-
公开(公告)号:CN113239663B
公开(公告)日:2022-07-12
申请号:CN202110309085.1
申请日:2021-03-23
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06F40/126 , G06F40/216 , G06F40/242 , G06F40/284 , G06F40/295 , G06F40/30 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于知网的多义词中文实体关系识别方法,其步骤包括:1)对中文网事数据中的每一条语料样本基于知网进行字颗粒度的向量化,得到每一个字对的字颗粒度向量;然后对每一字颗粒度向量所在的位置信息进行编码,得到语料中每个字与预标注的待识别实体关系对的相对位置编码;2)根据步骤1)所得结果生成每一语料样本的字颗粒度语义向量集合;3)基于知网生成每一语料的词颗粒度语义向量集合;4)利用各语义向量及其对应位置编码训练深度自注意力神经网络,得到深度自注意力神经网络编码器;5)生成待处理语料中字和词汇的语义向量及其对应位置编码输入深度自注意力神经网络编码器,得到该待处理语料中的实体关系。
-
公开(公告)号:CN113239663A
公开(公告)日:2021-08-10
申请号:CN202110309085.1
申请日:2021-03-23
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06F40/126 , G06F40/216 , G06F40/242 , G06F40/284 , G06F40/295 , G06F40/30 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于知网的多义词中文实体关系识别方法,其步骤包括:1)对中文网事数据中的每一条语料样本基于知网进行字颗粒度的向量化,得到每一个字对的字颗粒度向量;然后对每一字颗粒度向量所在的位置信息进行编码,得到语料中每个字与预标注的待识别实体关系对的相对位置编码;2)根据步骤1)所得结果生成每一语料样本的字颗粒度语义向量集合;3)基于知网生成每一语料的词颗粒度语义向量集合;4)利用各语义向量及其对应位置编码训练深度自注意力神经网络,得到深度自注意力神经网络编码器;5)生成待处理语料中字和词汇的语义向量及其对应位置编码输入深度自注意力神经网络编码器,得到该待处理语料中的实体关系。
-
公开(公告)号:CN112069312A
公开(公告)日:2020-12-11
申请号:CN202010806716.6
申请日:2020-08-12
Applicant: 中国科学院信息工程研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/35 , G06F40/295 , G06F40/30 , G06F16/9535
Abstract: 本发明提供一种基于实体识别的文本分类方法,包括:对待检测文本进行切词,得到情感词与实体词,并通过一实体及情感类别已标注数据集判断实体词的情感类别;对待检测文本进行断句,通过情感词与标注情感类别的实体词在每一句子中的词性、否定词及标点符号内容,获取各句子的情感类别;依据各句子的情感类别,得到待检测文本的情感类别。本发明利用半监督学习的方式,通过协同训练加主动学习的方式,结合学习加情感规则的方式,确定指向性实体集;通过识别指定方向实体,结合情感词进行倾向性判断;生成指定类别实体集,结合情感规则,实现对文本更深层次的分析。
-
公开(公告)号:CN112069312B
公开(公告)日:2023-06-20
申请号:CN202010806716.6
申请日:2020-08-12
Applicant: 中国科学院信息工程研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/35 , G06F40/295 , G06F40/30 , G06F16/9535
Abstract: 本发明提供一种基于实体识别的文本分类方法,包括:对待检测文本进行切词,得到情感词与实体词,并通过一实体及情感类别已标注数据集判断实体词的情感类别;对待检测文本进行断句,通过情感词与标注情感类别的实体词在每一句子中的词性、否定词及标点符号内容,获取各句子的情感类别;依据各句子的情感类别,得到待检测文本的情感类别。本发明利用半监督学习的方式,通过协同训练加主动学习的方式,结合学习加情感规则的方式,确定指向性实体集;通过识别指定方向实体,结合情感词进行倾向性判断;生成指定类别实体集,结合情感规则,实现对文本更深层次的分析。
-
公开(公告)号:CN114077838A
公开(公告)日:2022-02-22
申请号:CN202010825717.5
申请日:2020-08-17
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06F40/295 , G06F40/284
Abstract: 本发明提供一种基于词表示特征的命名实体识别方法及电子装置,包括:对待检测文本进行分词,获取各词语的基础特征;将各词语组成一词语序列,并对每一词语进行编码,提取编码结果的词嵌入特征;根据词语序列的设定权重与设定主题,生成一词向量序列,提取词向量序列的词表示特征;将基础特征、词嵌入特征及词表示特征输入一实体识别模型,获取待检测文本中的命名实体。本发明采用了word2vec训练的词嵌入及LSTM训练的词表示,捕获了语句的长期依赖性,充分的利用了长距离上下文信息对命名实体进行识别,相对于传统模型有较好的改进,提高了微博命名实体的识别的准确率。
