-
公开(公告)号:CN105547144B
公开(公告)日:2019-02-05
申请号:CN201510868011.6
申请日:2015-11-30
Applicant: 哈尔滨工业大学
IPC: G01B9/02
Abstract: 一种超分辨结构探测阵列共焦相干成像装置及其成像方法,它涉及一种成像装置及其成像方法。本发明的目的是为了解决现有共焦限位技术的分辨力难以提高,共焦成像不清晰的问题。本发明包括激光光源,沿激光光源光线传播方向依次放置准直扩束器、微透镜阵列、准直透镜、分光棱镜、1/4波片、扫描系统、照明物镜、工业样品、收集透镜和CCD探测器,探测面上进行积分,改变对应探测位置的光灵敏度,使系统CTF带宽变大。本发明在提高共焦系统横向分辨力的同时提高结构探测共焦相干成像系统的成像速率,可适用于工业样品成像的测量领域。
-
公开(公告)号:CN107085290B
公开(公告)日:2019-02-01
申请号:CN201710439347.X
申请日:2017-06-12
Applicant: 哈尔滨工业大学
IPC: G02B21/00
Abstract: 一种基于扫描振镜与半导体激光器的共聚焦显微镜并行扫描装置及扫描方法,属于共焦显微成像领域。解决了现有CCD相机受到曝光速度影响,图片采集速率较低的问题。本发明包括半导体激光器、衰减片、偏振片、准直扩束系统、第一偏振分光棱镜、扫描振镜系统、远心扫描透镜、管镜、第二偏振分光棱镜、1/4波片、物镜、第一收集透镜、光电探测器、第二收集透镜、CCD相机和控制器;通过调制共焦光路中的CCD相机曝光时间,扫描振镜系统及半导体激光器触发信号,在CCD相机的一帧图像上获取多个振镜偏转角度对应的激光光斑,实现并行扫描。本发明主要用于对样品进行扫描。
-
公开(公告)号:CN106643497B
公开(公告)日:2019-01-22
申请号:CN201611228129.3
申请日:2016-12-27
Applicant: 哈尔滨工业大学
Abstract: 基于磁性荧光微球的随机重构微尺寸测量装置及方法,属于工业样品微尺寸测量领域,目的是为了解决现有技术的不足之处。激发光光束射至二向色镜,使得激发光光束经物镜能够照射磁性荧光微球,并使其发射出荧光多次随机改变两层可控磁极的磁场强度和磁场方向,使得样品室内产生随机变化的磁场,控制磁性荧光微球在溶液内随机移动;利用CCD采集多幅不同时刻荧光光斑的像,根据光斑的光强分布获得磁性荧光微球沿光轴轴向的位置,根据光斑的位置获得磁性荧光微球沿光轴径向的位置,进行图像重构,获得样品信息,完成被测样品的尺寸测量。本发明适用于化学和生物医学领域。
-
公开(公告)号:CN105510229B
公开(公告)日:2018-11-02
申请号:CN201510867984.8
申请日:2015-11-30
Applicant: 哈尔滨工业大学
IPC: G01N21/01
Abstract: 一种超分辨虚拟结构光照明成像装置及其成像方法,它涉及一种成像装置及其成像方法。本发明为了解决现有技术中的显微成像技术只能测量较薄的生物样品,成像系统的横向分辨力较差的问题。本发明包括LED光源,沿LED光源光线传播方向依次放置准直扩束器、扫描系统、分光棱镜、1/4波片、照明物镜、样品、收集透镜和CCD探测器。本发明通过照明光场对样品物函数进行调制,使其高频信息移向低频段,改变照明光场方向可以对物函数进行不同方向的调制,改变每个照明方向通过照明光场相位,区分探测频谱中的高低频。本发明不仅可以提高扫描显微系统的空间截止频率,拓宽空间频域带宽,可适用于工业形貌及厚生物样品成像的测量领域。
-
公开(公告)号:CN108519057A
公开(公告)日:2018-09-11
申请号:CN201810315887.1
申请日:2018-04-10
Applicant: 哈尔滨工业大学
IPC: G01B11/02
Abstract: 一种光纤侧面荧光物质沉积微型探针三维传感装置、传感方法及探针制备方法,属于微尺寸测量技术领域;本发明是为了解决现有光纤探针所面临的光耦合效率低,结构复杂,不具备轴向探测能力或轴向探测能力受限的问题。通过光纤熔融挤压或拉伸方式改变纤芯结构,通过物理气相沉积工艺在光纤侧面沉积荧光物质,使侧向入射的荧光从光纤包层耦合进入纤芯内部进而从端面出射,通过弹性膜片实现对光纤探针的悬挂及导向,结合共焦探测原理获得高分辨力的三维光纤探针系统。本发明的特点是:探针重量轻且结构简单、探测信号为高质量光斑且光强稳定、分辨力高且具有轴向探测能力。
-
公开(公告)号:CN108332664A
公开(公告)日:2018-07-27
申请号:CN201810316350.7
申请日:2018-04-10
