US11678588B2

A Hall effect device includes a semiconductor region and at least three contacts to the semiconductor region, which are arranged in the semiconductor region substantially along a line or curve. The line or curve functionally separates the semiconductor region in a first region and a second region. The Hall effect device further including a first electrode that is electrically isolated against the first region and a second electrode that is electrically isolated against the second region. Two of the at least three contacts supply electric energy to the first region and to the second region, and the remaining at least one contact taps an output signal of the first region and/or the second region that responds to a magnetic field component.
US11678586B2

A spin-transfer torque magnetic random access memory (STTMRAM) element employed to store a state based on the magnetic orientation of a free layer, the STTMRAM element is made of a first perpendicular free layer (PFL) including a first perpendicular enhancement layer (PEL). The first PFL is formed on top of a seed layer. The STTMRAM element further includes a barrier layer formed on top of the first PFL and a second perpendicular reference layer (PRL) that has a second PEL. The second PRL is formed on top of the barrier layer. The STTMRAM element further includes a capping layer that is formed on top of the second PRL.
US11678583B2

Provided is a method of manufacturing a magnetic tunnel junction that simultaneously realizes removal of oxides on side walls of a magnetic layer and formation of a protective film and prevents deterioration of magnetic characteristics. The method includes: a first step 802 of etching a stacked film including a first magnetic layer, a MgO barrier layer, and a second magnetic layer stacked in order by plasma etching using an oxidizing gas to form the magnetic tunnel junction; and a second step 803 of simultaneously introducing an organic acid gas which is an n-valent acid and a precursor gas having a corresponding metal element valence of m, to form a first protective film on side walls of the magnetic tunnel junction. In the second step, the precursor gas is introduced at a molar ratio of n/m or more with respect to 1 mole of the organic acid gas introduced.
US11678581B2

Provided is a piezoelectric thin film device in which lattice mismatch between a piezoelectric thin film and a lower electrode layer (first electrode layer) is reduced. A piezoelectric thin film device 10 comprises a first electrode layer 6a and a piezoelectric thin film 2 laminated directly on the first electrode layer 6a; the first electrode layer 6a includes an alloy composed of two or more metal elements; the first electrode layer 6a has a face-centered cubic lattice structure; and the piezoelectric thin film 2 has a wurtzite structure.
US11678580B2

A method for depolarization suppression of in rhombohedral relaxor-based ferroelectric single crystal. The purpose of the present invention is to address the problem that the rhombohedral relaxor-based ferroelectric single crystals would depolarize when driven to sufficiently electric field due to their low coercive field. In the present invention, the crystal cut, poling direction and compressive stress application direction of the crystal is selected based on the domain structure and anisotropic nature of the crystal such that the spontaneous direction(s) of the crystal would rotate towards the poling direction in response to the applied compressive stress. Through application of appropriate compressive stress, the magnitude of depolarization field of the rhombohedral relaxor-based ferroelectric single crystals can be effectively increased.
US11678579B2

An ionic thermoelectric (i-TE) hydrogel that converts heat into electricity based on the Soret effect, and devices and methods incorporating the ionic thermoelectric hydrogel. The ionic thermoelectric hydrogel includes poly(acrylamide) crosslinked with an alginate, 1-ethyl-3-methylimidazolium tetrafluoroborate, and a poly glycol.
US11678571B2

A compound of formula (7) is provided wherein L4 is a linking group selected from the group consisting of: provided that an asterisk (*) indicates the position bonding to the nitrogen atom of the carbazolyl group, R6 to R13 are independently a hydrogen atom, or a phenyl group, Ar17 is an unsubstituted phenylphenyl group, and Ar18 is a phenylphenyl group which may be substituted by a phenyl group or a naphthyl group, or a phenyl group which may be substituted by a naphthyl group.
US11678570B2

The present invention provides a hole transport material, a preparation method thereof, and an electroluminescent device. Through ingenious molecular design, a xanthracene structure is combined with different electron-donating groups to synthesize a series of hole transport materials with a suitable highest occupied molecular orbital (HOMO) energy level and a suitable lowest unoccupied molecular orbital (LUMO) energy level, and a series of high-performance display devices can be manufactured using the hole transport materials provided by the present invention.
US11678559B2

An apparatus for manufacturing a display device includes: a mask assembly, wherein the mask assembly includes: a mask frame including an open area; a first mask disposed on the mask frame, the first mask including at least one opening; a second mask disposed on the first mask, the second mask including a mesh portion having a mesh shape and a blocking member to shield a portion of the mesh portion; and a first support supporting a display substrate on the second mask and separating the display substrate from the second mask, wherein the blocking member overlaps the opening.
US11678554B2

Provided is an under-display camera assembly, including: an organic light-emitting diode display screen, a display region of which includes an under-display camera region and a non-under-display camera region, wherein a pixel density of the under-display camera region is set to be less than a pixel density of the non-under-display camera region; and a camera module, wherein the optical axis thereof is perpendicular to the surface of the organic light-emitting diode display screen, and the camera module is located at a rear end of the under-display camera region. Further provided is a corresponding terminal device.
US11678552B2

Various embodiments provide an organic light emitting diode display device that includes a substrate having an emitting area and a non-emitting area; an overcoating layer on the substrate and including a convex portion and a concave portion. The convex portion includes a bottom surface portion, a top surface portion and a side surface portion between the bottom surface portion and the top surface portion. The organic light emitting diode further includes a first electrode on the overcoating layer; a light emitting layer on the first electrode; and a second electrode on the light emitting layer. The side surface portion is a main emission region having a first emission spectrum and the concave portion is an auxiliary emission region having a second emission spectrum different from the first emission spectrum. The main emission region and the auxiliary emission region are an effective emission region.
US11678550B2

An organic EL device is constructed with a structure that can prevent deterioration in characteristics. An organic EL device is provided that includes at least two or more subpixels each including an organic compound layer including at least a light-emitting layer that emits light of a different color from the other light-emitting layer(s), the organic compound layer being interposed between a first electrode and a second electrode in a stacking manner, the subpixels being disposed separately from one another on a plane perpendicular to a direction of the stacking. Lateral surfaces of the organic compound layers are covered with films differing from subpixel to subpixel. This structure can prevent the organic EL device from deterioration in characteristics.
US11678545B2

An electroluminescent display device includes a substrate including an active area, and bezel area outside the active area and including a bending area, a first organic insulation layer (OIL) in the active area, covering a first signal line extending from the active area to the bezel area, a second OIL in the bending area, the second OIL being in a same layer as the first organic insulation film, first and second touch electrodes crossing over each other and sealing the active area on an encapsulation layer above the first OIL with a third OIL therebetween, a first signal line link pattern connected to the first signal line, and on the second OIL in the bending area, and second and third signal lines respectively connected to the first and second touch electrodes, and on the second OIL in parallel with the first signal line link pattern.
US11678540B2

A display device includes a substrate including a first area and a second area, main pixel groups, auxiliary pixel groups, first signal lines, and second signal lines, wherein a distance between adjacent ones of the first signal lines in the second area gradually decreases toward outer regions of the second area from a center of the second area, and a distance between adjacent ones of the second signal lines in the second area gradually decreases toward the outer regions of the second area from the center of the second area.
US11678533B2

A display device includes an array substrate including a pixel array disposed on a base substrate, a side terminal disposed on the base substrate, and a transfer wiring electrically connected to the side terminal and the pixel array, the array substrate having an inclined side surface, and a conductive connection pad including a first portion disposed on the inclined side surface of the array substrate to contact the side terminal and a second portion disposed on a lower surface of the array substrate. The first portion and the second portion are connected to each other.
US11678530B2

Provided are a display substrate and a preparation method thereof, and a display apparatus. The display substrate includes a substrate, an active structure layer disposed on the substrate, a first source-drain structure layer disposed on a side of the active structure layer away from the substrate, and a second source-drain structure layer disposed on a side of the first source-drain structure layer away from the substrate. The active structure layer includes a first active layer and a second active layer. The first source-drain structure layer includes a first active via and a first source-drain electrode, and the first source-drain electrode is connected to the first active layer through the first active via; and the second source-drain structure layer includes a second active via and a second source-drain electrode, and the second source-drain electrode is connected to the second active layer through the second active via.
US11678511B2

A display device includes: a substrate; a display element on the substrate; a capping layer on the display element; an optical layer on the capping layer, and including: a first optical layer on the display element; and a second optical layer on the first optical layer; and a thin film encapsulation layer on the optical layer, and including: a first inorganic encapsulation layer on the second optical layer; an auxiliary layer on the first inorganic encapsulation layer; an organic encapsulation layer on the auxiliary layer; and a second inorganic encapsulation layer on the organic encapsulation layer. A refractive index of the second optical layer is smaller than a refractive index of the capping layer, and a refractive index of the first optical layer is between the refractive index of the second optical layer and the refractive index of the capping layer.
US11678509B2

A display device includes: a substrate including a display area, the display area including a front area and a corner area disposed at a corner of the display area; a main dam disposed between the front area and the corner area; and a plurality of corner dams disposed in the corner area. The corner area may include a plurality of stripe areas defined by the plurality of corner dams. The plurality of corner dams extend from the main dam and is disposed along an edge of the plurality of stripe areas.
US11678508B2

A display includes a display panel, a shock dispersion layer, a strain relaxation layer, and a shock absorption layer. The shock dispersion layer is provided on a light-extraction side of the display panel and has a Young's modulus of 50 GPa or greater. The strain relaxation layer is provided between the shock dispersion layer and the display panel and has a Young's modulus lower than the Young's modulus of the shock dispersion layer. The shock absorption layer is provided between the strain relaxation layer and the display panel and has a storage modulus of 10 kPa or greater and 1 MPa or less at a room temperature.
US11678506B2

A display apparatus in one example includes a substrate having a display area including a plurality of sub-pixels, the plurality of sub-pixels including an emission area and a non-emission area; a plurality of light emitting diodes disposed at the plurality of sub-pixels; an encapsulation part covering the plurality of light emitting diodes in the display area; a first inorganic insulating layer disposed on the encapsulation part; a first touch part disposed on the first inorganic insulating layer; a second inorganic insulating layer disposed on the first touch part and including an opening disposed at an area overlapping the emission area disposed at one or more sub-pixels among the plurality of sub-pixels; and a second touch part disposed on the first inorganic insulating layer and the second inorganic insulating layer.
US11678503B2

An organic light emitting diode display panel of the present disclosure includes a substrate, an array layer disposed on the substrate, a specific recess disposed on a surface of the array layer away from the substrate, an electroluminescent layer disposed on the array layer, and a thin film encapsulation layer disposed on the electroluminescent layer and covering the electroluminescent layer. The thin film encapsulation layer extends into the specific recess and fills the specific recess, and special structures which engage with each other are formed at a position corresponding to the specific recess.
US11678501B2

A display device includes a display panel, a protective film, and an adhesive member. The display panel includes a non-bending area and a bending area configured to bend from the non-bending area, and the bending area includes a curvature area with a curvature and a facing area facing the non-bending area. The protective film is on a rear surface of the display panel, and includes a first surface facing the rear surface of the display panel and a second surface opposite to the first surface. The protective film has a groove corresponding to the curvature area. The adhesive member is between the protective film and the display panel, and a hydrophobic layer is on the second surface of the protective film, and is adjacent to the groove.
US11678483B2

A method used in forming a memory array comprising strings of memory cells comprises forming a stack comprising vertically-alternating insulative tiers and wordline tiers. First charge-blocking material is formed to extend elevationally along the vertically-alternating tiers. The first charge-blocking material has k of at least 7.0 and comprises a metal oxide. A second charge-blocking material is formed laterally inward of the first charge-blocking material. The second charge-blocking material has k less than 7.0. Storage material is formed laterally inward of the second charge-blocking material. Insulative charge-passage material is formed laterally inward of the storage material. Channel material is formed to extend elevationally along the insulative tiers and the wordline tiers laterally inward of the insulative charge-passage material. Structure embodiments are disclosed.
US11678481B2

Methods of improving adhesion between a photoresist and conductive or insulating structures. The method comprises forming a slot through at least a portion of alternating conductive structures and insulating structures on a substrate. Portions of the conductive structures or of the insulating structures are removed to form recesses in the conductive structures or in the insulating structures. A photoresist is formed over the alternating conductive structures and insulating structures and within the slot. Methods of improving adhesion between a photoresist and a spin-on dielectric material are also disclosed, as well as methods of forming a staircase structure.
US11678478B2

A semiconductor device includes a bit line structure, first and second capping patterns, first and second contact plug structures, and a capacitor. The bit line structure extends on a cell region and a dummy region. The first capping pattern is adjacent the bit line structure on the cell region. The second capping pattern is adjacent the bit line structure on the dummy region. The first contact plug structure is adjacent the bit line structure and the first capping pattern on the cell region, and includes a lower contact plug and a first upper contact plug sequentially stacked. The second contact plug structure is adjacent the bit line structure and the second capping pattern on the dummy region, and includes a dummy lower contact plug and a second upper contact plug sequentially stacked. The capacitor contacts an upper surface of the first contact plug structure on the cell region.
US11678474B2