-
公开(公告)号:CN115293479A
公开(公告)日:2022-11-04
申请号:CN202210559536.1
申请日:2022-05-23
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
Abstract: 本发明公开了一种舆情分析工作流系统,包括:数据分析功能模块,其包括N个能够进行舆情数据分析的数据分析模块;工作流建立模块,其根据舆情分析需求从数据分析功能模块中选择多个数据分析模块,按顺序进行连接,建立对特定任务进行分析的工作流,针对同一事件不同分析角度的舆情分析需求,建立多个工作流,以对多个舆情分析任务进行分析;工作流管理模块,其对建立的工作流进行数据分析计算,并通过可视化工作流图查看计算结果;事件管理模块,其对同一事件的多个舆情分析任务进行管理,并通过舆情分析数据构建不同任务之间的联系。本发明还提供了舆情分析工作流方法。本系统和方法能够根据舆情分析需求实现从不同层次和不同角度获得舆情信息。
-
公开(公告)号:CN113255720A
公开(公告)日:2021-08-13
申请号:CN202110393842.8
申请日:2021-04-13
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06K9/62 , G06Q50/00 , G06F16/901
Abstract: 本发明公开了一种基于分层图池化的多视角聚类方法,包括以下步骤:将待处理数据划分成多视角数据集,然后将多视角数据集按各视角构建对应的图表示,得到对应的视图;采用分层图池化层迭代计算方法提取每个视图的聚类信息,每个视图的聚类信息包括对应该视图的粗化图和分配矩阵,该粗化图包括迭代后的邻接矩阵、特征矩阵、图拉普拉斯矩阵;采用多视角谱聚类融合方法融合所有视图的聚类信息,得到每一类特征向量所对应的类别。具有充分利用待处理数据本身的多视图特征,可以综合包含原各个视图的聚类信息。公开了一种基于分层图池化的多视角聚类系统,包括:图构建模块、聚类信息计算提取模块、多视角融合模块。本发明具有提升聚类效果的有益效果。
-
公开(公告)号:CN111949848A
公开(公告)日:2020-11-17
申请号:CN202010785632.9
申请日:2020-08-06
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/951 , G06F16/9536 , G06F16/958 , G06F16/35 , G06F40/295 , G06F40/216
Abstract: 本发明涉及一种基于特定事件的跨平台传播态势评估及分级方法,属于网络信息领域。本发明的基于特定事件的跨平台传播态势评估及分级方法,具体包括四个功能模块,分别为:原始网络元素检测模块、特定事件的话题传播计算模块、话题传播模型参数的等级评定和威胁分析模块、任务调度和优化模块。本发明解决了现有技术中没有考虑到事件的传播态势评估及分级方法,提出了针对特定事件传播情况的量化评估方法和有区分度的分级手段,建立了信息系统框架,实现了对特定事件的跨平台传播态势评估及分级,同时根据特定事件的跨平台传播态势评估对后续监测工作进行指导,从而有效提高对于事件传播的紧急或影响程度的判断能力,用以指导实际工作。
-
公开(公告)号:CN110134944A
公开(公告)日:2019-08-16
申请号:CN201910275651.4
申请日:2019-04-08
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
Abstract: 本发明公开了一种基于强化学习的指代消解方法,包括:数据预处理:对文本数据进行分词、分句、词性标注、词形还原、命名实体识别、句法解析,词向量转换,得到候选先行词和指代词相关特征;构建神经网络模型:该模型结合词向量和相关特征能够学习指代对的特点和相关语义信息,更好的对候选先行词和指代词进行排序打分,最后得到指代链;使用训练好的模型进行指代消解,输入文本数据,输出消解链。本发明方法针对启发式损失函数的不足,采用奖励衡量的机制来进行深度学习训练,提高了模型效果,针对不同语言数据集自动进行超参设置,免除了手工设置的必要,提高了模型的实用性拓展了适用范围。
-
公开(公告)号:CN117520570A
公开(公告)日:2024-02-06
申请号:CN202310693072.8
申请日:2023-06-12
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/38 , G06F16/25 , G06N3/0442 , G06N3/0464 , G06N3/048 , G06F18/241
Abstract: 本发明公开了一种面向政策文件的智能文本辅助处理系统,属于信息管理领域,具体包括:采集层,数据层,处理层和应用层;所述采集层基于雷达采集软件、python技术以及大数据中心数据推送的方式对政策文件的相关信息进行获取;数据层通过ETL技术将数据载入至数据库;处理层对数据进行清洗加工和智能分析,供应用层使用;应用层实现信息可视化展示、快速检索、自动分类、多语言翻译、引用规范化和语音转写等。本发明具有高效性和易用性,在信息系统管理等领域有重要应用价值。
-
-
-
-
-
-
-
-
-