基于表面活性剂改性PDMS的数字PCR芯片和方法

    公开(公告)号:CN106755420B

    公开(公告)日:2020-11-13

    申请号:CN201611217619.3

    申请日:2016-12-26

    Abstract: 本发明一种基于表面活性剂改性PDMS的数字PCR芯片、制备方法和应用。其特征在于所述的数字PCR芯片是用一定量表面活性剂掺杂的PDMS材料制备PDMS数字PCR阵列芯片,利用预脱气薄型PDMS芯片自身的高空气溶解特性实现进样和分配过程,并且制成玻璃‑改性PDMS‑玻璃的“三明治”夹心结构抑制水分挥发。该芯片的设计方法,降低了PDMS对生物分子的静电吸附,有效提高了液滴的稳定性和抗挥发性,从而提高了PCR的扩增效率。而且与目前已报道的数字PCR芯片技术相比,成本低,操作简便,应用前景非常广泛。

    基于离心微流控技术的稀少细胞分离检测系统及方法

    公开(公告)号:CN103018224B

    公开(公告)日:2015-07-29

    申请号:CN201210545205.9

    申请日:2012-12-14

    Abstract: 本发明公开了一种基于离心微流控技术的稀少细胞分离检测系统及方法,所述系统包含一个类似光盘的微流控芯片、一个离心驱动模块和一个光学检测模块。其中微流控芯片包含多组辐射状排列的微管道和微腔,芯片整体结构由弹性微柱导轨层、可变形薄膜层、管道/腔体层、过滤膜层和废液收集层组成。使用时,首先将样品液和免疫修饰的微球通过微流控芯片进样口导入其储液腔中,并将其置于离心驱动模块的离心平台上,装配好弹性微柱,低速旋转,实现储液腔中样品液和免疫修饰的微珠液体的充分混合和反应,然后高速旋转芯片分离;然后在各分离细胞收集区滴加特异识别的荧光标记抗体溶液,温育反应,加入缓冲液并离心;最后,通过光学检测模块进行鉴定和分析。

    一种基于PDMS的柔性植入式神经微电极及制作方法

    公开(公告)号:CN101912666B

    公开(公告)日:2014-12-03

    申请号:CN201010256117.8

    申请日:2010-08-18

    Abstract: 本发明公开了一种基于PDMS(聚二甲基硅氧烷)的柔性植入式神经微电极及制作方法,其特征在于所述的电极以具有良好生物相容性和机械弹性的PDMS作为神经微电极的基底材料,通过电镀、PDMS注模和键合工艺,制作形成包含一个电极位点区域、一个连接线区域、一个焊接点区域和一个微管道区域的植入式柔性神经微电极。其中电极位点、连接线和焊接点结构由电镀金属层形成,增强了PDMS微电极金属结构的抗拉伸性能和可靠性;电极上集成的微管道则可用于灌注含药物或神经生长因子的可固化液体材料,以改善PDMS神经微电极手术植入的可操控性和植入后的生物相容性。同时,本发明提供的PDMS微电极制备方法具有工艺简单、成本低以及可标准化大批量制作的特点。

    一种高通量微量液体样品分配装置及使用方法

    公开(公告)号:CN103394380A

    公开(公告)日:2013-11-20

    申请号:CN201310329986.2

    申请日:2013-07-31

    Abstract: 本发明公开了一种高通量微量液体样品分配装置,所述装置包含一组并行排列的毛细管阵列、一个毛细管阵列固定架和一个与毛细管阵列对应的储液器,所述的装置通过毛细作用同时实现多个液体样品的自动高通量微量吸取,然后通过使毛细管下端接触具有强毛细作用的基片或者压缩毛细管上端空气或者对毛细管下端实施负压抽吸,将各毛细管中液体转移至液样接受基片、微孔板或微流体芯片中,完成液体样品的高通量分配。其中所分配液体样品的体积由毛细管内径和长度决定。所述方法和装置可实现极微量样品高通量、精确、快速分配,可应用于化学或生物大批量检测和筛选实验,大大节省人力和时间,提高实验效率。

    一种PDMS微流控芯片中通孔结构的制作方法

    公开(公告)号:CN101585507B

    公开(公告)日:2013-07-03

    申请号:CN200910053593.7

    申请日:2009-06-23

    Abstract: 本发明公开了一种PDMS微流控芯片中通孔结构的制作方法,其特征在于利用磁性力的辅助,将微柱或微管固定于芯片模具上拟制作通孔结构的位置,然后通过整体浇注PDMS预聚物,并固化键合,制作出具有高深宽比通孔结构的PDMS微流控芯片。本发明提供的微流控芯片成形与通孔制作一次完成,简化了微流控芯片制作工艺,而且通过微柱或微管与芯片模具固定,实施整体浇注,提高了通孔制作的精确度,保证了通孔形状的规整性,避免了形成通孔孔形不规则、损坏微管道结构等问题。另外,微磁柱排布利用预制模具镶嵌固定,还可以提高通孔制作密度,实现批量化加工制作。