A semiconductor device includes first, second, third, fourth, and fifth active regions each extending lengthwise along a first direction, wherein the first, second, third, and fourth active regions comprise channel regions and source/drain (S/D) regions of first, second, third, and fourth transistors respectively, and the fifth active region comprises channel regions and S/D regions of fifth and sixth transistors; and first, second, third, fourth, fifth, and sixth gates each extending lengthwise along a second direction perpendicular to the first direction, wherein the first through sixth gates are configured to engage the channel regions of the first through sixth transistors respectively, wherein the first, second, and fifth gates are electrically connected, and wherein one of the S/D regions of the first transistor, one of the S/D regions of the second transistor, the third gate, and the fourth gate are electrically connected.
US11678473B2

A machine that is used to automate the assembly of a circuit board assembly is provided. The machine includes a rotating indexer, at least one anvil holder, a punch, and an activation switch. The at least one anvil holder is carried by the rotating indexer and is configured to receive a connector pin. The anvil holder is rotatable relative to the punch, such that the at least one anvil holder may be aligned with the punch. A circuit board may be located about the connector pin, after which the activation switch may be activated to cause movement of the punch towards the anvil holder. When this occurs, the connector pin is compressed, which causes the connector pin to be secured to the circuit board. More specifically, a top section of the connector pin is compressed to form a top lip, where the circuit board is located between the top lip and a shoulder of the connector pin.
US11678468B2

Methods and systems are provided for a power module. In one example, the power module may have a half-bridge configuration with electrical terminals arranged at opposite side of the power module, semiconductor chips arranged in a printed circuit board (PCB), a capacitor electrically coupled to the electrical terminals and arranged above and in contact with a top plate of the power module, and one or more connectors coupled to the PCB to couple the power module to external circuits. The power module may be directly cooled by flowing a coolant over the semiconductor chips.
US11678466B2

In one embodiment, an apparatus includes a heat sink for attachment to an optical module cage configured for receiving an optical module, a thermal interface material attached to a surface of the heat sink for thermal contact with the optical module, and a plurality of lifting elements extending from the surface of the heat sink. The lifting elements are configured to create a gap between the thermal interface material and the optical module during insertion of the optical module into the optical module cage or removal of the optical module from the optical module cage, the plurality of lifting elements positioned for insertion into aligned recesses in the optical module when the optical module is fully inserted into the optical module cage to eliminate the gap and provide contact between the optical module and the thermal interface material.
US11678462B2

A liquid immersion cooling system includes a tank defining a tank interior configured to receive electronic components (e.g., servers) and a thermally conductive dielectric liquid to cool the electronic components. The liquid immersion cooling system also includes a power shelf external to the tank interior, where the power shelf includes a converter configured to receive an alternating current (AC) power supply and convert the AC power supply to a direct current (DC) power supply. The liquid immersion cooling system also includes a DC bus configured to route the DC power supply from the power shelf, into the tank interior, and to the electronic components.
US11678459B2

A ventilation and air conditioning system (6) is for a room (2) containing a heat source and the ventilation and air conditioning system (6) comprising a cooled air supply (12) and a ventilation duct (10). The ventilation duct (10) includes a primary inlet (24) connected to the cooled air supply (12) and an outlet (14) leading into the room (2). A number of heat storage elements (30) is arranged inside the ventilation duct (10) between the primary inlet (24) and the outlet (14), such that during operation of the cooled air supply (12) there is a forced stream of cooled air through the ventilation duct (10), thereby cooling and preferably freezing the heat storage elements (30). A secondary inlet (36) into the ventilation duct (10) is in flow communication with the room (2) and during operation of the cooled air supply (12) is closed by a damper (40). The damper (40) is designed to automatically open in a passive manner when the forced stream of cooled air from the cooled air supply (12) stops, such that a natural convection airflow through the ventilation duct (10) is supported, and the natural convection airflow is cooled by transferring heat to the heat storage elements (30).
US11678447B2

An electronic equipment enclosure comprises a frame structure formed from a plurality of support posts and at least partially enclosed by a plurality of panels. The panels include at least side, top and back panels defining an enclosure having a top, a bottom and a rear thereof. The top panel includes an opening there through that is rectangular in shape. The equipment enclosure further comprises an exhaust air duct extending upward from the top panel of the enclosure. The exhaust air duct is rectangular in cross-section and is disposed in surrounding relation to, and in fluid communication with, the top panel opening. The exhaust air duct is adapted to segregate hot air being exhausted from the enclosure from cool air entering the enclosure, thereby improving thermal management of the enclosure.
US11678435B2

An electronic device is provided and includes a wiring structure including a conductive wiring and an insulating layer. The conductive wiring is disposed on a substrate and has a top side and two side walls opposite to each other. The insulating layer wraps around the conductive wiring at least through the top side and two side walls, wherein there is a gap between the insulating layer and at least one of the two side walls. The conductive wiring includes a first layer, a second layer and a third layer, the second layer is disposed between the first layer and the third layer, and the first layer is disposed between the second layer and the substrate. A thickness of the second layer is greater than a thickness of the first layer, and the thickness of the second layer is greater than a thickness of the third layer.
US11678430B2

Embodiments that are directed to a target for producing a high epithermal neutron yield for boron-neutron capture therapy (BNCT) treatments are disclosed. The target includes a thin flat film of solid lithium mounted onto a heat-removal support structure that is cooled with a liquid coolant and configured to maintain the turbulent flow regime for a liquid coolant and distribute the flow of coolant directed at the center of the support structure toward a periphery of the support structure via a plurality of channels formed in the support structure. The support structure includes a nozzle located at its center to direct coolant flow outwardly from the center to avoid stagnant water flow at the center of the support structure. Systems, device, and methods utilizing the approaches are also described.
US11678425B2

A dimmer includes a sole intensity actuator structured to be used for at least one of: adjusting light intensity based on a first user input during normal operation; or entering configuration mode based on a second user input and adjusting an end trim value based on a third user input; a sole intensity potentiometer coupled to the sole intensity actuator and comprising a variable resistor, the sole intensity potentiometer structured to measure an input voltage based on variable resistance, and a controller coupled to the sole intensity potentiometer and a driver circuit coupled to a bidirectional switching device, the controller structured to control dimmer operation, comprising receiving an input voltage signal and transmitting a dimming signal to the driver circuit, the dimming signal based at least in part on the signal.
US11678422B2

A lighting system includes two or more lighting fixtures, each comprising a housing, at least one light source mechanically supported by the housing, at least one pipe thermally coupled to the housing to carry a fluid coolant, an AC power port, and at least one network communications port. The AC power ports of respective lighting fixtures are coupled together with a plurality of industrial power cables without using one or more conduits for the plurality of industrial power cables. The network communications ports of the respective lighting fixtures are coupled together with a plurality of waterproof network communications cables. In one example, a lighting system kit comprises two or more lighting fixtures having an AC power port comprising an industrial type connector. The kit further comprises multiple industrial power cables and one or more industrial drop tee cables.
US11678420B2

A lighting system is disclosed. An example lighting system includes at least one light emitting diode (“LED”) circuit having a plurality of LEDs, where the plurality of LEDs includes the same or differently colored LEDs. The lighting system also includes a driver including at least one bridge rectifier and at least one capacitor, a housing including a heat sinking material, and at least two connectors. One of the at least two connectors is adaptable to be connected to the driver and another one of the at least two connectors is adaptable to be connected to an AC power source. The driver is configured to receive an AC voltage from the AC power source and provide a voltage and a current to the at least one LED circuit. Additionally, the driver and the at least one LED circuit are mounted to the housing.
US11678417B2

System and method for voltage conversion to drive one or more light emitting diodes with at least a TRIAC dimmer. For example, the system includes: a phase detector configured to receive a first rectified voltage generated based at least in part on an AC input voltage processed by at least the TRIAC dimmer, the phase detector being further configured to generate a digital signal representing phase information associated with the first rectified voltage; a voltage generator configured to receive the digital signal and generate a DC voltage based at least in part on the digital signal; and a driver configured to receive the DC voltage and affect, based at least in part on the DC voltage, a current flowing through the one or more light emitting diodes; wherein the current changes with the phase information according to a predetermined function.
US11678415B2

Robotic devices are provided that can be operated in an autonomous mode. In various embodiments, the devices comprise lighting elements that are capable of displaying information to humans within a robotic environment. A variety of future and near-future actions are expressed through different operations and sequences of the lighting elements. The lighting elements further enable the device to express a current status.
US11678408B2

A PTC heating element comprises at least one PTC element and two conductor paths which are assigned to different polarities and which are electrically conductively connected to the PTC element and are provided with connection elements for the electrical connection of the PTC element. The PTC heating element has improved heat discharge due to the provision of an electromagnetic shielding which is formed from a fluid-permeable metal structure and which surrounds the PTC element and the conductor paths.
US11678405B2

Systems and methods are disclosed for providing a 5G interoperability architecture. In one embodiment, a system is disclosed, comprising: at least one Radio Access network (RAN); at least one core network; and a gateway in communication with the RAN and the core network, the gateway including: a Radio Access Network (RAN) interface for communicating with the at least one RAN; a core network interface for communicating with the at least one core network; and a processor configured to: process 5G signaling received from the at least one RAN on the RAN interface and provide core signaling to at least one core network; and process signaling received from the at least one core on the core network interface and provide 5G RAN signaling to at least one RAN.
US11678395B2

A terminal apparatus and an apparatus in a core network exchange information indicating maintenance of a PDU session in a procedure for releasing UP resources, and thereby releases the UP resources associated with a specific PDU session while maintaining establishment of the specific PDU session. A terminal apparatus and an apparatus in a core network further exchange information indicating a release of only the UP resources in a procedure for releasing the UP resources, and thereby the terminal apparatus recognizes the release of the UP resources associated with the specific PDU session. In this manner, in order to release the UP resources associated with the specific PDU session while maintaining establishment of the specific PDU session, and to allow the terminal apparatus to recognize the release of the UP resources, a system and a communication control method are provided.
US11678391B2

A communication method is provided, which includes that: in response to detecting a first signal of a second device, a first device determines a signal strength between the first device and the second device; and in response to that the signal strength reaches a preset signal strength threshold, the first device establishes a connection with the second device. Another communication method is also provided, which includes that: a second device broadcasts a first signal; and the second device establishes a connection with a first device in response to a connection request triggered by that a signal strength between the first device and the second device reaches a preset signal strength threshold.
US11678381B2

A method of performing a random access procedure includes randomly selecting a backoff time from within a backoff window ranging from 0 to a specified multiple of a random access preamble unit, waiting until a time initialized with the backoff time expires, and retransmitting a random access preamble.
US11678379B2

Wireless communications systems and methods related to random access signaling are provided. A user equipment (UE) may transmit to a base station (BS) in a frequency band, a random access signal including at least one of a length in time or a length in frequency that is based on a subcarrier spacing (SCS) in the frequency band. The BS may receive the random access signal and transmit a response to the random access signal.
US11678358B2

This disclosure is directed to various ways to dynamically manage the subset of radio points that are used to transmit to user equipment in a C-RAN.
US11678349B2

A method, performed by a user equipment (UE), of providing In-Device Coexistence (IDC) information is provided. The method includes transmitting, to a base station (BS), UE capability information including IDC information reporting capability information; receiving, from the BS, configuration information about IDC information reporting; detecting an occurrence of an IDC problem; and transmitting, to the BS, UE Assistance information including information of a frequency affected by the IDC problem, based on the configuration information, wherein the information of the frequency affected by the IDC problem is indicated in an IDC Assistance field.
US11678339B2

A method for operating a user equipment (UE) comprises receiving configuration information on a set of transmission configuration indicator (TCI) states; receiving a beam indication indicating at least one TCI state from the set of TCI states, wherein the at least one TCI state indicates a group of M beams partitioned into K sets of beams for K entities (E1, E2, . . . EK), where an i-th set of beams is associated with entity Ei and comprises Ni beams, and Σi=1K Ni=M; decoding the beam indication; determining a beam for entity Ei based on the i-th set of beams; and transmitting an uplink (UL) transmission or receiving a downlink (DL) transmission based on the determined beam for entity Ei, wherein i is an entity index and takes a value from {1, . . . , K}.
US11678335B2

Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive, from a base station in wireless communication with the UE, an allocation of time and frequency resources for an uplink transmission of a first communication type associated with a threshold reliability or latency metric. The UE may monitor a control channel for an uplink preemption indication from the base station, the uplink preemption indication indicating whether the UE should transmit the uplink transmission using the first communication type associated with the threshold reliability or latency metric. The UE may then process the uplink transmission based on monitoring the control channel for the uplink preemption indication.
US11678332B2

Methods, systems, and devices for wireless communications are described that support control and data multiplexing in uplink wireless transmissions. Described techniques provide for efficient communication of uplink control information (UCI) through rate-matching uplink data around uplink control information in uplink transmissions, including information on amounts or types of UCI to be transmitted by a UE, indications in downlink transmissions of allocated UCI resources and whether associated UCI is to be included in allocated UCI resources, formatting and multiplexing of multiple wireless services at the UE, or any combination thereof.
US11678330B2

