一种用于空间等离子体环境模拟与研究的脉冲电源系统

    公开(公告)号:CN114531053A

    公开(公告)日:2022-05-24

    申请号:CN202210234008.9

    申请日:2022-03-10

    Abstract: 一种用于空间等离子体环境模拟与研究的脉冲电源系统,涉及脉冲功率技术及应用领域。它包括工程师站、操作员站、数据存储系统、光纤交换机、机柜、配电柜、A面电源阵列、B面电源阵列。工程师站用于设置投入运行脉冲电源的基本参数并发送给操作员站,操作员站进行电压设置及放电相关操作,数据存储系统用于查看并存储每次电源运行数据,以上设备通过控制室光纤交换机与电源室光纤交换机连接后再与机柜中的安全连锁系统和同步触发设备以及位于A面电源阵列和B面电源阵列上的18电源连接实现数据交换和控制功能,配电柜用于转换和分配电网AC380V电能。本发明能够为18个线圈提供满足物理实验需求的激励电流,构建模拟的地球磁层磁场及等离子体环境。

    一种向真空舱内传输脉冲大电流的可变极性汇流接线器

    公开(公告)号:CN114221182A

    公开(公告)日:2022-03-22

    申请号:CN202111551031.2

    申请日:2021-12-17

    Abstract: 一种向真空舱内传输脉冲大电流的可变极性汇流接线器,涉及脉冲功率电能传输领域。包括两个接线端子,接线端子连接杆、可变连接杆、过渡模块和汇流排。所述接线端子是连接真空舱内负载线圈和真空舱外脉冲电流装置的桥梁;汇流排用于汇聚脉冲大电流装置各个放电模块的输出电流,并将同轴电缆的电流流出端和流回端分离;接线端子连接杆、可变连接杆和过渡模块连接汇流排和接线端子,同时是实现电流极性转换的部件。该汇流接线器在真空度较高的真空舱室中,能够作为真空舱外部的脉冲大电流装置与真空舱内部的负载线圈之间的连接桥梁,可以将真空舱外脉冲大电流装置的所有放电模块的输出同轴电缆与真空舱内负载线圈的输入输出端进行连接。

    一种用于临近空间高速目标等离子体环境地面模拟的宽频段真空微波暗室

    公开(公告)号:CN113671266B

    公开(公告)日:2022-03-08

    申请号:CN202110945458.4

    申请日:2021-08-17

    Abstract: 本发明提供了一种用于临近空间高速目标等离子体环境地面模拟的宽频段真空微波暗室,包括真空罐体、微波暗室骨架、支撑机构和复合电磁波吸收体,微波暗室骨架设在真空罐体内,在真空罐体的一端设有真空封头法兰,微波暗室骨架包括依次连接的多个连接段,多个连接段之间连接形成筒体结构;微波暗室骨架的一端为多级嵌套法兰,另一端设有吸波屏蔽门,通过安装若干块复合电磁波吸收体完全覆盖微波暗室骨架内壁,每一块复合电磁波吸收体由铁氧体瓦、匹配层和角锥吸波材料通过阻抗匹配复合而成,所述的铁氧体瓦、匹配层和角锥吸波材料从下到上依次布置。本发明能够提供宽频段的真空微波暗室,可用于临近空间高速目标表面等离子体环境及电磁通信研究。

    一种适用于耀斑预报问题的多线程神经网络模型的构建方法

    公开(公告)号:CN113537460A

    公开(公告)日:2021-10-22

    申请号:CN202110725250.1

    申请日:2021-06-29

    Abstract: 本发明公开了一种适用于耀斑预报问题的多线程神经网络模型的构建方法,所述方法如下:一:获取“耀斑数据集”;二:将“耀斑数据集”进行乱序处理,按照不平衡度分割成数据子集,标记为“耀斑数据子集”;三:初始化“ANN子模型”参数;四:将“耀斑数据子集”输入至“ANN子模型”,开始模型训练;五:将训练好的“ANN子模型”的模型参数进行取平均操作,得到“超级模型参数”;六:各个“ANN子模型”的模型参数采用“超级模型参数”作为初始化方法;七:重复三~六,得到适用于耀斑预报问题的多线程神经网络模型。该方法构建的多线程神经网络模型适用于太阳耀斑预报过程中出现的由于数据类不平衡问题导致的预报模型精确度低等问题。

    模拟三维非对称磁重联的等离子体模拟装置及其实现方法

    公开(公告)号:CN109677645B

    公开(公告)日:2021-10-22

    申请号:CN201910069337.0

    申请日:2019-01-24

    Abstract: 模拟三维非对称磁重联的等离子体模拟装置及其实现方法,属于空间环境地面模拟技术领域,本发明为解决现有磁层空间等离子体研究模拟装置只能提供近似的三维重联结构,且通常所采用的用于重联的等离子体呈对称结构,并不能真实反映非对称磁层顶重联的结构特点的问题。本发明偶极磁场线圈通电后产生模拟地球磁场位形的磁场,上磁镜场线圈和下磁镜场线圈产生模拟磁镜场位形的磁场;电子回旋共振等离子体源在模拟地球磁场位形侧产生电子回旋共振等离子体;六硼化镧等离子体源在磁镜场磁场位形侧产生磁层顶磁鞘侧等离子体;等离子体枪驱动磁层顶磁鞘侧等离子体,使其与电子回旋共振等离子体在磁零点处发生三维非对称磁重联。用于对空间环境的地面模拟。

