一种大规模光交换芯片的混合封装结构及验证方法

    公开(公告)号:CN116609897B

    公开(公告)日:2023-12-19

    申请号:CN202310893682.2

    申请日:2023-07-20

    Abstract: 本发明公开了一种大规模光交换芯片的混合封装结构及验证方法,该封装结构由芯片、转接板芯片和PCB构成;其芯片上有交替连接的植球焊盘和导线;转接板芯片上有交替连接的BGA、倒装焊接焊盘和引线键合焊盘及导线;转接板上的引线键合焊盘用来验证引线键合连通率;芯片和转接板之间通过倒装焊接工艺Flip Chip形成菊花链,并通过PCB上导线扇出以进行导通测试;其转接板和PCB通过BGA形成菊花链,并通过PCB上导线扇出以进行导通测试;该结构有2048个端口,通过线路和结构的设计,最大可以满足256×256规模光交换芯片封装的技术开发和验证,降低光交换芯片电学封装的成本,提高了芯片封装验证效率和设计开发周期。

    一种光芯片、芯片封装结构及封装性能检测方法

    公开(公告)号:CN116165753B

    公开(公告)日:2023-07-18

    申请号:CN202310418377.8

    申请日:2023-04-14

    Abstract: 本发明涉及一种光芯片、芯片封装结构及封装性能检测方法,包括导电柱、基板以及设置于所述基板正面的光学端口,所述基板上开设有通孔,所述导电柱填充在所述通孔内,且所述导电柱的两个端部分别位于所述基板的正面和背面,所述导电柱在所述基板正面的端部为检测端口,所述导电柱在所述基板背面的端口为通讯端口。针对较大尺寸的光芯片,通讯端口可以和扇出板正对直接键合,实现光芯片和扇出板的电连接,而光学端口和检测端口则位于基板背离扇出板的一侧,由此也就使光学端口可以直接与基板上方的光纤阵列进行耦合,不会受到基板的阻挡,同时实现了光学端口和通讯端口的封装,由此也避免了在扇出板上进行开窗或者改变扇出板形状。

    一种四维可拓展的光交换网络架构及其构建方法

    公开(公告)号:CN115988360A

    公开(公告)日:2023-04-18

    申请号:CN202211367743.3

    申请日:2022-11-02

    Abstract: 本发明公开了一种四维可拓展的光交换网络架构及其构建方法,该网络架构分为两个部分,一部分称为可拓展传输区域,由4个N×N的蝶形网络组成,构成了低复杂度、低串扰的光开关阵列;另一部分称为四维路由区域,由N/2个环形网络组成,将构建的可拓展传输区域和四维路由区域连接起来,即可构建N×N×N×N的四维可拓展的光交换网络架构。本发明突破传统二维光开关阵列的限制,实现了光交换阵列维度上的拓展,每个端口可与另外3N个端口实现互连,以更少的光开关单元实现更大的信号交换规模,有效地解决了随着端口数增加光交换网络面积过大的问题。

    一种多层交叉布线结构的硅转接板的制备方法

    公开(公告)号:CN116153858A

    公开(公告)日:2023-05-23

    申请号:CN202211523539.6

    申请日:2022-12-01

    Abstract: 本发明涉及一种多层交叉结构的硅转接板的制备方法,通过进行硅基表面分步制作大规模的金属走线及其凸点的布局;选择的介质层如二氧化硅层和氮化硅、光敏性聚酰亚胺胶、BCB胶等介质层,作为绝缘分布于不同层间的金属走线的的绝缘介质层;金属层布线及介质层的交替布局,可以布大量金属走线,分布布局更多凸点,形成多层交错互连,凸点处于同一水平面;本发明通过在硅片表面上制备出不同膜层的硅转接板,使硅片尽可能增大线宽间距,减小工艺难度,增大线条的排布面积,增大密集度,使的在后续键合工艺中能方便容易,极大的降低了转接板的制作难度,也提高了硅转接板的利用率。

    一种基于光电芯片双面工艺的三维封装结构及封装方法

    公开(公告)号:CN115542478A

    公开(公告)日:2022-12-30

    申请号:CN202211487042.3

    申请日:2022-11-25

    Abstract: 本发明涉及光电芯片封装技术领域,特别是一种基于光电芯片双面工艺的三维封装结构及封装方法,该三维封装结构中,光电芯片之间在通过导电结构实现电连接的同时,还能够通过微型透镜实现光学端口的纵向互联,这种封装结构不限制光电芯片的片数,形成的三维封装结构不仅结构紧凑,且相比于将两个或多个芯片分别封装集成,以及将两个或多个芯片平铺进行端面耦合,封装后的结构体积更加小巧。