Disclosed is a method by which a user equipment (UE) configured to a discontinuous reception (DRX) operation receives a physical downlink control channel (PDCCH) in a wireless communication system. Particularly, the method can configure an active time for monitoring the PDCCH based on at least one of a plurality of conditions and receive the PDCCH through PDCCH monitoring occasions allocated within a duration of the active time, wherein the PDCCH monitoring occasions can be differently allocated based on the at least one condition.
US11678328B2

A method for a BS for processing multiplexed UCI received from a UE is disclosed. The method includes grouping PUCCH resources for CSI and an SR with a low priority and PUCCH resources for a slot-based HARQ-ACK into a first group of PUCCH resources; grouping PUCCH resources for CSI and an SR with a high priority and PUCCH resources for a sub-slot based HARQ-ACK into a second group of PUCCH resources; determining a first set of PUCCH resources in a slot from the first group; obtaining first multiplexed UCI of a first PUCCH resource by a first UCI multiplexing procedure for UCI corresponding to the first set; determining a second set of PUCCH resources in a sub-slot of the slot from the second group; and obtaining second multiplexed UCI of a second PUCCH resource by a second UCI multiplexing procedure for UCI corresponding to the second set.
US11678325B2

Methods, systems, and devices for wireless communications are described to support resource selection for a sidelink transmission based on a priority of available resources. A physical (PHY) layer of a user equipment (UE) may report different subsets of available resources to a medium access control (MAC) layer. Each subset may be associated with a different priority and the MAC layer may use the subsets to select a resource for the sidelink transmission. The MAC layer may additionally or alternatively maintain a list of UE identifiers (IDs) and may provide the list of the UE IDs to the PHY layer for resource identification. The PHY layer may use the list to implement different reference signal parameters for UEs associated with the list of UE IDs than for other UEs. The PHY layer may report the set of available resources to the MAC layer, based on the list of UE IDs.
US11678315B2

One or more embodiments provide a method implemented in a user equipment (UE) used in a wireless communications system. The method includes transmitting an indication to a base station that the UE is capable of transmitting on a single uplink carrier frequency and downlink carrier aggregation. The method also includes receiving an uplink carrier frequency switching pattern from the base station. The method also includes switching uplink carrier frequencies based on the uplink carrier frequency switching pattern.
US11678312B2

A method for information transmission, a terminal device and a chip are provided. The method includes: a terminal device sends a first message to a network device, here, the first message includes a parameter for blind detection of a downlink control channel in a target resource region by the terminal device, and the parameter is configured to determine a maximum number of blind detections of the downlink control channel in the target resource region by the terminal device in a specified time.
US11678308B2

A solution to enable synchronization and establishing links among the APs using available RATs with minimum modifications is provided. In one aspect, an apparatus may determine a first set of resources to be used for establishing network access for a set of UEs. The apparatus may determine a second set of resources for establishing backhaul links with a set of base stations. A resource schedule of the apparatus may include the first set of resources and the second set of resources. In another aspect, an apparatus may be a first base station. The first base station may receive a set of reports from a set of base stations. The first base station may determine a resource schedule for a second base station within the set of base stations based on the set of reports. The first base station may transmit the resource schedule to the second base station.
US11678307B2

Provided are a method for performing sidelink transmission by a first device (100) in a wireless communication system, and a device for supporting same. The method comprises the steps of: determining a transport block size (TBS) on the basis of whether at least one of an automatic gain control (AGC) symbol and a guard period (GP) symbol is used for sidelink transmission; and performing the sidelink transmission with respect to a second device (200) on the basis of the determined TBS, wherein the AGC symbol may be a symbol which a first device (100) uses for AGC, and the GP symbol may be a symbol which the first device (100) uses for TX/RX switching.
US11678304B2

Some techniques and apparatuses described herein enable synchronization of a user equipment (UE) identifier between a UE and a base station upon UE identifier reallocation, which enables the UE to use preconfigured uplink resources to reduce latency, reduce signaling overhead, or the like. For example, some techniques and apparatuses described herein enable the UE to use preconfigured uplink resources when a UE identifier reallocation occurs between preconfigured uplink resource configuration and use of the preconfigured uplink resources by the UE to transmit uplink data.
US11678302B2

A wireless device may select, based on a first sensing procedure, a first candidate resource set for one or more sidelink transmissions, trigger a second sensing procedure, for the one or more sidelink transmissions, based on one or more first resources of the first selected candidate resource set, and exclude one or more second resources from the one or more first resources based on the second sensing procedure and a reference signal received power (RSRP) of the one or more second resources. The wireless device selects, from the one or more first resources and based on the excluding, a second remaining candidate resource set for the one or more sidelink transmissions and transmit the one or more sidelink transmissions via one or more third resources of the second remaining candidate resource set.
US11678295B2

A contact tracking method and a related server are provided. In the method, the positioning information of multiple user equipments (UEs) is obtained. The UEs transmit wireless signals. The positioning information is determined based on the wireless signal. The wireless signal indicates a network provider identifier, a signal strength, or geolocation. The travel routes of the UEs are determined. Each travel route records the positioning information of one UE over time. The travel routes are analyzed to determine a contact situation between a first UE and a second UE of the UEs based on a contact criteria.
US11678291B2

Methods and techniques are described for supporting location services for a user equipment (UE) that is using Narrowband Internet of Things radio access or Cellular Internet of Things features to access a wireless network. The techniques include enabling support for a last known location of a UE, using previously obtained location measurements, when a UE is not reachable from a wireless network for positioning. The techniques also include limiting positioning protocol interaction between a UE and a location server via a reduced maximum message size, reduced message volume and longer response and retransmission timers. The techniques further include enabling a UE to obtain location measurements when not connected to a wireless network, enabling periodic and triggered location of a UE in which a UE evaluates location triggers while not connected to a wireless network, enabling use of deferred location and enabling improved location security.
US11678282B2

The present disclosure relates to methods and devices for synchronizing one or more radio devices with a radio access node. A method of providing synchronization with a radio access node for radio communication to one or more radio devices is disclosed. The method comprises or triggers transmitting a configuration message to at least one of the radio devices, where the configuration message is indicative of a synchronization signal configuration for a configurable synchronization signal. The method further comprises or triggers transmitting the configurable synchronization signal to the at least one radio device in accordance with the synchronization signal configuration and communicating one or more decodable signals between the radio access node and the at least one radio device using radio resources in accordance with the configurable synchronization signal. A corresponding method of synchronizing the radio device with the radio access node for radio communication is disclosed.
US11678276B2

Wireless communications systems and methods related to communicating control information are provided. A method of wireless communication performed by a user equipment (UE) may include mapping a power reservation signal of a sub-slot resource pool (RP) to an AGC symbol location of a slot RP and transmitting, to at least one other UE, the power reservation signal, wherein a transmit power level of the power reservation signal is based on an estimated transmit power level associated with at least one sub-slot.
US11678272B2

Systems and methods for joint power and resource allocation on a shared 5G channel. The method selects one of a group of grouped actions and implements this selected group of actions. The effects of the actions on the environment and/or the users are then assessed. Based on the result, a reward is allocated for the system. Multiple iterations are then executed with a view to maximizing the reward. Each of the grouped actions comprises joint power and resource allocation actions.
US11678269B2

A wireless device may receive cancellation indication configuration parameters and a second configuration parameter. The cancellation indication configuration parameters may comprise a first configuration parameter indicating a first RNTI. The second configuration parameter may indicate a value of a deactivation timer of a secondary cell. The wireless device may receive a cancellation indication DCI associated with the first RNTI. The cancellation indication DCI may indicate cancellation of an uplink transmission on the secondary cell. Based on receiving the cancellation indication DCI, the wireless device may start the deactivation timer with the value. The wireless device may deactivate the secondary cell based on the deactivation timer expiring.
US11678268B2

A communication method and a system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of things (IoT) are provided. The disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The disclosure relates to schemes for improving an operation of a terminal in an RRC inactive mode.
US11678265B2

Systems, apparatuses, and methods for notification support in extended discontinuous reception mode. A base station and UE may configure eDRX communication. An indication may be received during the eDRX communication. The network may cache the indication. The network may modify the DRX configuration. The network may use a wake up signal. In response, the UE may receive the indication while achieving power savings from the eDRX configuration.
US11678261B2

A computer implemented method of distributed wireless communications access security, the method comprising steps a computer processor of a server computer is programmed to perform, the steps comprising: receiving data characterizing a device, selecting a policy from a database of policies using the received data characterizing the device, for the device, the policy defining a criterion for determining which wireless access points are allowable, and communicating data defining the selected policy to the device, for the device to use for determining whether access to an active wireless access point is allowable.
US11678255B2

Methods, systems, and computer readable media can be operable to facilitate an exchange of messages between an access point and a station, wherein the access point requests a unique identifier from the station. The station may either respond with a message declining to provide a unique identifier or respond with a message including a unique identifier to be used by the access point for the station. The response from the station may include additional limitations on the use of the unique identifier by the access point. The access point may enforce different policies against a station depending upon how the station responds to the unique identifier request.
US11678254B2

Wireless devices (clients) connect to different access points (AP) in a wireless network. The wireless network may determine that based on, for example, congestion of certain APs that a client should be steered away from a current AP. Steering may be conducted utilizing BSS transition management (BTM) messages to provide the client with a list of network-preferred APs for a transition. Clients may also have one or more preferred APs and may reject the BTM steering message if it does not include at least one client-preferred AP. To prevent rejection of the BTM message, at least one client-preferred AP may be added to the BTM message. To ensure the client is steered to a network-preferred AP, the client is blacklisted from connecting to the client-preferred AP until the client has been steered to a network-preferred AP.
US11678253B2

A cellular network includes a first network component configured to i) identify a first session between a first data network and a user equipment (UE), wherein the first session corresponds to a first session management function (SMF), ii) receive data network access information (DNAI) from a network function, the DNAI corresponding to a second data network and iii) select a second SMF that is to be utilized for a second session between the second data network and the UE. The cellular network also includes a second network component configured to i) store a mapping between the DNAI and the second SMF and ii) transmit an indication of the second SMF to the first network component, wherein the first network component selects the second SMF based on the indication.
US11678252B2

The present invention provides methods and apparatus for notifying Quality of Service (QoS) information to User Equipment (UE), Users, and Application server. Embodiments of the present invention may analyze the network QoS and/or statistics of QoS parameters using one or more functions such as Network Data Analytics Function (NWDAF). Embodiments may also provide control plane (CP) functions which may send the QoS information to the UE depending on the UE subscription, application and/or network slice.
US11678251B2

A method for generating a geofence includes receiving, at an automated frequency coordination (AFC) system, a geofence request from an AFC device where the geofence request requests to use a licensed radio frequency band and includes one or more operating parameters for the AFC device. The method also includes determining, by the AFC system, whether any of the one or more operating parameters interfere with any licensed devices on the licensed radio frequency band. When none of the one or more operating parameters interfere with any of the licensed devices on the licensed frequency band, the method further includes generating, by the AFC system, based on the one or more operating parameters, a geofence defining an operating boundary for the AFC device to communicate within. The method also includes communicating, from the AFC system to the AFC device, a response to the geofence request where the response includes the geofence.
US11678248B2

Optimal determination of wireless network pathway configurations may be provided. A computing device may detect, at a first network Access Point (AP), interference on a channel with a second AP. Then, the computing device can check availability of a redundant radio at the second AP. Based on the availability, the computing device can establish a new radio link with the redundant radio at the second AP and reroute data traffic over the new radio link to the second AP. After establishing the new radio link, the computing device can then sever the channel with the second AP.
US11678244B2

The present invention relates to a method for offloading traffic by means of wireless LAN in a mobile communications system and apparatus therefor, and more particularly to a method for a terminal to offload traffic at a bearer level, and to a base station communicating with the terminal. The method for a terminal to offload traffic according to the present invention includes the steps of: while performing a data communication with a base station through a bearer of a first communications network, receiving from the base station an offloading command for offloading a part of traffic to a second communications network; transmitting a report of the offloading to the base station in response to the offloading command; and performing a data communication of the partial traffic with an accessible AP through a bearer of the second communications network without releasing the bearer of the first communications network.
US11678240B2

A method and system for transferring user equipment (UE) in a mobile communication system are provided. According to the method, a source core (CN) network determines to transfer a UE that it serves and sends a transfer instruction carrying UE transfer restriction information to the UE; an access network receives a transfer request that is sent by the UE according to the restriction information carried in the transfer instruction; the access network selects a target CN entity that is different from the source CN entity for the UE; and the UE is transferred to the target CN entity. The method and system provided by the disclosure are applicable to user transferring between CN entities in any communication network. The transferring is initiated by a network side entity, and a more preferable CN entity is selected for the UE to provide a better service.
US11678238B2

