-
公开(公告)号:CN109373178B
公开(公告)日:2020-01-31
申请号:CN201811342297.4
申请日:2018-11-12
Applicant: 西安交通大学 , 广东省特种设备检测研究院东莞检测院
Abstract: 本发明公开了用于检测低温绝热气瓶蒸发率的低温液体充装方法及其充装系统,方法包括以下步骤:预冷低温绝热气瓶,打开放空阀门和旁通阀门,旁通阀门与低温储罐连通,关闭主阀门,旁通阀门以第一预定充装质量速率对低温绝热气瓶进行第二次预冷,大流量充装低温绝热气瓶,增大电动阀门开度,开启主阀门且关闭旁通阀门,来自低温储罐的液体经由主阀门通过旋流发生器以第二预定充装质量速率充装低温绝热气瓶,当低温绝热气瓶内液体质量达到75%的充装率时停止;减小电动阀门开度,来自低温储罐的液体经由主阀门通过旋流发生器以第三预定充装质量速率充装低温绝热气瓶,充装至额定充装率后,关闭主阀门,静置预定时间直到内液面停止旋转,充装完成。
-
公开(公告)号:CN105236982B
公开(公告)日:2017-06-27
申请号:CN201510582695.3
申请日:2015-09-14
Applicant: 西安交通大学
Abstract: 本发明公开了一种氮化铝增强的石墨基复合材料及制备工艺,其特征是,以片状石墨作基体,氮化铝作为增强相,均匀分布在石墨片层间,形成三维网状氮化铝骨架与定向排列的石墨片层相结合的各向异性结构;工艺上采用片状石墨颗粒、氮化铝粉体及适量烧结助剂,球磨混料、烘干过筛、预压成型后于1500~1700℃进行放电等离子体烧结,烧结过程中施加的轴向压力,使石墨片层定向排布,氮化铝粉烧结后形成三维网陶瓷骨架,可显著提高石墨基体的强度,并约束石墨的热膨胀,从而形成致密、均匀的沿片层方向高热导率、垂直片层方向低热膨胀的各向异性复合材料,其优异的综合性能,将在电子器件的传热、散热等方面具有广泛的应用前景。
-
公开(公告)号:CN110107806B
公开(公告)日:2020-09-29
申请号:CN201910241778.4
申请日:2019-03-27
Applicant: 广东省特种设备检测研究院东莞检测院 , 西安交通大学
IPC: F17C13/02
Abstract: 本发明公开了一种基于不同充满率的低温绝热气瓶蒸发率检测方法,方法包括以下步骤:基于低于额定充满率充灌低温绝热气瓶后,静置第一预定时刻,记录气瓶质量变化ml,低温绝热气瓶进入测试的第二阶段,其持续第二预定时刻,在第二阶段内测量以下参数,ug‑‑‑放气阀门气体流速,m/s;Tamb_2‑‑‑环境温度,K;P2‑‑‑环境压力,MPa,并计算实际总传热量Qt_l,获得低温绝热气瓶在低充满率下的气液传热量比例系数GLA:计算另一液位下的GLA′数值,基于液相单位面积热阻计算另一液位下的液相传热量,根据GLA′数计算得出另一液位下的总传热量Qt_h,进而得出蒸发率。
-
公开(公告)号:CN109373178A
公开(公告)日:2019-02-22
申请号:CN201811342297.4
申请日:2018-11-12
Applicant: 西安交通大学 , 广东省特种设备检测研究院东莞检测院
Abstract: 本发明公开了用于检测低温绝热气瓶蒸发率的低温液体充装方法及其充装系统,方法包括以下步骤:预冷低温绝热气瓶,打开放空阀门和旁通阀门,旁通阀门与低温储罐连通,关闭主阀门,旁通阀门以第一预定充装质量速率对低温绝热气瓶进行第二次预冷,大流量充装低温绝热气瓶,增大电动阀门开度,开启主阀门且关闭旁通阀门,来自低温储罐的液体经由主阀门通过旋流发生器以第二预定充装质量速率充装低温绝热气瓶,当低温绝热气瓶内液体质量达到75%的充装率时停止;减小电动阀门开度,来自低温储罐的液体经由主阀门通过旋流发生器以第三预定充装质量速率充装低温绝热气瓶,充装至额定充装率后,关闭主阀门,静置预定时间直到内液面停止旋转,充装完成。
-
公开(公告)号:CN105236982A
公开(公告)日:2016-01-13
申请号:CN201510582695.3
申请日:2015-09-14
Applicant: 西安交通大学
