵列的纳流控芯片。本发明的加工方法简单、通道深宽比可控,制备出的带有纳米通道阵列的纳流控芯片具有更高的灵敏。
-
公开(公告)号:CN109179313B
公开(公告)日:2020-08-28
申请号:CN201811002922.0
申请日:2018-08-30
Applicant: 哈尔滨工业大学
IPC: B81C1/00
Abstract: 本发明公开了一种基于AFM的微纳流控芯片制备方法,所述方法步骤如下:一、基于原子力显微镜的纳沟槽加工:应用AFM探针在金属样品表面进行纳米沟槽的加工;二、光刻法微沟槽加工:采用光刻法在单晶硅基底上进行微沟槽的加工;三、PDMS微纳沟槽转印:通过PMDS两次转印得到分别带有微、纳沟槽的PDMS单片;四、PDMS片键合:采用氧等离子体清洗机对具有微、纳沟槽的PDMS单片进行键合,得到所需结构的微纳流控芯片。本发明主要基于AFM的刻划加工,由于AFM刻划加工操作简便且效率高,所以采用本方法制备微纳流控芯片更高效。本发明的方法制备流程相对简单,使用材料为PDMS、单晶铜片等,成本相对较低。
-
公开(公告)号:CN105347298A
公开(公告)日:2016-02-24
申请号:CN201510877418.5
申请日:2014-08-07
Applicant: 哈尔滨工业大学
Abstract: 一种采用AFM探针纳米刻划加工复杂三维微纳米结构的方法,属于微纳米结构加工领域。为了解决复杂三维微纳米结构加工问题,所述装置包括AFM、X方向精密工作台、Y方向精密工作台,X方向精密工作台底座固连在Y方向精密工作台的滑块上,X方向定位工作台的滑块进行X方向运动,Y方向精密工作台底座固连在AFM样品台上,Y方向定位工作台的滑块进行Y方向运动。本发明提出的三种方法分别通过对同一套商用AFM以及高精度定位平台系统的不用控制和参数设置,实现采用AFM探针纳米刻划技术加工复杂三维微纳米结构的加工。本发明能够在较低成本下解决复杂三维微纳米结构的加工问题,且方法简单,装置及加工实现成本相对较低。
-
公开(公告)号:CN114411152B
公开(公告)日:2023-08-29
申请号:CN202210023523.2
申请日:2022-01-10
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种基于AFM纳米铣削及化学腐蚀加工的表面增强拉曼基底制备方法,所述方法包括如下步骤:步骤(1)采用磁控溅射法在基底表面依次制备金膜、银膜和金膜;步骤(2)基于AFM的纳米铣削加工系统,在金‑银‑金复合膜表面纳米铣削加工周期纳米结构;步骤(3)将纳米铣削加工得到的周期纳米结构放入浓硝酸中,对周期纳米结构边缘裸露的银层进行化学腐蚀,从而制备得到中空的纳米腔;步骤(4)以化学腐蚀后的带有纳米腔的复合膜周期阵列结构作为拉曼增强基底。该方法可以快速高效的制备结构特征尺寸可控、等离子体共振可调、一致性好的拉曼增强基底。
-
-
-
-
-
-
-
-
-