The present disclosure provides a method performed by user equipment, user equipment, and a handover command generation method. The method performed by user equipment includes: receiving a handover command including a handover condition, and storing a handover configuration in the handover command, wherein when the handover condition is met, the user equipment performs the handover configuration corresponding to the handover condition; and if a master cell group (MCG) failure is detected or if it is detected that a security update needs to be performed, performing at least an operation related to the stored handover configuration. Therefore, user equipment can determine the validity of a handover command, thereby avoiding a service interruption caused by a connection failure resulting from a handover performed on the basis of an invalid handover command.
US11678236B2

Methods, User Equipment (UE), and source network node for resuming a Radio Resource Control (RRC) connection to a target cell in a wireless communications network. The UE generates a security token using a set of input parameters and sends a resuming request with the security token to a target network node serving the target cell. When receiving the resuming request, the source network node generates a security token using a set of input parameters in the same manner as the UE. If the received security token is successfully verified when compared with the generated security token, the source network node provides to the target network node a UE context of the UE, to enable the target network node to resume the RRC connection.
US11678235B2

Wireless communications may comprise communications between a base station and a wireless device. A wireless device may perform a recovery procedure associated with a secondary cell and/or an access procedure associated with the secondary cell. Based on a deactivation condition associated with the secondary cell, the wireless device may abort the recovery procedure and/or the access procedure.
US11678222B2

[Object] To reduce the frequency of the occurrence of the transmission collision of frames. [Solution] A communication device, including: a receiving unit configured to receive a frame transmitted by another terminal; a length information acquiring unit configured to acquire length information related to the frame from the received frame; and a transmission frame deciding unit configured to decide a length of a transmission frame on the basis of the acquired length information.
US11678220B2

Disclosed herein are systems and methods related to slot assignments to traffic streams. In one aspect, a first wireless communication device sends, to a second wireless communication device, a request message including a latency marker having a requested value. The requested value indicates that a corresponding traffic stream between the first wireless communication device and the second wireless communication device is latency sensitive. Responsive to the request message, the first wireless communication device receives, from the second wireless communication device, a response message including a response latency marker. The response latency marker includes a response value for the corresponding traffic stream. When the response value is the same as the requested value, the first wireless communication device communicates corresponding traffic stream as a prioritized traffic stream instead of a regular traffic stream, with the second wireless communication device.
US11678215B2

Methods, systems, and devices for wireless communications are described. One method may include a UE determining a priority of a UE quality of service over UE thermal efficiency constraints, generating a priority indicator based at least in part on the determined UE quality of service priority, and transmitting to a base station via physical layer signaling, the priority indicator. Another method may include a UE determining a priority of a UE quality of service over UE energy constraints, generating a priority indicator based at least in part on the determined UE quality of service priority, and transmitting to a base station via physical layer signaling, the priority indicator. Yet another method may include a base station receiving a UE priority indicator specifying a UE quality of service priority over thermal efficiency constraints and temporarily prioritizing the UE QoS over UE thermal efficiency constraints based on the received priority indicator.
US11678214B2

In a 5G network, an integrated access and backhaul (IAB) deployment in a 5G network, can enable aggregation of multiple user equipment (UE) bearers into backhaul bearers based on factors such as route information of UE bearers and quality of service of UE bearers. Additionally, reconfiguration of backhaul bearers, based on triggers, such as route changes for UE bearers can increase network efficiency for a 5G or other next generation network.
US11678210B2

Disclosed is a method of a User Equipment, UE, in a telecommunication network, performing a measurement in an idle state, comprising the steps of: the network broadcasting a first message; the network transmitting a dedicated second message to the UE; wherein the first message comprises information related to one or more frequencies used in a particular cell in the network and the second message comprises information concerning frequencies specific to the UE, wherein the UE receives the first and second messages and performs the measurement on at least one frequency present in both the first and second messages.
US11678208B2

Failure prediction signaling and cognitive user migration may be provided. A client device may receive at least a portion of failure prediction data. The client device may then analyze the at least the portion of the failure prediction data. The client device may then roam from a first computing device to a second computing device in response to analyzing the at least the portion of the failure prediction data.
US11678207B1

Systems and methods presented herein provide for improving communications when encountering aggressive communication systems. In one embodiment, a communication system comprises a wireless access point operable to link a first user equipment (UE) to a WiFi network via a contention based mode that directs the WAP to share radio frequency spectrum with other WAPs. The communication system also comprises a communication processor operable to query at least the first UE to determine aggressive radio frequency (RF) band activity by another communication system in range of the WAP, to determine that the aggressive RF band activity by the other communication system is pushing communication with the first UE via the WAP below a threshold level, and based on the determination, direct the WAP to switch to a contention free mode to communicate with the first UE in contention free mode.
US11678206B2

The present invention is designed to reduce the decrease of communication throughput even when multiple beams and/or transmission reception points are used. A user terminal according to one aspect of the present invention has a receiving section that receives a predetermined signal, and a measurement section that distinguishes between different beams by using associations between the predetermined signal and beams, and performs beam-level measurement based on the predetermined signal.
US11678199B2

An apparatus and method for transmitting audio with coexisting wireless networks. In one embodiment, a wireless device includes a first wireless network controller and a second wireless network controller. The first wireless network controller and the second wireless network controller are configured to access a wireless communication medium via a shared antenna, and to transmit, via the wireless communication medium, data received from a host device. The second wireless network controller includes an audio stream detector configured to determine, based on the contents of the data received from the host device, whether an audio stream is to be transmitted via the second wireless network controller, and to request that the second wireless network controller be given access priority to the antenna over the first wireless network controller, based on a determination that the audio stream is to be transmitted via the second wireless network controller.
US11678195B2

An improved lawful intercept (LI) infrastructure is described. In response to a valid LI provisioning request, a subscriber management component statically allocates a user equipment (UE) subject to the LI provisioning request to an edge location comprising a high-speed gateway and a Mediation and Delivery Function (MDF), which coordinates the delivery of intercepted communications. The subscriber management component maintains this allocation for the life of the LI provisioning request and reverses the UE to a dynamic gateway allocation scheme when the LI provisioning request ends. As a result, only a subset of edge locations must be equipped with MDFs, and the handover is transparent to the UE.
US11678190B2

According to certain embodiments, a method is performed by a network node for secure handling of early data transmission (EDT) during Random Access (RA) procedure before Radio Resource Control (RRC) setup is complete. The method includes receiving, from a wireless device, a RRC message comprising a resume connection request and data. Based on stored security information, the network node determines that the RRC message is suspicious. In response to determining that the RRC message is suspicious, the network node takes an action.
US11678185B2

A communication apparatus automatically starts operating in a direct wireless communication mode in conjunction with a user's logging in to the communication apparatus.
US11678184B2

A communication apparatus executes authentication via wireless communication with a mobile device and, based on an authentication process, controls execution of a vehicle operation requested by a user. The communication apparatus includes a detection unit configured to detect closure of a door of a vehicle, an authentication processing unit configured to determine, in response to detection of the closure of the door by the detection unit, whether a specific mobile device is inside the vehicle by executing a first authentication process corresponding to a vehicle operation for which a highest security is set, among a plurality of vehicle operations that can be requested by the user, and an execution unit configured to execute, when the authentication processing unit has determined that the specific mobile device is inside the vehicle, a requested vehicle operation requestable from an inside of the vehicle and included in the plurality of vehicle operations.
US11678178B2

This disclosure describes techniques that enable a security monitoring application to detect the use of plaintext sensitive data by a user application on a user device. The security monitoring application may reside on a user device or may reside on a standalone device, such as a security monitoring controller, within an enterprise network. The security monitoring application may be configured to intercept a computing operation executed by a user application that includes user-plane data. In doing so, the security monitoring application may determine whether the user-plane data includes plaintext sensitive data and if so, quarantine the user-plane data.
US11678171B2

Internet gateway provisioning and evaluation of embedded subscriber identity module (eSIM) privileges is provided. The Internet gateway receives, from a device, a request to provision an embedded subscriber identity module (eSIM) of the device. The Internet gateway, in response to receiving the request to provision the eSIM of the device, causes the eSIM of the device to be provisioned with a profile. Provisioning the eSIM gives the device an ability to authenticate with a base station for communicating, via the base station, over a cellular communication protocol. The Internet gateway, after causing the eSIM to be provisioned, determines whether at least one criterion is met. The at least one criterion is for retaining or denying the ability of the device to authenticate with the base station. The Internet gateway, sends data, to a server, indicating that the at least one criterion is met.
US11678170B2

A method includes receiving, by a user equipment (UE) and through Radio Resource Control (RRC) signaling, information of a resource pool for a D2D communication, wherein the information of the resource pool comprises information of a discovery subframe in which a D2D discovery signal is to be communicated, determining that in the discovery subframe, the D2D discovery signal is prioritized over a communication with an evolved NodeB (eNB) unless the communication with the eNB is associated with a random access (RA) procedure, transmitting a RA preamble through a Physical Random Access Channel (PRACH), determining whether the discovery subframe corresponds to a RA subframe in which a RA response for the UE is to be monitored, and in response to determining that the discovery subframe corresponds to the RA subframe, monitoring, by the UE, the RA response during the discovery subframe.
US11678168B2

The present invention relates to a method and apparatus for efficiently controlling access for system load adjustment in mobile communication systems. A method for transmitting and receiving data by a terminal including a user equipment (UE) non access stratum (NAS) and a UE access stratum (AS) includes the steps of: receiving by the UE AE, information including emergency call-related information which includes barring information by type for the emergency call, from a base station; transmitting, by the UE NAS, a service request for the emergency call to the UE AS; and determining, by the UE AS, whether to bar the service request on the basis of emergency call-related information. During an emergency call transmission, network congestion can be easily controlled by enabling various types of emergency calls to be transmitted, and enabling access to be barred information according to the situation of a communication network and types of emergency calls.
US11678151B2

A method, system, and computer program product for displaying a map to guide a user in a venue is provided. The method comprises generating a first view comprising a map of at least one floor of the venue with one or more cartographic elements representing positions of one or more floor connectors in the at least one floor. The method further comprises causing display of the first view on a display unit of a user device. The method further comprises receiving a user selection of one of the one or more cartographic elements via the display unit. The method further comprises generating a second view comprising at least one graphic element to indicate one or more possible directions of movement via the floor connector. The method further comprises causing display of the second view on the display unit of the user device.
US11678150B2

A computer-implemented method, a computer program product, and a computer system for event-based dynamic prediction in location sharing on mobile devices. The computer system captures biometric data of a user, in response to starting location sharing requested by the user. The computer system collects action-based context of behavior of the user during the location sharing, determines activities of the user and one or more sharing users during the location sharing, determines context of the location sharing, tracks activities of the user and the one or more sharing users after the location sharing is ended, and tracks social network relationships between the user and the one or more sharing users. The computer system creates a knowledge corpus for training a machine learning model for prediction in a future location sharing event, using obtained information.
US11678144B2

A device, method, and system for providing initial and on-going tracking and location information in real-time for individuals and items within a predetermined area. A plurality of tracking devices are connected to at least one remote server. The remote server provides geofencing and location of all tracking devices within a pre-configured physical area. The tracking devices provide real-time location updates to the at least one remote server including proximity information to established physical locations within the physical area. The tracking devices are also operable to provide transactional and personal information to the at least one remote server.
US11678138B2

Described is a location-based interaction system. The system includes a server having a memory storing user data and a user computing device coupled to the server. The server may be programmed to receive and process a signal that user computing devices coupled to external devices have accessed the system and are within a predetermined proximity of each other. The system operates to send alert signals to the external devices, wherein the alert signals may be visual, audio or haptic. The system allows users to communicate through the use of external devices and/or through a communication interface.
US11678137B2

A contact and ranging system includes a first device that includes a first transceiver, a second transceiver, and a controller to control the first transceiver and the second transceiver of the first device. The first device is operable to determine a distance between the first device and a second device. The first transceiver is configured to perform a discovery operation. Other devices are discovered and added to a list of paired devices. A ranging schedule for each paired device in the list of paired devices is determined. The second transceiver is configured to perform a ranging operation. The ranging and response transmissions are transmitted and received by a pair of devices, such that a range between the pair of devices is determined based upon a time of flight between the pair of devices. The range between the pair of devices is matched with a timestamp and stored in a database.
US11678136B1

A computer-implemented method may include receiving, in a messaging client executing on a first client device, a location request from a second client device; determining whether the second client device is authorized to send the location request to the first client device; starting a timer in response to receiving the location request when the second client device is authorized; and sending a location of the first client device to the second client device when the timer expires. Other embodiments are described and claimed.
US11678121B2

A display device includes: a display panel including a first substrate, a second substrate, and a light emitting element layer disposed between the first substrate and the second substrate, where the light emitting element outputs light to the second substrate; a first sound generator disposed on a surface of the first substrate, where the first sound generator vibrates the display panel to output a sound; and a first buffer member disposed on the surface of the first substrate, where a height of the first buffer member is less than a height of the first sound generator.
US11678112B2