Applicant: 哈尔滨工业大学
Abstract: 一种基于侧面激光耦合的光纤探针传感装置、传感方法及探针制备方法,属于微尺寸测量技术领域;本发明是为了解决现有光纤探针所面临的结构复杂,不具备轴向探测能力或轴向探测能力受限的问题。通过光纤熔融挤压或拉伸方式改变纤芯结构,令激光从光纤包层耦合进入纤芯内部进而从端面出射,通过弹性膜片实现对光纤探针的悬挂及导向,结合共焦探测原理获得高分辨力的三维光纤探针系统。本发明的特点是:探针重量轻且结构简单、探测光强稳定且易于探测、分辨力高且具有轴向探测能力。
-
公开(公告)号:CN105841609B
公开(公告)日:2018-04-24
申请号:CN201610165142.2
申请日:2016-03-22
Applicant: 哈尔滨工业大学
IPC: G01B11/00
Abstract: 一种基于光束扫描探测的组合悬臂梁探针传感装置及传感方法,属于尺寸测量技术领域,解决了基于光纤出射光探测的组合悬臂梁探针传感装置无法实现大量程、高分辨率传感的问题。本发明设置两个不同量程的光电探测器,探针的位移变化量小时,直接通过小量程光电探测器进行高分辨率传感,当探针的位移变化量大、聚焦光斑的位置偏移量超出小量程光电探测器的量程、在大量程光电探测器的量程内时,根据大量程光电探测器探测到的聚焦光斑的偏移量,控制二维扫描振镜组,使经其出射的激光发生偏转,使小量程光电探测器探测到聚焦光斑、该聚焦光斑的位置与光纤的另一端同步移动,实现了大量程、高分辨率的传感。本发明用于微尺寸和大深径比内腔结构的测量。
-
公开(公告)号:CN104990499B
公开(公告)日:2017-07-04
申请号:CN201510381711.2
申请日:2015-07-02
Applicant: 哈尔滨工业大学
Abstract: 基于共轭焦点跟踪探测技术的探针传感装置属于尺寸测量技术领域;在激光器的出射光路上依次配置准直透镜、反射镜、显微物镜、光纤探针,光纤探针通过悬挂弹片悬挂安装在固定座上,光纤探针由内部刻有光纤光栅结构的光纤和探针触球配装构成;在显微物镜与反射镜之间依次配置第一分光镜和第二分光镜,在第一分光镜的反射光路上依次配置第一收集透镜和横向光电探测器,在第二分光镜的反射光路上依次配置第二收集透镜和轴向光电探测器;激光器、横向光电探测器和轴向光电探测器分别由电控位移台带动进行三维运动;本装置具有探针制作方便且易实现微型化、探测光强度高且易于探测、具备三维探测及解调能力、分辨力高、装置结构简单的特点。
-
公开(公告)号:CN105841609A
公开(公告)日:2016-08-10
申请号:CN201610165142.2
申请日:2016-03-22
Applicant: 哈尔滨工业大学
IPC: G01B11/00
CPC classification number: G01B11/00
Abstract: 一种基于光束扫描探测的组合悬臂梁探针传感装置及传感方法,属于尺寸测量技术领域,解决了基于光纤出射光探测的组合悬臂梁探针传感装置无法实现大量程、高分辨率传感的问题。本发明设置两个不同量程的光电探测器,探针的位移变化量小时,直接通过小量程光电探测器进行高分辨率传感,当探针的位移变化量大、聚焦光斑的位置偏移量超出小量程光电探测器的量程、在大量程光电探测器的量程内时,根据大量程光电探测器探测到的聚焦光斑的偏移量,控制二维扫描振镜组,使经其出射的激光发生偏转,使小量程光电探测器探测到聚焦光斑、该聚焦光斑的位置与光纤的另一端同步移动,实现了大量程、高分辨率的传感。本发明用于微尺寸和大深径比内腔结构的测量。
-
公开(公告)号:CN105510229A
公开(公告)日:2016-04-20
申请号:CN201510867984.8
申请日:2015-11-30
Applicant: 哈尔滨工业大学
IPC: G01N21/01
CPC classification number: G01N21/01
Abstract: 一种超分辨虚拟结构光照明成像装置及其成像方法,它涉及一种成像装置及其成像方法。本发明为了解决现有技术中的显微成像技术只能测量较薄的生物样品,成像系统的横向分辨力较差的问题。本发明包括LED光源,沿LED光源光线传播方向依次放置准直扩束器、扫描系统、分光棱镜、1/4波片、照明物镜、样品、收集透镜和CCD探测器。本发明通过照明光场对样品物函数进行调制,使其高频信息移向低频段,改变照明光场方向可以对物函数进行不同方向的调制,改变每个照明方向通过照明光场相位,区分探测频谱中的高低频。本发明不仅可以提高扫描显微系统的空间截止频率,拓宽空间频域带宽,可适用于工业形貌及厚生物样品成像的测量领域。
-
-
-
-
-
-
-
-
-