    一种基于多维卷积神经网络的实验环境安全预警方法

    公开(公告)号:CN111583592B

    公开(公告)日:2021-07-27

    申请号:CN202010374572.1

    申请日:2020-05-06

    Abstract: 一种基于多维卷积神经网络的实验环境安全预警方法,采集实验室数据,进行数据预处理,得到归一化样本集,利用多维卷积神经网络对隐藏故障信息进行深度挖掘,随后根据模型的预测分辨结果与所测实验室数据对应的人工标注标签的偏差来调整故障诊断模型内部权重参数,最后对实验室安全预警模型的进行性能测试,使基于多维卷积神经网络的实验室安全预警模型的正确率得到进一步的提升。本发明所得结论准确,可以及时对安全隐患进行发现并预警,阻止安全事故的发生。

    一种基于实验场景的实验室管理系统

    公开(公告)号:CN111598751A

    公开(公告)日:2020-08-28

    申请号:CN202010413175.0

    申请日:2020-05-15

    Abstract: 一种基于实验场景的实验室管理系统,以实验的时间顺序为基础,以实验者的行为操作为主线,通过将实验管理的子系统进行串联,构建的针对实验过程的实验室管理系统;所述实验室管理系统包括基础服务支撑层、管理层和展示层;建立一站式管理系统,大大提高系统使用的便捷性,增加了不同子系统的关联性,实现了实验场景全过程的一站式管理;本发明将实验管理子系统进行串联,提供了高效、便捷、实用的管理系统;提供了实验录制及实验培训、实验仿真功能,将每次实验进行统计与归档,为下一次实验提供培训、仿真资料。

    脉冲磁场调控航天器黑障区强耗散等离子体的实验装置

    公开(公告)号:CN108630065B

    公开(公告)日:2020-05-08

    申请号:CN201810461835.5

    申请日:2018-05-15

    Abstract: 本发明提供了一种脉冲磁场调控航天器黑障区强耗散等离子体的实验装置,属于缓解航天器通信黑障领域。本发明的壳体外表面和等离子体源处在真空室内,壳体内部处在空气中,脉冲磁体和支撑结构位于壳体内部。壳体的端部为法兰且与真空室连接,壳体的腹部通过支撑脚固定到真空室上;磁体支撑结构由杆和支撑块组成,杆将磁体支撑结构装入壳体内部并控制支撑结构的转动,支撑块用于固定脉冲磁体,脉冲磁体随支撑块的转动而转动支撑;脉冲磁体的磁体引线从支撑块中引出连接到真空室外的可控电源上;等离子体源放置在真空室的端部。本发明用于模拟研究脉冲磁场缓解航天器通信黑障的效应,以解决现有缓解通信黑障系统大质量、高功耗、通信可靠性差的问题。

    一种模拟地球磁尾三维磁重联的地面模拟装置及方法

    公开(公告)号:CN109785718A

    公开(公告)日:2019-05-21

    申请号:CN201910068513.9

    申请日:2019-01-24

    Abstract: 一种模拟地球磁尾三维磁重联的地面模拟装置及方法,涉及低温等离子体应用领域。本发明是为了解决磁尾等离子体不能模拟真实三维磁尾重联结构的问题。一种模拟地球磁尾三维磁重联的地面模拟装置,两个磁镜场线圈镜像对称,偶极磁场线圈位于两个磁镜场线圈的对称轴上,使得偶极磁场线圈和两个磁镜场线圈产生磁场时能够模拟出地球磁尾磁场,两个磁镜场线圈的外侧分别设有LaB6等离子体源,两个磁镜场线圈之间的对称轴上设有等离子体枪,当两个LaB6等离子体源注入等离子体时,能够模拟出地球磁尾南北两侧等离子体,等离子体枪开启,能够驱动所述地球磁尾南北侧等离子体在磁零点线位置发生三维磁尾磁重联。

    空间碎片等离子体推进器
    100.
    发明授权

    公开(公告)号:CN105822515B

    公开(公告)日:2019-03-29

    申请号:CN201610231581.9

    申请日:2016-04-14

    Abstract: 空间碎片等离子体推进器。属于航天技术领域。在利用空间碎片时,静电式等离子体推进器栅网型电极的损伤较为严重,进而导致空间碎片作为推进剂的利用率低问题。本发明的粉碎机与球磨机相连,粉末充电系统固定在球磨机内部;外套管位于外磁轭内部,内套管位于外套管内部,内磁轭位于内套管内部;主轴的穿过内磁轭固定在支撑结构上,内磁轭、内套管、外套管和外磁轭均固定在支撑结构上;外线圈缠绕在外磁轭的外壁上,内线圈缠绕在内磁轭的外壁上;阳极与球磨机和放电通道相连;阴极位于放电通道出口处靠近外磁轭的位置;电源的正极与阳极相连,电源的负极与阴极相连。有效解决了栅网型电极的损伤问题,提高了对空间碎片的利用率。适用于作为航天器的推进器。

Patent Agency Ranking