An ultra-wide bandwidth acoustic transducer may include multiple layers, including an inner piezoelectric layer, a polymer coupling layer and an outer piezoelectric layer. The polymer layer may be located between, and may be bonded to, the inner and outer piezoelectric layers. The transducer may have multiple eigenfrequencies of vibration. These eigenfrequencies may include primary resonant frequencies of the inner and outer piezoelectric layers respectively and may also include resonant frequencies that arise due to coupling between the layers. An acoustic backscatter system may employ such a transducer in backscatter nodes as well as in a transmitter. The multiple eigenfrequencies may enable the system to perform spread-spectrum communication at a high throughput. These multiple eigenfrequencies may also enable each backscatter node to shift frequency of an uplink signal, which in turn may enable the system to mitigate self-interference and to decode concurrent signals from multiple backscatter nodes.
US11678108B2

An image capture device with dynamic wind noise compression tuning techniques is described. A technique includes detecting of the presence of wind noise by measuring coherence between at least two microphones. For a compressor, adjusting a default compression threshold and default compression parameters based on the coherence measurements. For each microphone, applying by the compressor the adjusted compression parameters when an audio signal is above the adjusted compression threshold and applying the default compression parameters when the audio signal is below the adjusted compression threshold.
US11678100B2

A wireless control pod stores a headset for charging when not in use. When the headset is in signal communication with a smart device, a user can use the wireless control pod to control one or more functions of the smart device. When the headset is docked with a secondary headset, the audio to the speakers of the headset is adjusted for broadcast by the secondary headset.
US11678095B2

Example embodiments provide a device that includes a housing backplate affixed to a housing which embodies one or more of a speaker and a microphone, a threaded channel affixed to the housing and extending perpendicular from the housing backplate, and a wall mount fitting with one or more securing tabs to hold the wall mount fitting to a wall mount plate.
US11678091B2

Described are various configurations of reduced crosstalk optical switches. Various embodiments can reduce or entirely eliminate crosstalk using a coupler that has a power-splitting ratio that compensates for amplitude imbalance caused by phase modulator attenuation. Some embodiments implement a plurality of phase modulators and couplers as part of a dilated switch network to increase overall bandwidth and further reduce potential for crosstalk.
US11678084B2

An image sensor may include adaptive filtering circuitry that is used to correct for row noise. In one example, the image sensor may include a single reference pixel or a column of reference pixels that are shielded from incident light. The adaptive filtering circuitry may estimate row noise based on data from the reference pixel(s). Row noise correction circuitry may then subtract the estimated row noise from imaging pixel outputs to correct for row noise. If the row noise is dominated by supply noise, the reference pixels may be omitted entirely and the adaptive filtering circuitry may estimate row noise based only on the power supply voltage. The adaptive filtering circuitry may undergo a training phase to optimize coefficients for the adaptive filtering circuitry.
US11678071B2

An image sensing device includes a pixel array configured to include a first pixel group and a second pixel group that are contiguous to each other, each of the first pixel group and second pixel group including a plurality of imaging pixels to convert light into pixel signals, and a light field lens array disposed over the pixel array to direct light to the imaging pixels and configured as a moveable structure that is operable to move between a first position and a second position in a horizontal direction by a predetermined distance corresponding to a width of the first pixel group or a width of the second pixel group, the light field lens array configured to include one or more lens regions each including a light field lens and one or more open regions formed without the light field lens to enable both light filed imaging and conventional imaging.
US11678069B2

A system described herein may provide a technique for the real-time determination of events, objects, focal points, or the like to be captured by one or more cameras in a multi-camera environment. Such determination may be based on “crowdsourced” data from multiple User Equipment (“UEs”). The crowdsourced data may include positioning and/or pose information associated with UEs. The positioning information for a given UE may include location information, and the pose information may include an azimuth angle, magnetic declination, or other suitable information indicating where a particular physical facet of the UE is facing. For example, the pose information may be used to indicate or infer where a camera of the UE is pointed. One or more actuatable cameras may be displaced, rotated, etc. to capture video at one or more identified crowdsourced focal points.
US11678045B2

Placement of a face depicted within a video may be determined. One or more stabilization options for the video may be obtained. Stabilization option(s) may include angle stabilization option, a position stabilization option, and/or a size stabilization option. The video may be stabilized based on the placement of the face and the stabilization option(s).
US11678042B2

Methods, systems, and devices for in-display camera activation are described. The method includes receiving a request to activate a camera of the device, identifying a start of frame marker associated with activating the camera in response to the request, and emitting a signal to a display of the device in response to the identified start of frame marker, where the emitted signal triggers the display to transition a set of liquid crystal elements of the display from a display mode to a camera mode for camera operation.
US11678041B2

A camera module, which is mounted on an inside of a front windshield of a vehicle and to image an external environment of the vehicle, includes a lens unit and an imager to image the external environment by forming an optical image, which is from the external environment through the lens unit.
US11678039B2

A camera includes a camera focus adjustment device, a lens, and an image sensor coupled to the camera focus adjustment device. The camera focus adjustment device includes a flexure structure. The flexure structure includes an outer framework of structural members continuously interconnected by flexure notch hinges. The flexure structure also includes two inner structural members oriented in parallel and extending from the outer framework of structural members. A gap is between the two inner structural members. The camera focus adjustment device also includes a piezoelectric material within the gap and a pair of wedges within the gap. The pair of wedges is affixed to the piezoelectric material and to one inner structural member of the two inner structural members. Based on temperature-based piezoelectric activity associated with the piezoelectric material, the camera focus adjustment device is operable to move the image sensor relative to the lens.
US11678029B2

This application provides a video labeling method performed by a server, and the method includes: receiving a video extraction instruction transmitted by a terminal, and obtaining a to-be-extracted video according to the video extraction instruction; extracting event information from video frames of the to-be-extracted video; forming at least one event information flow by using the event information; capturing, based on the at least one event information flow, at least one first clip that meets a plot trigger condition from the to-be-extracted video and obtaining a plot labeling tag of the at least one first clip; and transmitting the at least one first clip and the corresponding plot labeling tag to the terminal, wherein the terminal displays the at least one first clip and the corresponding plot labeling tag in a preset display region of a display interface in which the to-be-extracted video is displayed.
US11678024B2

A subtitle information display method includes: when an editing operation of a user for initial subtitle information of video information is detected, determining a video display region and an edited subtitle display region in an application display page; if the subtitle display region is not a subregion in the video display region, determining a first extension length and a first extension direction for each edge length of the video display region based on region information of the video display region and region information of the subtitle display region; extend the video display region within a region range corresponding to the application display page, based on the first extension length and the first extension direction, so that the extended video display region includes the subtitle display region; and displaying edited subtitle information in the subtitle display region.
US11678023B2

Methods, systems, and apparatuses for captions data handling, conversion between formats, and presentation are described herein. Segments of a content item may contain captions data in different formats, where conversion between one format to another may be required when one format is not compatible with a computing device or presentation settings. The captions data may be converted to a compatible format(s). The embedded captions data may be converted on a segment-by-segment basis and/or in real-time for streaming content.
US11678022B2

A technique capable of allowing a reception side to easily select components is provided. A transport stream in which a first transport packet including predetermined components and a second transport packet including signaling information related to the predetermined components are time-division multiplexed is transmitted via a predetermined transport path. Component selection information is inserted in the second transport packet. The component selection information includes information on a selective layer in which static selection is performed, information on a composite layer in which composition is performed, and information on an adaptive layer in which dynamic switching is performed, and these layers being arranged in that order from top to bottom. The acquisition destination information of a component which is a target of adaptive switching among the components selectable in the adaptive layer is information that designates specific information location of a metafile having data stream acquisition information for adaptive streaming.
US11678015B1

A system and method for dynamically training a system to determine an age rating for media content. An exemplary method includes obtaining age rating data for a plurality of territories; determining, based on the age rating data, a similarity vector relating to the target territory; determining, for the similarity vector, a territory associated with a highest prediction score; in response to determining that the territory associated with the highest prediction score is not the source territory, generating a training dataset comprising the age rating data for the target territory, the source territory, and the territory associated with the highest prediction score; and executing a machine learning model, trained by the training dataset, to output an age rating for a content item in the target territory based on an age rating for the content item in the source territory.
US11678002B1

A controlling device has a configurable key. An insert is provided to the configurable key and includes an indicium representative of a media content provider. An image of the indicium or an image of a QR code associated with the indicium is used to assign one or more commands to the configurable key. The one or more commands are used to cause a controllable device to tune to a channel on which the media content provider is being broadcast, to invoke an app associated with the media content provider, to access a website associated with the media content provider, and the like.
US11677986B2

The present disclosure, in a method of decoding a video signal, provides a method including checking whether a transform skip is applied to a current block; acquiring a transform index indicating transform types applied to a horizontal direction and a vertical direction of the current block from among a plurality of predefined transform types from the video signal when the transform skip is not applied to the current block; and performing an inverse primary transform on the current block using the transform types indicated by the transform index, wherein the transform types applied to the horizontal direction and the vertical direction of the current block are determined from among transform types defined according to an intra prediction mode of the current block based on the transform index.
US11677977B2

Disclosed are an intra prediction method of a chrominance block using a luminance sample and an apparatus using the same. An image decoding method comprises the steps of: calculating an intra prediction mode of a chrominance block on the basis of an LM mapping table when the chrominance block uses an LM; and generating a prediction block for the chrominance block on the basis of the calculated intra prediction mode of the chrominance block. When intra prediction mode information of chrominance blocks are decoded, mutually different tables are used depending on whether or not an LM is used, so that encoding and decoding can be performed without an unnecessary waste of bits.
US11677975B2

An encoder includes circuitry and memory. Using the memory, the circuitry, in inter prediction processing: derives a first motion vector of a current block to be processed, using a motion vector of a previous block which has been previously processed; derives a second motion vector of the current block by performing motion estimation in the vicinity of the first motion vector; and generates a prediction image of the current block by performing motion compensation using the second motion vector.
US11677970B2

A video coding method and device, according to the present invention, determine whether motion compensation is performed by sub-block unit, determine a search area for motion compensation of a current block, calculate a plurality of SAD candidates with respect to the search area, derive delta motion information of the current block on the basis of the plurality of SAD candidates, and can compensate for motion information of the current block by using pre-generated motion information and the delta motion information of the current block.
US11677962B2

An apparatus for video decoding includes processing circuitry. The circuitry can be configured to receive a syntax element indicating whether a prediction refinement with optical flow (PROF) is disabled for affine prediction. Further, the circuitry can determine whether to apply the PROF to an affine coded block based on the syntax element. Responsive to the syntax element indicating not to apply the PROF to the affine coded block, the circuitry can disable the PROF to the affine coded block.
US11677956B2

Devices, systems and methods for digital video coding, which includes simplified cross-component prediction, are provided. In a representative aspect, a method for video coding includes receiving a bitstream representation of a current block of video data including at least one luma component and at least one chroma component, predicting, using a linear model, a first set of samples of the at least one chroma component based on a second set of samples that is selected by sub-sampling samples of the at least one luma component, and processing, based on the first and second sets of samples, the bitstream representation to generate the current block. In another representative aspect, the second set of samples are neighboring samples of the current block and are used for an intra prediction mode of the at least one luma component.
US11677950B2

Concepts are presented which achieve a more efficient coding of coefficients of a transform block by use of dependent quantization and context adaptive entropy coding or achieve a coding of coefficients of a transform block in a manner which allows a more efficient coding even if a usage of dependent quantization is combined with the usage of context adaptive entropy coding.
US11677949B2

Various embodiments provide an encoder that performs an up-conversion and a down-conversion on a first quantization matrix to generate a second quantization matrix, and quantizes transform coefficients of a current block using the second quantization matrix. The first quantization matrix has a first number of rows and a first number of columns equal to the first number of rows, and the second quantization matrix has a second number of rows and a second number of columns different from the second number of rows. In the up-conversion, the circuitry generates the second quantization matrix such that one of the second number of rows or the second number of columns is larger than the first number of rows. In the down-conversion, the circuitry generates the second quantization matrix such that the other of the second number of rows or the second number of columns is smaller than the first number of rows.
US11677939B2

According to the disclosure of the present disclosure, the index of an alternative filter is derived from ALF information, and an ALF procedure for a chroma component of a current block can be performed on the basis of the alternative filter.
US11677935B2

Devices, systems and methods for video processing are described. An exemplary method for video processing includes determining, for a conversion between a current block of a video and a bitstream representation of the video, that a neighboring block of the current block that is coded in a palette mode is processed as an intra-coded block having a default mode during a construction of a list of most probable modes (MPM) candidates of the current block in case the neighboring block is located above or left of the current block. The method also includes performing the conversion based on the determining.
US11677934B2

In an example method, a system receives a plurality of frames of a video, and generates a data structure representing the video and representing a plurality of temporal layers. Generating the data structure includes: (i) determining a plurality of quality levels for presenting the video, where each of the quality levels corresponds to a different respective sampling period for sampling the frames of the video, (ii) assigning, based on the sampling periods, each of the frames to a respective one of the temporal layers of the data structure, and (iii) indicating, in the data structure, one or more relationships between (a) at least one the frames assigned to at least one of the temporal layers of the data structure, and (b) at least another one of the frames assigned to at least another one of the temporal layers of the data structure. Further, the system outputs the data structure.
US11677928B1

