-
公开(公告)号:CN102642155A
公开(公告)日:2012-08-22
申请号:CN201210132031.3
申请日:2012-05-02
Applicant: 哈尔滨工业大学
Abstract: 一种基于图像辅助的微小零件回转调心方法。属于精密测量及加工技术领域。该方法借助图像辅助设备实现各种超精密加工、检测设备上安装零件非接触、无损伤调心。将待调心的微小零件安装在二维位移调心台面上,计算机系统捕获一幅图像a,假定该待调心的微小零件的回转中心坐标为(xc,yc);求得外圆圆心的位置坐标(x1,y1),将求得的外圆轮廓圆心特征点(x1,y1)标识在图像a上;将回转主轴旋转已知的角度θ,再捕获一幅新图像b;确定新图像b上的新位置坐标(x2,y2)及外圆轮廓半径;计算出待调心的微小零件的回转中心位置(xc,yc);使得动态图像c上的待调心的微小零件的外圆圆心坐标(x3,y3)与回转中心坐标(xc,yc)的位置重合。本发明适合于易破损变形等微小零件的回转调心。
-
公开(公告)号:CN102530850A
公开(公告)日:2012-07-04
申请号:CN201210066852.1
申请日:2012-03-14
Applicant: 哈尔滨工业大学
IPC: B81C1/00
Abstract: 一种采用AFM探针纳米刻划加工毫米尺寸微纳结构的方法。本发明属于毫米尺寸微纳结构加工领域。该方法能够在较低成本下解决毫米尺寸、纳米精度微纳结构的加工问题。方法一:首先将待加工样品置于X-Y二维精密工作台上,通过AFM系统的逼近过程使AFM探针以小于1μN的垂直载荷接触待加工样品的表面;加工纳米线振列结构,设定加工长度、加工宽度、加工间距、加工方向、垂直载荷及加工速度的参数值。方法二与一不同的是:加工由多个相同微结构组合而成的阵列微结构;首先设定加工参数,加工时,由扫描陶管带动AFM探针运动,从而实现方形、圆形或等边三角形阵列微结构的加工。本发明采用AFM探针纳米刻划加工待加工样品的毫米尺寸微纳结构。
-
公开(公告)号:CN101003356B
公开(公告)日:2011-01-05
申请号:CN200710071628.0
申请日:2007-01-12
Applicant: 哈尔滨工业大学
IPC: B82B3/00
Abstract: 基于原子力显微镜恒高模式的纳米微小结构加工方法,本发明涉及纳米量级微小结构的加工方法。它克服了现有的AFM的纳米微小结构加工方法加工深度不可人为设定以及所能精确加工的尺寸范围非常有限的缺陷。本发明系统增加了三维微动工作台控制电路和三维微动工作台,本方法的主单片机通过三维微动工作台控制电路驱动三维微动工作台完成高度方向上的运动,使探针的针尖刺入被加工工件表面;探针所受反作用力在悬臂上产生的变形量被光杠杆测角装置检测到并传送给主单片机,三维微动工作台持续进行高度方向上的进给,直到用户的加工深度设定值等于三维微动工作台高度方向上的进给量减去悬臂上产生的变形量,直到刻划工作结束。
-
公开(公告)号:CN117300340A
公开(公告)日:2023-12-29
申请号:CN202311391436.3
申请日:2023-10-25
Applicant: 哈尔滨工业大学 , 霖鼎光学(江苏)有限公司
Abstract: 本发明属于激光加工技术领域,提供一种基于多轴并联运动平台的曲面激光加工装置及方法,包括固定座;多轴并联运动平台,下固定平台与固定座相连接;夹具,用于夹紧待加工工件,夹具设置于上运动平台上;激光加工机构,包括设置于固定座上的直线模组以及设置于直线模组上的激光器,直线模组用于驱动激光器沿直线移动,激光器的输出端用于朝向待加工工件;控制模块,包括计算机和多轴运动控制器,计算机用于设定运动参数,多轴运动控制器用于基于运动参数控制激光器、直线模组和多轴并联运动平台的工作状态。本发明设备结构紧凑、平台运动分辨率高、额定动载大、响应快。
-
公开(公告)号:CN117032072A
公开(公告)日:2023-11-10
申请号:CN202311089821.2
申请日:2023-08-28
Applicant: 哈尔滨工业大学
IPC: G05B19/404
Abstract: 一种五轴超精密机床几何误差分配方法,涉及一种机床误差分配方法。设计五轴超精密机床;建立几何误差模型;设置几何误差的取值范围并全局敏感性分析;参考分析结果设置精度边界条件和成本边界条件;将边界条件作为约束使用群优化算法对几何误差进行分配;建立误差综合模型,设计机床五个轴系的运动轨迹,将几何误差分配结果作为驱动,计算工件端和刀具端三个方向的距离;使用误差综合模型计算在没有误差时工件端和刀具端三个方向的距离;计算空间几何误差值调整边界条件直至满足设计指标。综合考虑了误差分配过程中的精度边界条件和成本边界条件,保证机床加工精度的同时,有助于确保机床制造成本不超标。
-
公开(公告)号:CN114919084B
