-
公开(公告)号:CN118835454A
公开(公告)日:2024-10-25
申请号:CN202410974574.2
申请日:2024-07-19
Applicant: 南京工程学院 , 江苏丹毛纺织股份有限公司
Abstract: 本发明涉及一种超临界CO2印染天然纤维表面改性方法及用途,属于印染技术领域。该方法对天然纤维进行表面改性剂改性和CO2等离子体改性处理,用于超临界CO2印染。相对于现有技术,本发明具有以下有益效果:提高纤维表面的可及性,提高了纤维表面的疏水性以及对染料分子的亲和力;提升染料分子向纤维内部的扩散能力;提升染料分子在超临界CO2流体中的溶解度,提升纤维分子链的活动性;提高超临界CO2印染过程中的上色率和固色率。
-
公开(公告)号:CN120063914A
公开(公告)日:2025-05-30
申请号:CN202510246331.1
申请日:2025-03-04
Applicant: 南京工程学院
IPC: G01N3/08 , G01N17/00 , G01N23/2251 , G01N23/2206
Abstract: 本发明公开了一种快速测定金属应力腐蚀开裂临界应力值的方法,属于金属材料腐蚀与防护技术领域。本发明能够直接快速测定临界应力值,而不是常规应力腐蚀测试获得的敏感系数评价性指标,而且能够显著减少试样数量及试验周期,设计加工成双圆台形试样,试样单个圆台的横截面从一端倒另一端线性递减,准确控制施加恒定载荷时产生的连续应力梯度。通过恒载荷法在腐蚀介质中进行应力腐蚀测试,根据加载载荷、双圆台形试样中产生裂纹的最大横截面面积,测定该类材料在腐蚀环境中发生应力腐蚀开裂的临界应力值。利用该方法可以高效快速测定不同金属材料的应力腐蚀开裂临界应力值,从而为工程构件及医疗器械的截面设计、许用载荷提供依据。
-
公开(公告)号:CN119101831A
公开(公告)日:2024-12-10
申请号:CN202411238962.0
申请日:2024-09-05
Applicant: 南京工程学院 , 江苏鼎胜新能源材料股份有限公司
Abstract: 本发明公开了一种短流程生产的高强韧、低针孔率、耐热动力电池铝箔及其制备方法,属于动力电池材料以及加工方法技术领域。一种短流程生产的高强韧、低针孔率、耐热动力电池铝箔,包括以下成分:Fe:0.21~0.55%;Si:0.15~0.35%;Cu:0.02~0.08%;Ti:0.01~0.04%;Mn≤0.02%;Zn≤0.02%;Y:0.003~0.005%;Er:0.003~0.005%;Sc:0.003~0.005%;其余为Al。本发明在熔炼阶段,通过复合螺旋电磁搅拌,改善了熔体均匀性和除碱除杂除气效果;引入脉冲电流辅助的新型轧制方式,增加了晶粒细化程度,并大幅度提高了生产效率。
-
公开(公告)号:CN118792589A
公开(公告)日:2024-10-18
申请号:CN202411104824.3
申请日:2024-08-13
Applicant: 江苏省沙钢钢铁研究院有限公司 , 江苏沙钢钢铁有限公司 , 江苏沙钢集团有限公司 , 南京工程学院
Abstract: 本发明揭示了一种优异塑韧性的桥梁钢及其生产方法。所述桥梁钢的化学成分以质量百分比计包括:C:0.11~0.14%,Si:0.11~0.18%,Mn:1.31~1.39%,Nb:0.011~0.019%,Ti:0.009~0.017%,Al:0.026~0.046%,P≤0.0151%,S≤0.0080%,N≤0.0045%,其余为铁和不可避免的杂质;厚度为6~64mm,0℃冲击功KV2≥280J,‑20℃冲击功KV2≥260J,‑40℃冲击功KV2≥250J,延伸率≥30%,屈强比≤0.75。
-
公开(公告)号:CN115000413B
公开(公告)日:2024-05-17
申请号:CN202210635771.2
申请日:2022-06-07
Applicant: 南京工程学院
IPC: H01M4/66 , H01M10/0525
Abstract: 本发明提供了一种动力电池集流体耐热涂碳铝箔和制备方法,其导电碳浆的组分及质量百分比为:导电碳材料10‑30%,水溶性无机‑有机复合粘接剂1‑5%,纳米氧化镁0.05‑0.5%,水性溶剂67.55‑88.95%。本发明采用多形态碳基复合导电组分,增加了碳材料之间的接触,降低了涂层的电阻同时提高了涂层的强度。导电碳材料采用臭氧预处理,在不加入助剂的情况下解决了碳材料不易分散的难题。采用无机‑有机复合粘接剂,显著降低了粘接剂用量,保证涂碳层优良导电性及粘接强度,同时赋予涂层耐高温性、阻燃性及良好化学稳定性。采用的无机‑有机复合粘接剂较低的温度下即可交联固化,避免温度过高造成涂碳铝箔严重变形。
-
公开(公告)号:CN114632820B
公开(公告)日:2023-11-10