Abstract: 本发明公开了一种氮化铝增强的石墨基复合材料及制备工艺,其特征是,以片状石墨作基体,氮化铝作为增强相,均匀分布在石墨片层间,形成三维网状氮化铝骨架与定向排列的石墨片层相结合的各向异性结构;工艺上采用片状石墨颗粒、氮化铝粉体及适量烧结助剂,球磨混料、烘干过筛、预压成型后于1500~1700℃进行放电等离子体烧结,烧结过程中施加的轴向压力,使石墨片层定向排布,氮化铝粉烧结后形成三维网陶瓷骨架,可显著提高石墨基体的强度,并约束石墨的热膨胀,从而形成致密、均匀的沿片层方向高热导率、垂直片层方向低热膨胀的各向异性复合材料,其优异的综合性能,将在电子器件的传热、散热等方面具有广泛的应用前景。
-
公开(公告)号:CN109458558A
公开(公告)日:2019-03-12
申请号:CN201811342498.4
申请日:2018-11-12
Applicant: 广东省特种设备检测研究院东莞检测院 , 西安交通大学
CPC classification number: G06F17/18 , F17C13/026 , F17C2250/0439 , F17C2250/0631
Abstract: 本发明公开了一种低温绝热气瓶蒸发率检测方法,方法包括以下步骤:充灌低温绝热气瓶后,保持放气阀门开启且关闭其他阀门,低温绝热气瓶静置第一阶段,获得第一阶段低温绝热气瓶的总漏热量Qtotal、筒体漏热量Qbarrel以及经由计算筒体漏热量在总漏热量中的占比f,低温绝热气瓶进入测试的第二阶段,并计算实际蒸发率α0,获得低温绝热气瓶在第二阶段的计算蒸发率αc:比较计算蒸发率αc与实际蒸发率α0相对误差 如果误差值在5%以内,则认为计算蒸发率αc是可靠的。
-
公开(公告)号:CN116145009A
公开(公告)日:2023-05-23
申请号:CN202310179277.4
申请日:2023-02-28
Applicant: 西安交通大学
Abstract: 本发明公开了一种基于层状结构的轻质高强材料及其制备方法,按质量百分数称取TiAl,Nb和Mo固体颗粒,然后根据合金成分将固体颗粒混合后装入炉仓内,并完成三次抽真空操作和三次冲Ar气操作,确保熔炼时炉仓内Ar气保护气氛,打开冷却循环水,调整熔炼电流、电压,以及引弧针与固体颗粒之间的距离,确保引弧以及固体颗粒充分熔炼,对熔炼试样进行反复熔炼以确保熔炼试样各部分充分熔炼并均匀混合,制得TiAl‑Nb‑Mo高温结构材料;本发明有效改善了高温结构材料的组织结构,提高了高温结构材料的强度以及塑韧性。
-
公开(公告)号:CN109458558B
公开(公告)日:2020-10-20
申请号:CN201811342498.4
申请日:2018-11-12
Applicant: 广东省特种设备检测研究院东莞检测院 , 西安交通大学
Abstract: 本发明公开了一种低温绝热气瓶蒸发率检测方法,方法包括以下步骤:充灌低温绝热气瓶后,保持放气阀门开启且关闭其他阀门,低温绝热气瓶静置第一阶段,获得第一阶段低温绝热气瓶的总漏热量Qtotal、筒体漏热量Qbarrel以及计算筒体漏热量在总漏热量中的占比f,低温绝热气瓶进入测试的第二阶段,并计算实际蒸发率α0,获得低温绝热气瓶在第二阶段的计算蒸发率αc:比较计算蒸发率αc与实际蒸发率α0相对误差如果误差值在5%以内,则认为计算蒸发率αc是可靠的。
-
公开(公告)号:CN110107806A
公开(公告)日:2019-08-09
申请号:CN201910241778.4
申请日:2019-03-27
Applicant: 广东省特种设备检测研究院东莞检测院 , 西安交通大学
IPC: F17C13/02
Abstract: 本发明公开了一种基于不同充满率的低温绝热气瓶蒸发率检测方法,方法包括以下步骤:基于低于额定充满率充灌低温绝热气瓶后,静置第一预定时刻,记录气瓶质量变化ml,低温绝热气瓶进入测试的第二阶段,其持续第二预定时刻,在第二阶段内测量以下参数,ug--放气阀门气体流速,m/s;Tamb_2--环境温度,K;P2--环境压力,MPa,并计算实际总传热量Qt_l, 获得低温绝热气瓶在低充满率下的气液传热量比例系数GLA:计算另一液位下的GLA′数值,基于液相单位面积热阻计算另一液位下的液相传热量,根据GLA′数计算得出另一液位下的总传热量Qt_h,进而得出蒸发率。
-
-
-
-
-
-
-
-