A captured scene captured of a live action scene while a display wall is positioned to be part of the live action scene may be processed. To perform the processing, image data of the live action scene having a live actor and the display wall displaying a first rendering of a precursor image is received. Further, precursor metadata for the precursor image displayed on the display wall and display wall metadata for the display wall is determined. An image matte is accessed, where the image matte indicates a first portion associated with the live actor and a second portion associated with the precursor image on the display wall Image quality levels for display wall portions of the display wall in the image data is determined, and pixels associated with the display wall in the image data are adjusted to the image quality levels.
US11677923B1

A captured scene captured of a live action scene while a display wall is positioned to be part of the live action scene may be processed. To perform the processing, image data of the live action scene having a live actor and the display wall displaying a first rendering of a precursor image is received. Further, precursor metadata for the precursor image displayed on the display wall and display wall metadata for the display wall is determined. An image matte is accessed, where the image matte indicates a first portion associated with the live actor and a second portion associated with the precursor image on the display wall in the live action scene. Pixel display values for a replacement wall image of higher resolution than the precursor image is determined, and the image data of the captured scene is adjusted using the pixel display values and the image matte.
US11677921B2

A system for generating high-resolution de-warped omni-directional stereo image from captured omni-directional stereo image by correcting optical distortions using projection patterns is provided. The system includes a projection pattern capturing arrangement, a projector or a display, and a de-warping server. The projection pattern capturing arrangement includes one or more omnidirectional cameras to capture projection patterns from the captured omni-directional stereo image from each omni-directional stereo camera. The projector or the display displays the projection patterns. The de-warping server obtain the projection patterns and processes the projection patterns to generate high resolution de-warped omni-directional stereo image by correcting optical distortions in the captured omni-directional stereo image and mapping the captured omni-directional stereo image and the high resolution de-warped omni-directional stereo image.
US11677918B2

A method and apparatus for color space conversion are provided. An apparatus for converting a color space includes at least one processor configured to convert an original full image of an original color space to a temporary image of a target color space, estimate a color space mapping parameter between the original color space and the target color space, the color space mapping parameter corresponding to the original full image, obtain a residual vector of the target color space based on the temporary image and the color space mapping parameter, convert the residual vector to a residual image of the target color space, and obtain a target full image of the target color space by combining the residual image with the temporary image.
US11677915B2

An image display device includes M (M≥2) ultra-short focus projectors and reflective directional screens that reflect projection light rays from the corresponding ultra-short focus projectors. The ultra-short focus projectors are arranged above or below the directional screens on which the ultra-short focus projectors are supposed to project images. Adjacent directional screens are tightly arranged. The adjacent directional screens are arranged to form an angle of less than 180 degrees.
US11677909B2

This disclosure provides techniques of synchronizing the playback of two recorded videos of the same surgical procedure. In one aspect, a process for generating a composite video from two recorded videos of a surgical procedure is disclosed. This process begins by receiving a first and second surgical videos of the same surgical procedure. The process then performs phase segmentation on each of the first and second surgical videos to segment the first and second surgical videos into a first set of video segments and a second set of video segments, respectively, corresponding to a sequence of predefined phases. Next, the process time-aligns each video segment of a given predefined phase in the first video with a corresponding video segment of the given predefined phase in the second video. The process next displays the time-aligned first and second surgical videos for comparative viewing.
US11677906B2

Access to functionality of a software service is enabled at a first device associated with a user based on the first device being in a primary mode. A connection may thereafter be established between the software service and a second device associated with the same user. In response to that connection, access to a subset of the functionality of the software service is limited at the second device based on the second device being in a secondary mode determined based on the second device. Because the first device and the second device are used by the same user, the software service does not represent those devices as separate users of the software service, but rather identifies only the first device, as the primary mode device, in connection with the user to other users of the software service.
US11677900B2

A personal authentication device includes an infrared ray emitter that emits infrared rays, an infrared camera that captures an infrared image, a status signal outputter that outputs a signal related to a status of the personal authentication device or the status of surroundings of the personal authentication device, and a controller. The controller determines whether or not there is a predetermined change in the status of the personal authentication device or the status of the surroundings of the personal authentication device based on a signal output from the status signal outputter, and when there is the predetermined change, the controller drives the infrared ray emitter and the infrared camera, and performs a three-dimensional face authentication process based on the infrared image captured by the infrared camera.
US11677895B2

Provided is an imaging element including a reception interface that receives an imaging synchronization signal related to a timing of imaging and at least one output synchronization signal related to a timing of output of image data obtained by imaging from an outside of the imaging element, a memory that is incorporated in the imaging element and stores the image data obtained by imaging at a first frame rate in accordance with the imaging synchronization signal received by the reception interface, and an output circuit that is incorporated in the imaging element and outputs the image data stored in the memory at a second frame rate in accordance with the output synchronization signal received by the reception interface, in which the first frame rate is greater than or equal to the second frame rate.
US11677891B1

In an embodiment, a method of rendering an infrared mark, can involve providing an image path for an image processing apparatus, wherein the image path integrates infrared mark related functions with regular image processing functions of the image processing apparatus, and rendering the infrared red mark with the image processing apparatus, after subjecting the infrared mark to the infrared mark related functions in the image path of the image processing apparatus.
US11677890B2

An apparatus detects a transient thermal gradient in a substrate. The apparatus is comprised of an electromagnetic radiation source configured to emit source electromagnetic radiation; a fast shutter configured to block the source electromagnetic radiation when closed, and open in response to a command to pulse the source electromagnetic radiation; a substrate support that supports a substrate disposed to emit a pulsed radiation from a back side of the substrate when the source electromagnetic radiation is pulsed through the substrate; and a detector configured to face the back side of the substrate. The detector is used to detect a transient thermal gradient in the pulsed radiation.
US11677879B2

Some disclosed teleconferencing methods may involve detecting a howl state during a teleconference. The teleconference may involve two or more teleconference client locations and a teleconference server. The teleconference server may be configured for providing full-duplex audio connectivity between the teleconference client locations. The howl state may be a state of acoustic feedback involving two or more teleconference devices in a teleconference client location. Detecting the howl state may involve an analysis of both spectral and temporal characteristics of teleconference audio data. Some disclosed teleconferencing methods may involve determining which client location is causing the howl state. Some such methods may involve mitigating the howl state and/or sending a howl state detection message.
US11677876B2

Techniques for sharing control of assigning tasks between an external pairing system and a task assignment system with an internal pairing system are disclosed. In one embodiment, the techniques may be realized as a method for sharing control of assigning tasks between an external pairing system and a task assignment system with an internal pairing system comprising receiving, from the task assignment system, a plurality of task pairing requests and an agent pairing request, wherein each task request of the plurality of task pairing requests is assigned to one of a first pairing strategy and a second pairing strategy. The agent pairing request may indicate an agent that is available for pairing. The method may further comprise transmitting, to the task assignment system, a pairing recommendation being based in part on the plurality of task pairing requests, the first pairing strategy, the second pairing strategy, and the agent pairing request.
US11677874B2

A device for providing a communication service is provided. The device receives an address for establishing a communication session. Environmental data from an environment of the device is collected. The device determines whether the address corresponds to a communication recipient for which the environmental data is to be sent to supplement the communication session. A request for the communication session is placed based on the address, and the communication session is established upon answer of the request. The environmental data is sent over the wireless network and to the communication recipient after establishing the communication session with the communication recipient and determining that the address corresponds to the communication recipient for which the environmental data is to be sent to supplement the communication service.
US11677872B2

Apparatus and methods for enhancing security of an authentication process of a caller that initiated a call in an Interactive Voice Response (“IVR”) system are provided. The methods may include routing the call through the IVR system to a headset. After the routing, the methods may include retrieving data associated with the caller. In response to the retrieved data meeting one or more predetermined conditions, a graphical user interface of an agent computer paired to the headset may display a plurality of validation information for validating the caller. Selection by the agent of validation information may trigger methods for transmitting a request to the caller, via a caller mobile phone, to input the validation information selected by the agent. The methods may additionally include authenticating the caller based at least in part on the information input into the mobile phone.
US11677869B2

A computer-implemented method for managing calls in a collaboration environment is provided. The method includes receiving, by a processor, a call into a collaboration session of the collaboration environment. The method also includes identifying, by the processor, a user from a plurality of users associated with the collaboration session, based on at least one of contextual information regarding the call and information regarding the plurality of users. The method further includes providing, by the processor, an interface on a device associated with the identified user, wherein the interface enables the identified user to instruct the device to handle the call within the collaboration session.
US11677868B2

An example method for controlling an external electronic device of an electronic device, according to various embodiments, includes: receiving data information corresponding to at least one function of the external electronic device from an external electronic device connected to the electronic device; displaying a setting window for setting a user interface for controlling the external electronic device using the data information; selecting a control item corresponding to the at least one function included in the setting window according to user input reception; and setting and displaying the user interface corresponding to the selected control item.
US11677858B2

An apparatus can monitor interactions between IoT devices and IoT applications. Based on the monitoring, the apparatus may identify an interaction between a given IoT device and a given IoT application that can be adjusted. In an example, the apparatus may generate a recommendation or instruction in response to identifying the interaction. A first instruction may indicate a change in behavior for one of the IoT device or the IoT application. The apparatus may send the instruction to the one of the IoT device or the IoT application, for example, so as to cause the one of the IoT device or the IoT application to change the respective behavior, thereby adjusting the interaction between the IoT device and the IoT application.
US11677851B2

Devices and techniques for accelerated packet processing are described herein. The device can match an action to a portion of a network data packet and accelerate the packet-processing pipeline for the network data packet through the machine by processing the action.
US11677845B2

A method includes receiving first event data from a device, the first event data including a first identifier (ID) that identifies the device, web browser metadata, and data associated with an application state. The method includes generating a first persona including the first ID and a first event identifier that identifies a first user action. The method includes receiving second event data, the second event data including device metadata and a second ID that identifies the device. The method includes generating a second persona based on the second event data, the second persona including the second ID and a second event identifier that identifies a second user action. Additionally, the method includes determining that the first and second personas are associated with the device based on matches between the browser metadata and device metadata and transmitting a response to the device configured to route the device to the application state.
US11677840B2

Preserving transmission properties of real-time scenes in an environment when an increasing number of users join a session may be provided. A plurality of metrics associated with transmission of scenes having a Coarse Grain (CG) layer and a Fine Grain (FG) layer may be determined. Then a current client, based on a first one of a plurality of metrics, may be revoked. One of the following may then be performed: blocking a new client based on a second one of a plurality of metrics; and allowing the new client based on the second one of a plurality of metrics.
US11677839B2

Apparatuses, systems, and techniques are directed to automatic coalescing of GPU-initiated network communications. In one method, a communication engine receives, from a shared memory application executing on a first graphics processing unit (GPU), a first communication request assigned to or having a second GPU as a destination to be processed. The communication engine determines that the first communication request satisfies a coalescing criterion and stores the first communication request in association with a group of requests that have a common property. The communication engine coalesces the group of requests into a coalesced request and transports the coalesced request to the second GPU over a network.
US11677836B2

A server apparatus is communicably connected to multiple information processing devices and is configured to manage a session in which content data are transmitted and received between the multiple information processing devices. A communication management unit is configured to manage a connection to the session by each of the information processing devices. An information management unit is configured to receive a request from at least one of the information processing devices and to associate collateral information about an environment with the session. An information transmission unit is configured to transmit the collateral information to the at least one of the information processing devices.
US11677831B2

A system of a machine includes a network of a plurality of nodes distributed throughout the machine. Each of the nodes is operable to communicate through one or more radio frequencies, where the machine includes a cooler portion and a hotter portion. The system includes a means for communicating with the network of nodes using a higher frequency to communicate with one or more of the nodes in the cooler portion of the machine and a lower frequency to communicate with one or more of the nodes in the hotter portion of the machine.
US11677826B2

Efficient data transfer is disclosed. A server provides an endpoint for a client. The client can communicate with a cloud storage system through the server rather than connect directly to the cloud storage system. The server is configured to perform requests in a manner that reduces the amount of data transferred to and from the cloud storage system.
US11677825B2

A storage system is provided. The storage system includes a plurality of storage units, each having a controller and solid-state storage memory. The storage system further includes one or more first pathways that couple processing devices of a plurality of storage nodes and is configured to couple to a network external to the storage system and one or more second pathways that couple the plurality of storage nodes to the plurality of storage units, wherein the one or more second pathways enable multiprocessing applications.
US11677822B2

A method includes transmitting initial page data from a service platform customer instance to a client device. The initial page data representing a first page of a portal, and the first page includes a widget associated with a second page. The method further includes receiving, from the client device, a selection of the widget. The method further includes obtaining mapping data indicating an association between the second page and a third page, the association specific to the portal. The method further includes, in response to the selection and the association, routing the client device to the third page rather than the second page.
US11677816B2

One example method includes creating a manifest that specifies one or more requirements concerning execution of an application that resides at an end device in an N-tier configuration, identifying a workload that is associated with the application and executable at one or more edge stations of the N-tier configuration, gathering and evaluating network telemetry, orchestrating the workload based on the network telemetry and the manifest, scheduling performance of the workload at the one or more edge stations, and performing the workload at the one or more edge stations in accordance with the scheduling.
US11677813B2

