-
公开(公告)号:CN112029834A
公开(公告)日:2020-12-04
申请号:CN202011031587.4
申请日:2020-09-27
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: C12Q1/6858 , C12Q1/6827
Abstract: 本发明公开了一种核酸羟甲基化修饰的检测方法及其应用,所述方法包括以下步骤:将核酸样品分为两份,分别为第一样品和第二样品;所述第一样品依次经过氧化反应、亚硫酸盐处理和PCR扩增,得到氧化硫化扩增物;所述第二样品依次经过亚硫酸盐处理和PCR扩增,得到硫化扩增物;将所述氧化硫化扩增物与所述硫化扩增物杂交产生错配,形成杂交结构;酶切割所述杂交结构,得到目标样品;采用生化传感器对所述目标样品进行定量检测。本发明利用错配切割酶识别由于氧化反应在羟甲基胞嘧啶位点产生的错配,借助电化学平台产生差别信号,能够检测基因中任意位点的羟甲基胞嘧啶变化情况,从而可以成为细胞分化、肿瘤发生及药物疗效等评估的关键技术和手段。
-
公开(公告)号:CN111999338A
公开(公告)日:2020-11-27
申请号:CN202010714074.7
申请日:2020-07-22
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01N25/20
Abstract: 本发明涉及一种微型热导气体传感器,包括下盖、以及与所述下盖气密性键合的上盖,所述下盖的上表面设有两个悬浮的热丝组件,其中,每个热丝组件连接一组焊盘;所述上盖的下表面上设有两组依次连接的第一浅槽气道、气道和第二浅槽气道,其中,两个气道分别与两个旁路测试腔室相连,所述两个旁路测试腔室所在的位置与两个所述热丝组件所在的位置相互对应。本发明可以对气体实现分流,避免流动的气体直吹热丝,从而使得整个微型热导气体传感器对流速不敏感,能够有效降低气路流速波动产生的噪声。
-
公开(公告)号:CN111562232A
公开(公告)日:2020-08-21
申请号:CN202010454331.8
申请日:2020-05-26
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01N21/3504 , G01N21/01
Abstract: 本申请提供一种横式微型红外气体传感器,包括:微型光学气室、红外光源、红外探测器、电源芯片和ASIC芯片和第一电路板;微型光学气室的光路为横式折叠反射结构,光路与第一电路板平行设置;微型光学气室包括光输入端和光输出端;红外光源与光输入端连接,红外探测器与光输出端连接;红外探测器及红外光源均与光路垂直设置;红外探测器及红外光源设于微型光学气室的同一侧;微型光学气室、红外光源和红外探测器集成于第一电路板的一面,电源芯片和ASIC芯片集成于第一电路板的另一面;红外探测器采用MEMS封装技术进行集成化封装。本申请提供的红外气体传感器采用系统级混合集成封装能够有效减小红外气体传感器的体积。
-
公开(公告)号:CN107871666B
公开(公告)日:2020-08-21
申请号:CN201710872129.5
申请日:2017-09-25
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/336 , H01L29/06 , H01L29/10
Abstract: 本发明提供一种垂直堆叠集成的半导体纳米线及其场效应晶体管的制作方法,包括步骤:提供一{100}半导体衬底,在该衬底上制备成对凹槽;采用各向异性腐蚀法腐蚀成对凹槽内衬底材料,槽侧壁形成似锯齿型结构;在凹槽底部制作与其窗口中心对准的新凹槽,再各向异性腐蚀得到新的似锯齿型结构;采用高温氧化技术在成对槽之间的壁上形成被被包裹在被氧化的半导体璧中的垂直堆叠集成的半导体纳米线;最后在该半导体纳米线两端和中间制作源、漏、栅极,形成场效应晶体管。本发明工艺过程简单,仅需采用普通光刻技术等常规MEMS工艺,设备参数设计具有一般性,成本低廉,只需根据目标刻蚀深度控制刻蚀时间即可,可控性高,易于实现。
-
公开(公告)号:CN111474195A
公开(公告)日:2020-07-31
申请号:CN202010290194.9
申请日:2020-04-14
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01N23/2005 , G01N23/20025 , G01N23/04 , G01N23/20
Abstract: 本发明提供一种自对准式原位表征芯片,包括衬底层,衬底层的正反面设有第一和第二绝缘层,第一绝缘层的正面设有覆盖于第一绝缘层的一部分上的一功能层以及覆盖于第一绝缘层的一部分外露部分上和功能层的一部分上的第三绝缘层;一部分第一绝缘层外露于第三绝缘层和功能层,且一部分功能层外露于第三绝缘层,以形成样品窗口;第二绝缘层上设有对准样品窗口的透射窗口。本发明还提供其制备和使用方法。该表征芯片使得待测样品可以通过该样品窗口与功能层自对准连接,从而规避制样、转移样品至表征芯片的操作,消除了相应过程中样品被污染和损伤的可能性。