    基于Benes网络的大规模开光单元自动测试方法和装置

    公开(公告)号:CN115412166A

    公开(公告)日:2022-11-29

    申请号:CN202211075554.9

    申请日:2022-09-05

    Abstract: 本发明公开了一种基于Benes网络的大规模开光单元自动测试方法和装置,包括以下步骤:S1、在Benes网络的中间级与下一级之间设置监测端口;S2、通过监测端口监测阵列中每一列的一个光开关:选定一个监测端口,以交叉状态或者直通状态选定光开关路径,通过静态工作点自动查找程序找到该监测端口能监测的每个光开关位置以及输入端口位置;S3、根据监测端口得到的光开关位置以及输入端口位置,上位机控制光收发模块和电驱动模块对光开关单元电压扫描,并记录被测光开关单元上的光功率变化;这种方式减少了手动对准光纤的重复劳动和不精细度,自动化遍历Benes网络中的每一个光开关单元,极大的降低了大规模光交换芯片光开关单元校准测试的难度。

    一种硅光芯片高密度光电共封装的封装结构及封装方法

    公开(公告)号:CN115632072A

    公开(公告)日:2023-01-20

    申请号:CN202211398685.0

    申请日:2022-11-09

    Abstract: 本发明公开了一种硅光芯片高密度光电共封装的封装结构及封装方法,包括硅光芯片、扇出结构基板以及转接电路模块,扇出结构基板既作为基板,又作为扇出结构,通过其底部的高密度第二电学引脚、内部电路图以及第三电学引脚,在固定硅光芯片的同时,将硅光芯片的高密度第一电学引脚扇出至第三电学引脚,并采用引线焊接方式与转接电路模块的第四电学引脚电学连接,实现电学封装,并避免封装和使用中的热失配问题。扇出结构基板的工字形状,扇出结构基板的两侧凹槽区域作为避让空间,便于硅光芯片两侧光学耦合端口与外部光纤阵列的耦合封装,满足了电学引脚、光学耦合端口高密度并存的硅光芯片及类似光芯片的封装需求。

    一种基于Benes网络的光开关单元的测试方法

    公开(公告)号:CN117081664B

    公开(公告)日:2024-09-27

    申请号:CN202311051120.X

    申请日:2023-08-18

    Abstract: 本说明书公开了一种基于Benes网络的光开关单元的测试方法,在Benes网络的中间级光开关和下一级光开关之间设置各监测端口,选择待测试光开关单元并获取待测试光开关单元的状态,从而根据待测试光开关单元的状态确定待测试路径,根据待测试路径从各监测端口中确定对待测试光开关进行测试的目标监测端口,向待测试路径中位于首位的光开关单元输入第一测试信号,对待测试路径中的待测试光开关单元进行电压扫描,进而从目标监测端口接收第二测试信号,根据第二测试信号确定待测试光开关单元的测试结果。可见,通过上述方案,减少了手动测试光开关单元的工作量和错误率,极大地降低了大规模光开关单元测试的难度。

    一种生成非对称光分束器波导结构的方法、装置及设备

    公开(公告)号:CN116520567B

    公开(公告)日:2023-09-29

    申请号:CN202310749494.2

    申请日:2023-06-25

    Abstract: 本说明书提供的一种生成非对称光分束器波导结构的方法、装置及设备中,将光分束器的待确定波导结构的区域划分为若干个单元,通过光学仿真确定各单元参数的梯度,根据所述梯度更新各单元的参数,再通过光学仿真确定更新参数后所述输出光源端口的第一透光率,根据所述第一透光率确定所述区域的当前分光比,当所述当前分光比满足预设结束条件时,根据所述各单元更新后的参数,确定所述区域的波导结构。从上述方法可以看出,相比基于人工经验确定光分束器的波导结构,实现了自动确定满足目标分光比时各单元对应的参数,并根据该参数确定各单元处对应的材料,大大提高了确定波导结构的效率。

    一种生成非对称光分束器波导结构的方法、装置及设备

    公开(公告)号:CN116520567A

    公开(公告)日:2023-08-01

    申请号:CN202310749494.2

    申请日:2023-06-25

    Abstract: 本说明书提供的一种生成非对称光分束器波导结构的方法、装置及设备中,将光分束器的待确定波导结构的区域划分为若干个单元,通过光学仿真确定各单元参数的梯度,根据所述梯度更新各单元的参数,再通过光学仿真确定更新参数后所述输出光源端口的第一透光率,根据所述第一透光率确定所述区域的当前分光比,当所述当前分光比满足预设结束条件时,根据所述各单元更新后的参数,确定所述区域的波导结构。从上述方法可以看出,相比基于人工经验确定光分束器的波导结构,实现了自动确定满足目标分光比时各单元对应的参数,并根据该参数确定各单元处对应的材料,大大提高了确定波导结构的效率。

Patent Agency Ranking