A server includes a plurality of nodes that are connected by a network that includes an on-chip network or an inter-chip network that connects the nodes. The server also includes a controller to configure the network based on relative priorities of workloads that are executing on the nodes. Configuring the network can include allocating buffers to virtual channels supported by the network based on the relative priorities of the workloads associated with the virtual channels, configuring routing tables that route the packets over the network based on the relative priorities of the workloads that generate the packets, or modifying arbitration weights to favor granting access to the virtual channels to packets generated by higher priority workloads.
US11677810B2

An application configuration tool and associated method for supporting deployment of an application on a server that has a set of configurations available for applications deployed on the server. The method attempts to match every configuration required by the application to a configuration available on the server. In case of multiple candidates that match, one is selected. When there is no match an error message is generated. The method is iterated to inspect each selected configuration to identify any references contained in the selected configuration that themselves need further configurations. The iteration of inspecting and the matching to follow the references is continued until all such references are exhausted either by matching or failure to match and consequent error message generation. Finally, a configuration report is output specifying the selected configurations and, to the extent that not all required configurations have been matched to available configurations, the error messages.
US11677807B2

A system and method to improve implementation efficiency of user interface content by using standard content attributes used across all platforms and devices to implement a lowest common denominator programming system. Standardized content attributes are used to produce a universal content framework that is implemented identically across various devices and platforms, resulting in a consistent and standardized user experience. The invention allows programming functionality to be universally applied and usable with any device and platform so that significant computer programming and updating inefficiencies are eliminated.
US11677806B2

A system for executing thin client applications, the system configured to: generate, by a thin client application executing on a client computing device, an initial content request identifying a platform; send the initial content request to a content provider; receive platform-independent initial content from the content provider in response to the initial content request; display the initial content on the client computing device; detect a user input associated with the initial content; send a user engagement request for secondary content; receive user-interactive secondary content server-side rendered in a platform-dependent format of the client computing device based on the platform identification; and display the secondary content on the display component.
US11677803B2

The present invention relates to systems and methods for network labeling in order to enhance real time data transfers. A network for a real time data transfer is identified and predictive models for network performance are compared against to determine if the network is suitable for the data transfer. If so, then the real time data transfer may be completed as expected. However, if the network is predicted to be unsuitable for transmission an alternate means for connection may be suggested. The alternate suggestion may include delaying the data transfer until the network is expected to be in better conditions, connecting to another access point in the network, or switching to another network entirely. During the data transfer, the quality of the network is monitored in order to update the predictive models for the network's quality. Identifiers for the network may be utilized to keep track of the networks. Network signal strength, signal pollution and time may also be tracked in order to identify patterns in the network's performance.
US11677798B2

An apparatus for multi-bitrate content streaming includes a receiving module configured to capture media content, a streamlet module configured to segment the media content and generate a plurality of streamlets, and an encoding module configured to generate a set of streamlets. The system includes the apparatus, wherein the set of streamlets comprises a plurality of streamlets having identical time indices and durations, and each streamlet of the set of streamlets having a unique bitrate, and wherein the encoding module comprises a master module configured to assign an encoding job to one of a plurality of host computing modules in response to an encoding job completion bid. A method includes receiving media content, segmenting the media content and generating a plurality of streamlets, and generating a set of streamlets.
US11677794B2

Technologies for streaming multi-user broadcasts include a broadcast management server configured to receive multimedia data captured of a user. The broadcast management server streams a multimedia broadcast including the multimedia data captured of the user to other users. Additionally, the broadcast management server is configured to receive a request to participate in the streamed multimedia broadcast from another user. Multimedia data captured of the other user is received in response to a determination that the request to participate in the streamed multimedia broadcast is accepted. The broadcast management server merges the multimedia data captured of the first and second users to generate a merged multimedia broadcast, which is streamed to other users. The broadcast management server also generates a broadcast feed for users. The broadcast feed includes streaming multimedia broadcasts and streaming merged multimedia broadcasts corresponding to other users. Other embodiments are described and claimed.
US11677789B2

Techniques for intent-based access control are described. A method of intent-based access control may include receiving, via a user interface of an intent-based governance service, one or more intent statements associated with user resources in a provider network, the one or more intent statements expressing at least one type of action allowed to be performed on the user resources, compiling the one or more intent statements into at least one access control policy, and associating the at least one access control policy with the user resources.
US11677775B2

A method includes: accessing an attack record defining actions representing a previous known attack on a second computer network; initializing an attack graph; for each action, defining a set of behaviors—analogous to the action and executable by an asset on a target network to emulate an effect of the action on the second computer network—and storing the set of behaviors in a node in the attack graph; connecting nodes in the attack graph according to an order of actions in the known attack; scheduling the asset to selectively execute analogous behaviors stored in the set of nodes in the attack graph; accessing alerts generated by a set of security tools deployed on the target network; and characterizing vulnerability of the target network based on alerts, in the set of alerts, indicating detection and prevention of behaviors executed by the asset according to the attack graph.
US11677772B1

Activities within a network environment are monitored (e.g., using agents). At least a portion of the monitored activities are used to generate a logical graph model. The generated logical graph model is used to determine an anomaly. The detected anomaly is recorded and can be used to generate an alert.
US11677766B2

Systems, methods, devices, instructions, and media are described for generating suggestions for connections between accounts in a social media system. One embodiment involves storing connection graph information for a plurality of user accounts, and identifying, by one or more processors of the device, a first set of connection suggestions based on a first set of suggestion metrics. A second set of connection suggestions is then identified based on a second set of suggestion metrics, wherein the second set of connection suggestions and the second set of suggestion metrics are configured to obscure the first set of connection suggestions, and a set of suggested connections is generated based on the first set of connection suggestions and the second set of connection suggestions. The set of connection suggestions is then communicated to a client device method associated with the first account.
US11677759B1

Aspects of the present disclosure provide for the detection and/or use of countermeasures to prevent and/or limit unauthorized devices from accessing and/or using another's communication network. An exemplary system includes a cloud controller and a gateway device that communicate via the infrastructure provided by a service provider communication network, wherein the gateway device operates in part to execute a device discovery algorithm to detect devices that are connected to a network facilitated by the gateway device and/or employ countermeasures to thwart further access by any unauthorized device. An exemplary method executes a device discovery algorithm to apply one or more of a plurality of device discovery protocols to detect devices that are connected to a network facilitated by a gateway device and/or implement countermeasures to block further access. Other aspects are described in detail herein.
US11677755B1

The system and method disclosed performs entity authentication through identification proofing. A relying party such as a corporation or other type of entity having a secure website, computer network and secure facility working a risk engine can determine the authenticity, validation and verification during registration of a user entity. The identification proofing is integrated with a risk engine. The risk engine is capable of using bio-behavior based information which may be continuously monitored.
US11677754B2

Computer security techniques are described. One example provides a security module. The security module executes on a computing system and determines whether to allow a user or a program (e.g., native executable, script, etc.) associated with the user to access a resource, such as by reading, writing, or executing a file. This decision is based at least in part on whether an access control list that is associated with the resource specifies that a source (e.g., IP address, hardware address) that is associated with the user is allowed to access the resource. This decision can also or instead be based on whether the computing system is executing in maintenance mode, such as in single-user diagnostic mode.
US11677750B2

Users of an identity provider system may be authorized to use a variety of different types of factors from a variety of different factor providers. The identity provider system monitors and analyzes the “health” of the different possible factors available to a user, e.g., their availability relative to error rate. Using the results of the analysis, the identity provider can assess which factors are the most appropriate for a given user seeking authentication and can improve the user experience for the user by emphasizing those most appropriate factors to the user.
US11677747B2

Disclosed are systems and methods for mapping a virtual shopper to a physical shopper. The systems and methods may include receiving, at a backend system, unidentified customer data including information about an unidentified customer. Customer identity data including identifying information about the customer may be received from the customer. An authentication token may be generated that links the unidentified customer data to the customer identity data.
US11677741B2

System and method for secure time synchronization in an industrial facility, wherein a synchronization request of a facility component is transmitted to a registration service of a certificate management of the facility and the synchronization request is examined by the registration service, where the synchronization request includes a signature of the requesting facility component, and where depending on an outcome of the examination, a synchronization response is then transmitted to the requesting facility component a system time of the facility component is matched to a system time of the registration service based on the synchronization response.
US11677733B2

Systems and methods for firmware validation for encrypted virtual machines are disclosed. An example method may include initiating a boot process to launch a virtual machine on a host machine. The virtual machine can be associate with a first firmware. The method may further include authenticating the virtual machine with an external server using the first firmware. The method may further include receiving secret data associated with the virtual machine from the external server. The secret data may be encrypted with an encryption key. The method may further include, responsive to authenticating a second firmware using the first firmware, completing the boot process to launch the virtual machine using the secret data.
US11677729B2

A requestor and a responder may conduct secure communication by making API calls based on a secure multi-party protocol. The requestor may send a request data packet sent in a API request to the responder, where the request data packet can include at least a control block that is asymmetrically encrypted and a data block that is symmetrically encrypted. The responder may return a response data packet to the requestor, where the response data packet can include at least a control block and a data block that are both symmetrically encrypted. The requestor and the responder may derive the keys for decrypting the encrypted portions of the request and response data packets based on some information only known to the requestor and the responder. The secure multi-party protocol forgoes the need to store and manage keys in a hardware security module.
US11677726B2

A scalable brokerless messaging network includes a service mesh implementing a plurality of service nodes in signal communication with one another to exchange a plurality of messages. A control plane is in signal communication with the plurality of service nodes and is configured to register an application service associated with a given service node included in the service mesh. The plurality of service nodes define a messaging middleware layer that establishes several point-to-point connections between each service in the network via transmission control protocol (TCP) sockets.
US11677725B2

A communications system between a source and a destination includes a transmitter at the source and a communication connectivity. The transmitter comprises a preprocessor and a candidate envelope folder to provide M known a priori digital envelopes, M≥1. The preprocessor has N input ports and N output ports, N>M, performs at least one wavefront multiplexing (WFM) transform on N inputs received at the N input ports to generate N outputs at the N output ports. The preprocessor performs the at least one WFM transform by calculating, for each of the N outputs, a linear combination of the N inputs using one of the M digital envelopes such that a digital format of one of the N outputs appears to human sensors as having features substantially identical to a digital format of the one of the M digital envelopes.
US11677724B1

A method of tunneling through a network separation device such as a firewall or a Network Address Translator comprising establishing via a custom socket factory coupled with a host device, a connection with a cloud server by tunneling through a network separation device; maintaining, via the custom socket factory, the connection with the cloud server through the network separation device; receiving, via the connection between the custom socket factory and the cloud server, connection information; and directly connecting, via the custom socket factory, to a client device using the connection information received from the cloud server.
US11677722B2

Techniques are described herein that are capable of implementing a client-side policy on client-side logic. The client-side policy is configured to support client-side hooks by configuring a rule in the client-side policy to be applied to the client-side logic, which is configured to be executed in a browser of a client device in a network-based system. The rule indicates an administrator-defined action to be performed in response to a request to execute the client-side logic. The request to execute the client-side logic in the browser is received. The administrator-defined action is performed based at least in part on the rule in the client-side policy in response to receipt of the request.
US11677721B2

A packet transmission method is disclosed herein. The packet transmission method includes the following operations. The first packet is transmitted to a first proxy server terminal by a first user terminal. A header of received first packet is changed to generate a first header, and the first packet with the first header is transmitted to a gateway terminal by the first proxy server terminal. The first header of the received first packet is changed to generate a second header, and the first packet with the second header is transmitted to a server terminal by the gateway terminal. The header of the first packet includes a source address field and a destination address field.
US11677719B2

Example methods are provided for a destination host to implement a firewall in a virtualized computing environment that includes the destination host and a source host. The method may comprise receiving, via a physical network interface controller (PNIC) of the destination host, an ingress packet sent by the source host. The ingress packet may be destined for a destination virtualized computing instance that is supported by the destination host and associated with a destination virtual network interface controller (VNIC). The method may further comprise retrieving a PNIC-level firewall rule associated with the destination virtualized computing instance, the PNIC-level firewall rule being applicable at the PNIC and generated by based on a VNIC-level firewall rule applicable at the destination VNIC. In response to determination that the PNIC-level firewall rule blocks the ingress packet from passing through, the ingress packet may be dropped such that the ingress packet is not sent to the destination VNIC.
US11677715B2

Systems and methods are disclosed for an augmented Service Capability Exposure Function (A-SCEF). The A-SCEF may receive upstream or downstream traffic and direct or process that traffic in accordance with policy profiles. The policy profiles may be associated with various entities that may have interrelationships. The policy profiles may allow a network operator to better control multiple entities on the network while simplifying use of the network for the customers, such as those associated with a large number of internet of things (IOT) devices.
US11677714B2