申请号:CN202210214155.X
申请日:2022-03-04
Applicant: 南京工程学院
Abstract: 本发明公开了冷轧用工作辊辊形设计方法及超薄铝箔冷轧板形控制方法,工作辊辊形设计方法根据正弦函数和幂函数为基础函数构造复合函数构造工作辊辊形函数模型,从而减少轧辊磨损,降低辊耗,有效避免辊面剥落等缺陷,延长换辊周期、提高生产效率;超薄铝箔冷轧板形控制方法引入了辊面粗糙度协同策略及工作辊磨削工艺优化,进一步增强了高阶浪形的控制能力,实现了不同道次高次浪形的靶向调控。
-
公开(公告)号:CN116770175A
公开(公告)日:2023-09-19
申请号:CN202310688658.5
申请日:2023-06-12
Applicant: 南京工程学院 , 上海梅山钢铁股份有限公司
IPC: C22C38/02 , C22C38/04 , C22C38/06 , C22C38/34 , C22C38/44 , C22C38/46 , C22C38/48 , C22C38/54 , C22C38/42 , C21D8/06 , C21D1/32 , C21D1/25 , C21D9/52 , C21D9/00 , C21D9/02 , F16F1/02 , B21C1/00
Abstract: 本发明公开了一种高耐延迟断裂的高强度钢及其节能制备方法、应用,高强度钢化学成分按质量百分比计,包括以下组分:0.2~0.4%C、1.2~2.0%Si、0.1~0.3%Mn、0.6~1.2%Cr、0.8~1.5%Ni、0.5~1.0%Al、0.8~1.2%Mo、0.3~0.5%V、0.06~0.10%Nb、0.2~0.5%Cu、0.02~0.05%B、0.02~0.05%N、0~0.015%P、0~0.010%S、0~0.00015%H、0~0.0015%O,其余为Fe和杂质。本发明能够使碳化物在不同热处理工艺阶段多尺度析出,形成贝氏体、残余奥氏体和碳化物组成的显微组织,有利于形成氢陷阱,增加强韧性的同时提高耐延迟断裂性能,并缩短工艺流程、节能减排、降低成本。
-
公开(公告)号:CN116078344B
公开(公告)日:2023-08-01
申请号:CN202310254359.0
申请日:2023-03-16
Applicant: 南京工程学院
IPC: B01J20/08 , B01J20/30 , C02F1/28 , C02F101/10
Abstract: 本发明公开了一种晶须状尖晶石型镁铝氧化物锂离子筛盐湖提锂用吸附剂及其制备方法,属于材料技术领域,本发明的晶须状尖晶石型镁铝氧化物锂离子筛盐湖提锂用吸附剂的Li+饱和吸附量大于50mg/g,循环使用30次后饱和吸附量大于45mg/g;该吸附剂的直径为0.5~1μm,吸附剂的形状为晶须状。本发明的吸附剂结构更加致密,可以有效避免锂离子热迁移进入镁铝尖晶石的晶格间隙导致镁铝尖晶石结构改变,从而进一步提高尖晶石型镁铝氧化物锂离子筛的循环稳定性。
-
公开(公告)号:CN114289504B
公开(公告)日:2023-04-25
申请号:CN202210000572.4
申请日:2022-01-04
Applicant: 南京工程学院
Abstract: 本发明公开了一种铜/高碳钢复合材料专用V型气体保护罩,包括由基板(1)、覆板(2)和侧板围成的V型壳体(3);所述铜带和所述高碳钢带之间的夹角为30~45°。本发明还公开了一种铜/高碳钢复合材料及其激光辅助制备方法和在导电弹簧和/或精密垫片中的应用。本发明形成了熔化层,显著减小了铜/高碳钢轧制复合对变形量的依赖,可在极小轧制变形量下实现铜/高碳钢的界面结合,避免了变形协调性差的问题,并且熔化层在轧制作用下局部位置产生了“涡流区”,进而使界面局部位置形成了“波浪”形界面或铜钢过渡层,这与爆炸复合的过渡层相近,可进一步增强界面结合效果。
-
公开(公告)号:CN115948784A
公开(公告)日:2023-04-11
申请号:CN202310050477.X
申请日:2023-02-01
IPC: C25D11/30
Abstract: 本发明公开了一种镁合金表面自修复涂层及其制备方法和应用,属于镁合金腐蚀防护技术领域,制备方法包括以下步骤:S1、镁合金表面制备微弧氧化涂层:镁合金经预处理后,将镁合金置于微弧氧化电解液中进行微弧氧化处理,获得微弧氧化涂层;S2、微弧氧化涂层生长层状双金属氢氧化物:将微弧氧化涂层样品放置于酸性含锰水溶液中浸泡,再将酸性含锰水溶液浸泡后的样品放置于Mg(NO3)2、Ca(NO3)2或Zn(NO3)2水溶液中进行水热反应;S3、缓蚀性离子负载:将样品放置于(NH4)2HPO4水溶液中浸泡,获得镁合金表面自修复涂层。本发明的涂层具有良好的腐蚀防护能力、快速自修复功能特性,适用于工程领域及生物医用领域。
-
-
-
-
-
-
-
-
-