基于多任务学习与知识蒸馏的车辆再辨识方法及系统

    公开(公告)号:CN114022697A

    公开(公告)日:2022-02-08

    申请号:CN202111109745.8

    申请日:2021-09-18

    Applicant: 华侨大学

    Abstract: 本发明实例公开了一种基于多任务学习与知识蒸馏的车辆再辨识方法及系统,利用多任务学习架构使网络同时学习多个相关联任务所需的知识,从而习得表征更丰富的通用特征,提高模型的泛化能力;同时,将多任务学习训练得到的模型作为教师网络,将结构相似、参数量更少的紧凑模型作为学生网络,通过知识蒸馏,利用大型教师网络的内部层间知识对小型学生网络的训练进行监督,得到精度不逊于复杂模型的轻量化模型。本发明针对车辆再辨识的任务特点改进了网络结构与训练范式,既提升了模型性能,也对其进行了有效的压缩与加速。

    一种基于视角自适应特征学习的行人性别识别方法

    公开(公告)号:CN111160226A

    公开(公告)日:2020-05-15

    申请号:CN201911370041.9

    申请日:2019-12-26

    Applicant: 华侨大学

    Abstract: 本发明涉及一种基于视角自适应特征学习的行人性别识别方法包括:视角自适应训练过程,性别识别过程。本发明利用输入行人的视角信息来指导卷积神经网络的特征学习过程,以减轻行人视角变化对神经网络进行性别识别的影响,使训练得到的网络模型具有更加准确的行人性别识别效果。本发明结合了行人的视角信息,解决了以往基于卷积神经网络用在行人性别识别问题上的不足,有效地提高了行人性别识别精度。本发明可以被广泛地应用在智能视频监控场景,例如大型商场,机场,火车站等。

    一种基于时空感知特征的屏幕内容视频码率控制方法

    公开(公告)号:CN110944199A

    公开(公告)日:2020-03-31

    申请号:CN201911191751.5

    申请日:2019-11-28

    Applicant: 华侨大学

    Abstract: 本发明涉及一种基于时空感知特征的屏幕内容视频码率控制方法,充分考虑人眼视觉对屏幕内容视频的感知特性,利用最新的屏幕图像质量评价方法GFM建立空域感知模型,通过所得到的感知特性进行感知编码。本发明还充分利用了屏幕内容视频的内容特性以及帧间相关性,对不同的时域相邻块进行分析判断,分为三种不同类型的块,并利用这种特性进行合理的码率分配。本发明结合时空感知特性对屏幕内容视频进行合理的码率控制,降低误码率,节省码率开销的同时,提高视频的质量,具有重要的意义和价值。

    一种屏幕图像JND模型构建方法

    公开(公告)号:CN110399886A

    公开(公告)日:2019-11-01

    申请号:CN201910635863.9

    申请日:2019-07-15

    Applicant: 华侨大学

    Abstract: 本发明涉及一种屏幕图像JND模型构建方法。首先利用文本分割技术得到屏幕图像的文本区域;其次提取文本区域的边缘像素,将屏幕图像分为文本边缘区域和非文本边缘区域;然后利用边缘宽度和边缘对比度计算出边缘结构失真敏感度和边缘对比度掩蔽,得到文本边缘区域视觉掩蔽模型;接着计算出非文本边缘区域的亮度自适应和对比度掩蔽效应,得到非文本边缘区域视觉掩蔽模型;最后结合文本边缘区域和非文本边缘区域的视觉掩蔽模型得到屏幕图像JND模型。本发明充分考虑屏幕图像特点以及人眼对屏幕图像不同区域具有不同的视觉感知特性等因素,对屏幕图像的视觉冗余信息有较为准确的估计,可广泛地应用到屏幕图像技术领域。

    一种基于极平面线性相似度的光场图像质量评价方法

    公开(公告)号:CN109801273A

    公开(公告)日:2019-05-24

    申请号:CN201910016167.X

    申请日:2019-01-08

    Applicant: 华侨大学

    Abstract: 本发明涉及一种基于极平面线性相似度的光场图像质量评价方法,属于图像处理领域,根据人类视觉系统理解光场图像时对场景结构变化的敏感性和光场图像中包含丰富的场景结构变化信息提出,方法包括:对参考光场图像和失真光场图像分别提取极平面图;接着分别提取参考极平面图和失真极平面图的线性特征图,进而计算得到极平面线性特征相似度图;基于极平面线性相似度图得到最终失真光场图像质量评价值。本发明充分利用极平面线性特征来描述光场图像中场景结构变化,从而评价失真光场图像的质量,反映人眼主观视觉系统对于光场图像的主观感知度,具有较好的光场图像质量评价性能。

    一种无人机森林火灾风险区块检测方法及系统

    公开(公告)号:CN119027845B

    公开(公告)日:2025-02-14

    申请号:CN202411514321.3

    申请日:2024-10-29

    Abstract: 本发明涉及图像处理与人工智能技术领域,公开了一种无人机森林火灾风险区块检测方法及系统,方法包括:构建基于区块分类的目标检测模型并进行训练,利用训练好的基于区块分类的目标检测模型实现无人机森林火灾风险区块检测;所述基于区块分类的目标检测模型利用区块映射器无人机图像中的不同区块映射为区块特征;利用多阶段采样网络对区块特征进行多种尺度的采样,并利用降维映射层进行尺度对齐,获得多尺度区块特征;通过哈达玛积融合多尺度区块特征,利用区块分类器将融合后的多尺度区块特征映射至区块类别概率。本发明以区域分类方式实现风险区块的定位,避免了现有技术因精确定位导致的庞大计算量,延长无人机可用时间。

Patent Agency Ranking