-
公开(公告)号:CN114943073B
公开(公告)日:2024-09-10
申请号:CN202210380497.9
申请日:2022-04-12
Applicant: 国家计算机网络与信息安全管理中心 , 北京赋乐科技有限公司
IPC: G06F21/46 , G06F21/60 , G06F18/214 , G06F18/20 , G06N3/0442 , G06N3/0464 , G06N3/08 , G06N3/126 , G06N7/01
Abstract: 本公开的实施例提供了加密流量的通用对称加密协议脱壳方法、装置、设备和计算机可读存储介质。所述方法包括获取加密协议的流量;基于预设的密码字典,通过马尔科夫‑GEP模型生成新的密码字典;基于加密协议密码字符组合规律,对所述新的密码字典中的密码进行规约;基于规约后的新的密码字典和传统的解密脱壳方法,构建对称加密协议脱壳模型;将所述加密协议的流量,输入至所述对称加密协议脱壳模型,完成脱壳。提高了脱壳准确度,使得脱壳更加高效。
-
公开(公告)号:CN118349883A
公开(公告)日:2024-07-16
申请号:CN202410345245.1
申请日:2024-03-25
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/241 , G06F18/214 , G06N3/0455 , G06N3/0442 , G06N3/0464 , G06F21/60
Abstract: 本申请提供一种重要数据的识别方法、装置和电子设备,涉及数据处理技术领域和人工智能技术领域。该方法包括:在识别重要数据时,可以先获取待识别数据集,待识别数据集中包括多个数据和各数据的重要度指标;针对各数据,将数据和数据的重要度指标输入至预设的重要数据识别模型中,得到数据对应的重要度得分;再基于各数据对应的重要度得分,从多个数据中识别重要数据,这样基于重要数据识别模型识别重要数据,与现有技术中基于预设重要度规则识别重要数据相比,不仅可以有效地提高重要数据的识别效率,而且提高了识别结果的准确度。
-
公开(公告)号:CN117312864A
公开(公告)日:2023-12-29
申请号:CN202311618449.X
申请日:2023-11-30
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/214 , G06F18/10 , G06F18/25 , G06F40/284 , G06N3/08 , G06N3/0455 , G06N3/0475
Abstract: 本发明提供一种基于多模态信息的变形词生成模型的训练方法及装置,涉及语言生成技术领域,方法包括:获取变形词语料库,变形词语料库包括的不同初始样本由多模态信息组成;对变形词语料库中不同初始样本的不同类型的语料信息,采用对应类型的预处理方式分别进行预处理,生成大规模语料库;大规模语料库中每个语料样本包括多个语料信息的权重及特征向量,不同的语料信息的权重用于表征不同的语料信息在对应样本中不同的贡献程度;基于大规模语料库中预设数量的语料样本包括的多个语料信息的权重及特征向量,对初始模型进行训练,得到基于多模态信息的变形词生成模型。本发明能够提高变形词生成的精度和准确率。
-
公开(公告)号:CN116795980A
公开(公告)日:2023-09-22
申请号:CN202310440756.7
申请日:2023-04-21
Applicant: 国家计算机网络与信息安全管理中心 , 讯飞智元信息科技有限公司
IPC: G06F16/35 , G06F40/289 , G06F40/30 , G06N3/0455 , G06N3/047 , G06N3/048 , G06N3/0985
Abstract: 本发明公开了一种融合细粒度要素知识的短文本分类方法,该方法包括:通过梳理标注短文本数据完成数据标注,其中,所述数据标注为标注全量标注数据类别和数据中存在要素信息;针对标注后的短文本数据,采用关键要素提取文本分类联合训练算法,借助BERT+CRF提取短文本数据中的要素信息;进而融合细粒度信息,结合标签编码器Label Encoder来学习各个标签label的表示,得到一个符合实际的标签分布。本发明针对上述问题提出一种融合细粒度要素知识的短文本分类的解决方法,从而提升短文本分类的效果,进而促使更为精准分析短文本数据,自动找到有关垃圾信息,提高工作效率。
-
公开(公告)号:CN116561512A
公开(公告)日:2023-08-08
申请号:CN202310431305.7
申请日:2023-04-20
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/10 , G06F18/27 , G06F18/22 , G06F18/214 , G06F16/9035 , G06F16/951 , G06F16/9537 , G06F16/9538 , G06F16/9535 , G06F16/9038