-
公开(公告)号:CN111366451A
公开(公告)日:2020-07-03
申请号:CN201811597576.5
申请日:2018-12-26
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种动态机械加载纳米材料的原位表征装置及方法,所述装置至少包括:加电样品杆、固定在所述加电样品杆前端的静电梳齿驱动芯片以及与所述静电梳齿驱动芯片相连的电源模块。本发明通过所述加电样品杆,将所述电源模块输出的交变电压直接作用到所述静电梳齿驱动芯片上,从而实现对纳米材料进行频率和幅度连续可控的动态机械加载。本发明的表征装置简单易操作,可应用于各类检测仪器内对纳米材料进行循环交变加载,实现在频率和幅度连续可控的动态机械加载下对纳米材料显微结构演化和物性变化进行原位观测,为从原子尺度上揭示纳米材料在复杂交变载荷环境下的变形行为提供条件。
-
公开(公告)号:CN110165043B
公开(公告)日:2020-07-03
申请号:CN201910412250.9
申请日:2019-05-17
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种基于黑薄膜的热电红外探测器及其制备方法,方法包括:提供一种半导体单晶衬底,在衬底表面制备出薄膜掩膜,刻蚀出窗口阵列;采用湿法技术腐蚀衬底表面,形成微纳金字塔结构;移除薄膜掩膜,在衬底表面制备单层或复合薄膜,在微纳金字塔结构表面制备出黑薄膜;以黑薄膜为红外吸收区,在其周围制备数条热电偶,然后沉积金属互连线以串联所有热电偶;以及释放所述黑薄膜,制备出基于黑薄膜的热电红外探测器。本发明提出一种黑薄膜制备技术,利用其对光的多次反射损耗增强热电红外吸收率的特性,将其与热电红外探测相结合,明显提高热电红外探测器的探测率和输出响应,增强红外探测性能,并且该方法与CMOS工艺兼容,可批量制备。
-
公开(公告)号:CN111257316A
公开(公告)日:2020-06-09
申请号:CN202010087431.1
申请日:2020-02-11
Applicant: 军事科学院系统工程研究院卫勤保障技术研究所 , 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种便携式纳米检测仪,其包括:纳米传感装置,设有用于与样品溶液中靶分子结合产生变化电信号的纳米传感器;所述纳米传感装置设在暗室内;信号处理及采集模块,与纳米传感器电连接,将变化电信号放大处理后采集并传输给中心控制模块;中心控制模块根据预先设定的计算机程序将所述变化电信号转化成可视化检测结果,通过显示屏显示;光学校准装置,其包含设于该暗室内、能够调节光强和/或光波长的发光元件,用于在检测前对纳米传感器性能进行校验和标定。本发明可提高纳米传感器的检测抗干扰能力和结果重现性。
-
公开(公告)号:CN110687066A
公开(公告)日:2020-01-14
申请号:CN201910875672.X
申请日:2019-09-17
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01N21/3504 , G01N21/03
Abstract: 本申请提供一种红外气体传感器,包括探测器,探测器包括多个传感单元,传感单元包括传感芯片和滤波元件;传感单元按功能分为第一类传感单元和第二类传感单元;第一类传感单元为检测单元,第二类传感单元为补偿单元;检测单元的数量为多个,检测单元的滤波元件的中心波长分别对应待测气体的不同红外特征吸收峰;补偿单元的数量为至少一个,补偿单元的滤波元件的中心波长分别对应不同无待测气体吸收的波长。本申请提供的红外气体传感器充分利用气体多个红外吸收峰的特性,以多个检测单元对待测气体的多级吸收峰信号进行检测,通过多级吸收峰信号的加权计算,结合补偿单元信号进行待测气体的识别和检测,提高待测气体的检测精度和气体识别能力。
-
公开(公告)号:CN110687065A
公开(公告)日:2020-01-14
申请号:CN201910875346.9
申请日:2019-09-17
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01N21/3504 , G01N21/01 , G01N21/03
Abstract: 本申请提供一种红外光源的制备方法及一种红外气体传感器,该红外光源的制备方法包括以下步骤:制备加热器,加热器包括硅衬底、支撑膜和加热电阻层,支撑膜和加热电阻层依次沉积在硅衬底上;绝缘层沉积在加热电阻层上;制备辐射波长控制结构,辐射波长控制结构包括金属反射层、介质层和周期性纳米金属层,金属反射层、介质层和周期性纳米金属层依次沉积在绝缘层上。红外光源为窄带红外光源,窄带红外光源通过调整超材料结构和尺寸能够辐射中心波长3μm-9μm的窄带红外光,窄带红外光的半高宽不大于220nm;该红外气体传感器采用上述红外光源的制备方法所制备的红外光源,如此,大大减小了红外气体传感器的体积,有利于实现红外气体传感器的微小型化。
-
-
-
-
-
-
-
-
-