    基于离心微流控技术的稀少细胞分离检测系统及方法

    公开(公告)号:CN103018224A

    公开(公告)日:2013-04-03

    申请号:CN201210545205.9

    申请日:2012-12-14

    Abstract: 本发明公开了一种基于离心微流控技术的稀少细胞分离检测系统及方法,所述系统包含一个类似光盘的微流控芯片、一个离心驱动模块和一个光学检测模块。其中微流控芯片包含多组辐射状排列的微管道和微腔,芯片整体结构由弹性微柱导轨层、可变形薄膜层、管道/腔体层、过滤膜层和废液收集层组成。使用时,首先将样品液和免疫修饰的微球通过微流控芯片进样口导入其储液腔中,并将其置于离心驱动模块的离心平台上,装配好弹性微柱,低速旋转,实现储液腔中样品液和免疫修饰的微珠液体的充分混合和反应,然后高速旋转芯片分离;然后在各分离细胞收集区滴加特异识别的荧光标记抗体溶液,温育反应,加入缓冲液并离心;最后,通过光学检测模块进行鉴定和分析。

    一种圆滑曲面微结构的制作方法

    公开(公告)号:CN101659391B

    公开(公告)日:2011-12-28

    申请号:CN200910195109.4

    申请日:2009-09-04

    Abstract: 本发明公开了一种圆滑曲面微结构的制作方法,其特征在于所述的方法以负性化学放大光刻胶(chemically amplified photoresist)为圆滑曲面微结构的制作材料,首先在基片上旋涂第一层负性化学放大光刻胶,并软烘、曝光,然后直接在第一层负性化学放大光刻胶上旋涂第二层负性化学放大光刻胶,并进行后烘;利用后烘过程中第一层光刻胶曝光后产生的光酸各向同性扩散,催化曝光区域及其相邻扩散区域光刻胶分子交联,显影后制得具有圆滑曲面特征的微结构。本发明提出的圆滑曲面微结构的制作方法相对于传统的灰阶掩膜技术和光刻胶回流方法,具有加工简便、成本低廉、结构稳固等特点。

    基于SU-8厚光刻胶的三维圆滑曲面微结构的制作方法

    公开(公告)号:CN101950126A

    公开(公告)日:2011-01-19

    申请号:CN201010275953.0

    申请日:2010-09-08

    Abstract: 本发明公开了一种基于SU-8厚光刻胶的三维圆滑曲面微结构的制作方法,其特征在于所述的方法以聚二甲基硅氧烷(polydimethylsiloxane,PDMS)压模技术结合未交联SU-8光刻胶的回流特性制作具有圆滑曲面特征的微结构。首先通过光刻工艺制作SU-8原模,并以此原模浇注PDMS形成母模,然后利用压模技术将此PDMS母模转制成SU-8阳模,剥离PDMS模具后,将此未经曝光交联反应的SU-8阳模置于高温(55℃~120℃)环境下回流,形成具有圆滑曲面特征的三维微结构。本发明提出的圆滑曲面微结构的制作方法相对于传统的灰阶掩膜技术、发散光曝光技术和正性光刻胶回流方法,具有加工简便、成本低廉、结构稳固、结构曲率范围更大等特点。

    一种基于PDMS的柔性植入式神经微电极及制作方法

    公开(公告)号:CN101912666A

    公开(公告)日:2010-12-15

    申请号:CN201010256117.8

    申请日:2010-08-18

    Abstract: 本发明公开了一种基于PDMS(聚二甲基硅氧烷)的柔性植入式神经微电极及制作方法,其特征在于所述的电极以具有良好生物相容性和机械弹性的PDMS作为神经微电极的基底材料,通过电镀、PDMS注模和键合工艺,制作形成包含一个电极位点区域、一个连接线区域、一个焊接点区域和一个微管道区域的植入式柔性神经微电极。其中电极位点、连接线和焊接点结构由电镀金属层形成,增强了PDMS微电极金属结构的抗拉伸性能和可靠性;电极上集成的微管道则可用于灌注含药物或神经生长因子的可固化液体材料,以改善PDMS神经微电极手术植入的可操控性和植入后的生物相容性。同时,本发明提供的PDMS微电极制备方法具有工艺简单、成本低以及可标准化大批量制作的特点。

    纳米微电极及制作方法
    10.
    发明公开

    公开(公告)号:CN101306794A

    公开(公告)日:2008-11-19

    申请号:CN200810033265.6

    申请日:2008-01-30

    Abstract: 一种纳米微电极以及制作方法,其首先在铝片的一表面形成具有用于制作纳米电极的位点窗口的第一绝缘层,然后采用电化学方法在所述位点窗口处形成氧化铝纳米孔,接着在所述氧化铝纳米孔中填充导电材料以形成纳米电极,再通过Lift-off方法或图形化腐蚀方法在第一绝缘层表面沉积金属层,并进而形成包含所述纳米电极的金属连接线和金属焊接位点的图形化金属层,然后在所述图形化金属层形成具有焊点窗口的第二绝缘层,并使所述焊点窗口处于所述金属焊接位点处,最后通过化学腐蚀或电化学腐蚀法腐蚀所述铝片以形成由绝缘材料、金属、及绝缘材料组成的三层结构的纳米微电极,如此可降低制作成本,提高纳米微电极的有效面积。

Patent Agency Ranking