Abstract: 本发明提出了一种基于COX回归的多平台虚假信息识别方法及装置,方法包括:获取各自表征一主题的多组数据信息;基于数据信息与预先标记的数据信息的比对情况进行筛选;对当前数据信息进行排序以及填充处理;基于COX回归算法,利用当前数据信息,构建COX回归识别模型,并确认每一主题对应的数据信息中,各个维度信息对数据信息危险程度的影响情况;利用当前构建的COX回归识别模型,对再次获取的表征一主题的数据信息进行识别处理。本发明可基于同一主题的虚假信息识别,并且可以根据影响主题信息的多种因素,在不同的周期内,识别不同维度数据的影响因素权重。
-
公开(公告)号:CN115080871A
公开(公告)日:2022-09-20
申请号:CN202210847062.0
申请日:2022-07-07
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9536 , G06F16/901 , G06N3/04 , G06N3/08 , G06Q50/00
Abstract: 本发明公开了一种跨社交网络社交用户对齐方法,涉及社交网络的用户关系挖掘领域。本发明为了解决现有社交用户对齐方法不能跨社交网络、计算精度低、对齐效率低的缺陷,采用如下步骤实现:采集社交网络的用户属性信息,构建用户关系拓扑图;根据边权重和节点的出入度计算节点权重;构建一阶近邻关系模型和二阶近邻关系模型,确定一阶邻居节点和二阶邻居节点,得到用户节点之间的相互关系;构建社交对齐神经网络,通过社交对齐神经网络对用户关系拓扑图中各节点进行邻居节点的信息聚合、拼接与非线性变换,得到跨社交网络的社交用户身份对齐结果。本发明主要用于通过跨社交网络对其社交用户实现用户关系挖掘。
-
公开(公告)号:CN114943073A
公开(公告)日:2022-08-26
申请号:CN202210380497.9
申请日:2022-04-12
Applicant: 国家计算机网络与信息安全管理中心 , 北京赋乐科技有限公司
Abstract: 本公开的实施例提供了加密流量的通用对称加密协议脱壳方法、装置、设备和计算机可读存储介质。所述方法包括获取加密协议的流量;基于预设的密码字典,通过马尔科夫‑GEP模型生成新的密码字典;基于加密协议密码字符组合规律,对所述新的密码字典中的密码进行规约;基于规约后的新的密码字典和传统的解密脱壳方法,构建对称加密协议脱壳模型;将所述加密协议的流量,输入至所述对称加密协议脱壳模型,完成脱壳。提高了脱壳准确度,使得脱壳更加高效。
-
公开(公告)号:CN114817661A
公开(公告)日:2022-07-29
申请号:CN202210448777.9
申请日:2022-04-26
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9035 , G06K9/62
Abstract: 本发明涉及一种基于IP地址画像的大规模IP自动分类方法,本方法首先基于各个IP画像的相似度关系构建图结构,由此确定核心的IP节点,对于新加入的节点,本方法对其进行分类的计算复杂度为O(n),n为核心节点的数量,因此适用于大规模IP数据的线上实时处理。同时,本方法在进行IP分类结果的更新时,会将之前的核心节点与新抽样的节点混合起来重新聚类,这一过程在一定程度上保证了各IP群体的核心稳定性,同时又能较好地反映它们的实时变化。本发明还涉及一种基于IP地址画像的大规模IP自动分类装置和存储介质。
-
公开(公告)号:CN113132383B
公开(公告)日:2022-03-25
申请号:CN202110421317.2
申请日:2021-04-19
Applicant: 烟台中科网络技术研究所 , 国家计算机网络与信息安全管理中心
IPC: H04L69/22 , H04L67/562 , G06N3/08
Abstract: 本发明涉及大数据技术领域。本发明公开了一种网络数据采集系统,该系统包括服务器,服务器包括:任务下发模块,用于创建用户信息获取任务,将用户信息获取任务分配至不同的任务池,计算任务池优先级,根据任务下发规则,得到并传输具有优先级参数的用户信息获取任务;数据解析模块,与任务下发模块数据连接,用于获取来自中间代理服务端的用户信息流量数据,数据解析模块构建报文解析神经网络模型,将待解析报文信息输入训练后报文解析神经网络模型,判断待解析报文信息中是否包括指定用户信息并提取。通过设置任务优先级,优先处理重要的任务,提高任务处理效率。本公开实施例还公开了一种网络数据采集方法。
-
公开(公告)号:CN114021627A
公开(公告)日:2022-02-08
申请号:CN202111239649.5
申请日:2021-10-25
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
Abstract: 本发明公开了一种融合LSTM与场景规则知识的异常轨迹检测方法及装置,包括依据目标轨迹构建时序序列;将时序序列输入LSTM网络,获取的目标轨迹中每个时刻的位置隐向量,并基于各位置隐向量进行注意力机制计算,得到目标轨迹表示向量;拼接目标轨迹表示向量与设定场景规则的向量,并对拼接后向量进行分类,得到异常轨迹检测结果。本发明采用的融合方法除了使用向量表示轨迹之外,还加入了可调整的应用场景规则,解决单一方法的不足,具有更好的迁移性。
-
-
-
-
-
-
-
-
-