公开(公告)日:2022-11-15
申请号:CN202210811540.2
申请日:2022-07-11
Applicant: 哈尔滨工业大学
IPC: B28D5/00 , B28D7/00 , B23K26/00 , B23K26/067 , B23K26/70
Abstract: 本发明公开一种自动定位与功率可控的原位激光辅助金刚石切削装置,包括调节组件和切削组件,切削组件位于调节组件的出射光路上,调节组件与切削组件电性连接有处理系统;调节组件包括固定滑轨,固定滑轨顶端滑动连接有位置调节部,位置调节部顶端固定连接有激光调节部,切削组件位于激光调节部出射光路上,固定滑轨顶端靠近切削组件一侧固定连接有PSD位置传感器,位置调节部、PSD位置传感器均与处理系统电性连接;切削组件包括固定台,固定台顶端固定连接有力传感器,力传感器顶端固定连接有刀具组件和激光分束部,激光分束部位于激光调节部的出射光路上,激光分束部一侧对应设置有激光功率探头,激光功率探头、力传感器均与处理系统电性连接。
-
公开(公告)号:CN113245905B
公开(公告)日:2022-05-17
申请号:CN202110524566.4
申请日:2021-05-13
Applicant: 哈尔滨工业大学
IPC: B23Q15/22
Abstract: 一种可调整金刚石刀具前角与高度的方法,属于超精密加工技术领域。垂直位移台通过步进电机二驱动并设在超精密机床上,其上有通过步进电机一驱动的角度位移台,角度位移台上有刀具安装底座;金刚石刀具放在刀具安装底座上并通过刀具固定块固定;步进电机一及步进电机二由控制器控制;角度位移台有转动限位机构。将垂直位移台与超精密机床以及角度位移台组装;将金刚石刀具安到刀具安装底座上并固定;测量角度位移台圆心位置;测量金刚石刀具刃口位置,计算金刚石刀具刃口相对角度位移台圆心的距离,输入金刚石刀具转动角度与刃口转动半径;使金刚石刀具前角转动到所需角度。本发明提高了切削前角参数工艺试验的效率。
-
公开(公告)号:CN112296368B
公开(公告)日:2021-10-15
申请号:CN202011269485.6
申请日:2020-11-13
Applicant: 哈尔滨工业大学
Abstract: 一种基于压电陶瓷的宏微复合金刚石车刀高度调节刀架,涉及一种车刀刀架。柔性铰链整体为n形结构,两侧设有两个竖向支臂,中间位置顶部设有平板,平板与两个竖向支臂之间通过圆弧形柔性铰链部连接为一体,底板固定在两个竖向支臂底部,压电陶瓷固定在底板上且顶部与平板下表面接触,平板上固定金刚石车刀安装板,支撑板顶部设有水平翼并转动连接调高螺栓,其中一个竖向支臂顶部设有调高螺纹孔,调高螺栓与调高螺纹孔旋接配合,支撑板固定有锁紧T型块和导向块,其中一个竖向支臂设有T型槽和导向槽,支撑板底部固定刀架底座。简单方便,精度较高,有效控制超精密切削中金刚石车刀前刀面的高度调节。
-
公开(公告)号:CN113245905A
公开(公告)日:2021-08-13
申请号:CN202110524566.4
申请日:2021-05-13
Applicant: 哈尔滨工业大学
IPC: B23Q15/22
Abstract: 一种可调整金刚石刀具前角与高度的装置及其调整方法,属于超精密加工技术领域。垂直位移台通过步进电机二驱动并设在超精密机床上,其上有通过步进电机一驱动的角度位移台,角度位移台上有刀具安装底座;金刚石刀具放在刀具安装底座上并通过刀具固定块固定;步进电机一及步进电机二由控制器控制;角度位移台有转动限位机构。将垂直位移台与超精密机床以及角度位移台组装;将金刚石刀具安到刀具安装底座上并固定;测量角度位移台圆心位置;测量金刚石刀具刃口位置,计算金刚石刀具刃口相对角度位移台圆心的距离,输入金刚石刀具转动角度与刃口转动半径;使金刚石刀具前角转动到所需角度。本发明提高了切削前角参数工艺试验的效率。
-
公开(公告)号:CN111948267A
公开(公告)日:2020-11-17
申请号:CN202010844645.9
申请日:2020-08-20
Applicant: 哈尔滨工业大学
Abstract: 一种利用超长纳米线制备电化学纳米点阵列电极的方法,属于纳米电极制备技术领域。本发明是为了简单高效可重复地制备纳米点阵列电极,在含微米沟槽阵列的硅模板上浇注PDMS;在固化完成的PDMS模具上浇注树脂,得到带有微米沟槽阵列的树脂块;在树脂块上沉积一层金属薄膜,用树脂包埋,进行纳米切片,将单个含纳米线阵列的树脂薄片或多个与空树脂薄片交替堆叠的含纳米线阵列的树脂薄片转移至基底上,将导线搭接固定在纳米线阵列的表面,加入树脂封装,将未搭接导线的一端修块抛光,得到纳米点阵列电极。本发明避免了邻近电极的电容和扩散层重叠,且通过对纳米线端面再次修块抛光可获得新的干净的纳米点阵列,有利于纳米点阵列电极的长期重复使用。
-
-
-
-
-
-
-
-
-