The present application describes a system and method for passively collecting DNS traffic data as that data is passed between a recursive DNS resolver and an authoritative DNS server. The information contained in the collected DNS traffic data is used to generate a virtual authoritative DNS server, or a zone associated with the authoritative DNS server, when it is determined that the authoritative DNS server has been compromised.
US11677713B2

A domain-name-based network-connection attestation system provides for more user friendly and less error prone (compared to IP-address-based attestation systems) updating of a whitelist used to determine whether or not to allow a requested network connection. A guest agent extracts from a DNS reply a domain name, and an IP address mapped to a domain name. The agent enters these values in an agent DNS cache. When a process requests a connection to an IP address, the agent uses the IP address to determine the domain name from the agent DNS cache. The agent then determines whether the IP address is mapped to the process identity in a domain-name-based whitelist. If it is, the connection is attested to and allowed; if it is not, a secondary IP address whitelist can be checked.
US11677710B2

Systems and methods are disclosed in which merchants on an e-commerce platform may use a same computer application to start and/or join discussion groups with other merchants on the e-commerce platform. An existing discussion group may be recommended to a merchant based on data specific to that merchant. A notification of the recommendation may be transmitted to the user interface of the merchant's device, and if the merchant accepts the recommendation, then the discussion group may be added to the set of discussion groups the merchant follows. Alternatively, a recommended discussion group may be automatically added to the set of discussion groups the merchant follows.
US11677699B2

Cognitive pre-loading of referenced content in electronic mail (e-mail) messages includes determining, using computer hardware, metadata for an electronic message directed to a user, detecting, using the computer hardware, a universal resource locator (URL) within a body portion of the electronic message, determining, using the computer hardware, a content type for the URL, and performing, using the computer hardware, natural language processing on the electronic message to determine an action importance corresponding to the URL. At least a portion of content specified by the URL can be pre-fetched from a data processing system based on the metadata, the content type of the URL, and the action importance. The electronic message and at least a portion of the content can be provided to a client device of the user.
US11677697B2

Technologies are presented directed to smart attachment of cloud-based files to communications such as email. A communication service may determine and select automatically between local and cloud versions of synchronized files allowing the recipient of the message to receive a version of the file regardless of whether the sender is offline or online when the attachment was made and in a user-friendly manner to the sender through a single representation.
US11677696B2

Disclosed are various approaches performing actions on data items in a third-party service with a network-accessible application programming interface from an email client. The email client can perform an action as specified by an email service profile, which specifies how to identify the email message, the data item and how to interact with the network-accessible application programming interface.
US11677671B2

A packet forwarding method includes receiving N Time-Sensitive Networking (TSN) packet flows, where each of the N TSN packet flows corresponds to a constraint condition that defines duration of a cycle, a maximum quantity of packets that are allowed to be transmitted in the cycle, and a maximum length of a single packet, and forwarding the N TSN packet flows based on a new constraint condition, where the new constraint condition is based on the constraint condition corresponding to each of the N TSN packet flows and defines duration of a new cycle, a new maximum quantity of new packets that are allowed to be transmitted in the new cycle, and a new maximum length of a new packet, where each of the N TSN packet flows is forwarded in a case in which a corresponding constraint condition is complied with.
US11677648B2

In accordance with an embodiment, a method includes determining whether a frame received from a communication bus is encoded according to a particular communication protocol and is addressed to a particular electronic device; increasing a frame count value when the frame is encoded according to the particular communication protocol and is addressed to the particular electronic device based on the determination, wherein increasing the frame count value comprises increasing a count of a modular arithmetic counter circuit having a first bit depth, and the frame count value is constrained to a modulus value of the modular arithmetic counter circuit; setting a frame count status bit based on comparing the frame count value to threshold values, and transmitting a frame comprising the frame counter status bit over the communication bus, and resetting the frame count value at an end of a monitoring time interval.
US11677642B2

An automated support system for local networks of connected devices has local network agents each comprising a digital processor, a memory, a local communications wireless interface for communicating locally with devices in the local network, and remotely with cloud-based servers. The servers include an interface for communicating with the local networks, and a recommendation engine programmed to dynamically communicate with the local network agents via the interface to capture support requests concerning devices and services, to perform work flow processing to generate a resolution for such support requests, and to communicate the resolution to the local network agent. The recommendation engine automatically generates a context for each support request, the context including historical resolution data for that local network, or device, or service. The interface and the local network agents perform local network synchronization with very low bandwidth overhead by the agents asynchronously generating and transmitting a signature to the interface to indicate status of all of the devices in their respective network. The recommendation engine has a series of components arranged to operate in sequence to process a support request.
US11677638B2

Disclosed are systems, methods, and non-transitory computer-readable media for message routing optimization. The message routing optimization system receives requests to transmit messages to recipient devices. The message routing optimization system determines whether to allocate the messages to an optimal routing provider or a secondary routing provider. The message routing optimization ranks the set of routing providers based on a conversion rate index and determines the optimal routing and secondary routing providers based on the ranking. The message routing optimization system allocates messages to the selected routing providers to be delivered to their intended recipients.
US11677633B2

In general, embodiments relate to a method for distributing topology information to client application nodes in a distributed system, the method comprising: creating a file system on a management node, enabling a plurality of client application nodes to access the file system on the management node, obtaining a topology file, wherein the topology file comprises information about a plurality of storage devices to enable the plurality of client application nodes to issue input/output (IO) requests directly to the plurality of storage devices, and storing, by the management node, the topology file in the file system, wherein the topology file is accessible to the plurality of client application nodes once the topology file is stored in the file system.
US11677624B2

An indication that a client system has connected to a server system that is associated with a network file system may be received. In response to the indication that the client system has connected to the server system, a number of client systems that are connected to the server system may be determined. The network file system may be configured in view of the determined number of client systems that are connected to the server system. Access to the network file system may be provided to the client system in response to configuring the network file system in view of the determined number of client systems that are connected to the server system.
US11677623B2

Methods are provided in which a computing device obtains telemetry data associated with a network technology used in an enterprise network. The network technology is deployed using one or more assets of the enterprise. The methods further include the computing device determining, for each deployment of the network technology, a progression along an adoption lifecycle of the network technology, based on the telemetry data, generating, based on the progression of each deployment of the network technology, a first action set and an alternative second action set, different from the first action set, for further progression along the adoption lifecycle and providing the first action set and the alternative second action set for the further progression of the network technology along the adoption lifecycle.
US11677606B2

An HE-LTF transmission method is provided, including: determining, based on a total number NSTS of space-time streams, a number NHELTF of OFDM symbols included in an HE-LTF field; determining a HE-LTF sequence in frequency domain according to a transmission bandwidth and a mode of the HE-LTF field, where the HE-LTF sequence in frequency domain includes but is not limited to a mode of the HE-LTF field sequence that is in a 1× mode and that is mentioned in implementations; and sending a time-domain signal according to the number NHELTF of OFDM symbols and the determined HE-LTF sequence in frequency domain. In the foregoing solution, a PAPR value is relatively low.
US11677600B2

In wireless communications for a 20 megahertz (MHz) channel bandwidth, a first device may determine a high efficiency long training field (HE-LTF) mode. The first device may generate an HE-LTF symbol by using a portion or an entirety of an HE-LTF sequence corresponding to the channel bandwidth and HE-LTF mode. The first device may transmit, in the channel bandwidth, a high efficiency physical layer protocol data unit (HE PPDU) that includes the HE-LTF symbol. A second device may receive, in the 20 MHz channel bandwidth, a downlink HE PPDU that includes an HE-LTF symbol. The second device may obtain, from the HE-LTF symbol, a portion or an entirety of an HE-LTF sequence corresponding to the channel bandwidth and an HE-LTF mode of the HE-LTF symbol. The downlink HE PPDU may be the HE PPDU from the first device. Other methods, apparatus, and computer-readable media are also disclosed.
US11677597B2

A wireless communication device includes an estimation observation unit that observes a channel condition by estimating a tendency of a long delay wave and a channel fluctuation from a received signal in which a training signal is added to a data frame, a first equalizer that compensates for the received signal, a second equalizer that compensates for the received signal with a property of having a higher long delay wave tolerance and a lower channel fluctuation tolerance than the first equalizer, and a control unit that performs control which switches such that the first equalizer or the second equalizer performs compensation for the received signal, on the basis of the channel condition observed by the estimation observation unit.
US11677591B2

A bidirectional isolated communication circuit and method for a differential signal. The circuit comprises a first detection circuit used for receiving a first differential pair from a first direction, converting the first differential pair into a first level signal, and inhibiting common-mode interference; a second detection circuit used for receiving a second differential pair from a second direction, converting the second differential pair into a second level signal, and inhibiting common-mode interference; an isolation adjustment circuit used for being provided between the first detection circuit and the second detection circuit and performing communication isolation; and a watchdog circuit used for being awoken according to the first differential pair and/or the second differential pair, and enabling the bidirectional isolated communication circuit to enter from a small current working mode to a normal working mode to perform communication isolation.
US11677589B2

Systems and methods for controlling electrical loads in one or more areas. The system includes a room controller having a microprocessor for accessing data and providing commands, memory for storing information operably connected to the microprocessor, a relay for powering a load based on commands from the microprocessor, and a port for connecting a peripheral device. The system also includes a peripheral device connected to the port and configured to send data including a device type and a device instance byte to the controller indicating the type of peripheral device. The device instance byte includes a port number identifying the port and a slot number identifying a time slot within a time domain multiplexing cycle. The system also includes a load connected to the relay.
US11677588B2

Some embodiments of the invention provide a method for implementing a logical switching element that includes multiple logical ports through which the logical switching element receives and sends data packets. The method configures multiple managed forwarding elements to implement the logical switching element. The method also determines that port isolation has been enabled for the logical switching element. The method further provides a set of data directing the managed forwarding elements to drop a particular data packet received through a first logical port when the particular data packet is addressed to a second logical port different than the first logical port to implement the port isolation.
US11677587B2

A method includes a second provider edge (PE) device sending, to a first PE device, a media access control (MAC) route learned from a customer edge (CE) device, wherein the first PE device generates a MAC forwarding entry based on the MAC route, wherein the first PE device may forward, based on the MAC forwarding entry using the CE device, a packet whose destination MAC address is the CE device or a MAC address of a terminal device accessing the CE device, and wherein an outbound interface identifier included in the MAC forwarding entry is an identifier of an interface connected to the CE device.
US11677582B2

A process detects anomalies on a controller area network (CAN) bus. An arbitration field in a message on the CAN bus is analyzed, and a data field in the message on the CAN bus is inspected. The process further monitors a frequency of message identifiers that are transmitted across the CAN bus, and determines that an overall bus load crosses a threshold. The process then transmits an alert when the analyzing the arbitration field, the inspecting the data field, the monitoring the frequency, and the determining the overall bus load indicate that an anomaly has occurred on the CAN bus.
US11677579B2

Systems, computer-implemented methods and/or computer program products that facilitate automating home control are provided. In one embodiment a computer-implemented method comprises: using a voice recognition component to identify user identification by analyzing voice signatures; using a face recognition component to determine user identification by analyzing facial features; using an authentication component to verify user identification and authorize control access to functionality of one or more automated home control systems; using a communication component to facilitate communication between the one or more automated home control systems and one or more devices; using a service component to execute a set of functions based on authorized user commands and information communicated from the one or more devices; and using a machine learning component to learn user preferences by correlating a set of functions with the authorized users commands.
US11677564B2

A content distribution system includes content receivers that provide a plurality of blockchain databases that store transaction records associated with subscriber requests for content, and a computer system that processes those transaction records and enables authorized content receivers to output requested content.
US11677559B2

In one embodiment, a set of feature vectors can be derived from any biometric data, and then using a deep neural network (“DNN”) on those one-way homomorphic encryptions (i.e., each biometrics' feature vector) can determine matches or execute searches on encrypted data. Each biometrics' feature vector can then be stored and/or used in conjunction with respective classifications, for use in subsequent comparisons without fear of compromising the original biometric data. In various embodiments, the original biometric data is discarded responsive to generating the encrypted values. In another embodiment, the homomorphic encryption enables computations and comparisons on cypher text without decryption. This improves security over conventional approaches. Searching biometrics in the clear on any system, represents a significant security vulnerability. In various examples described herein, only the one-way encrypted biometric data is available on a given device. Various embodiments restrict execution to occur on encrypted biometrics for any matching or searching.
US11677556B2

Disclosed are aspects of an untrusted decentralized computing platform that includes an untrusted decentralized database which participant computing systems within the platform reach consensus on an accepted representation thereof. Some aspects of the databased include one or more directed acyclic graphs, which may include cryptographic hash pointers. Some aspects include an untrusted decentralized database architecture that includes two constituent chains. Some aspects of a consensus layer of the untrusted decentralized computing platform alternate a proof of space with a verifiable delay function to reduce compute resource waste relative to systems reliant on compute sources for proofs of work. In some aspects of a consensus layer alternating the proof-of-space and the proof-of-time, a single difficulty factors may be determined by multiplying their difficulty factors together to generate a single variable which accounts for difficulty for both proofs.
US11677555B2

Disclosed are an identity authentication, number saving and sending, and number binding method, apparatus and device. The identity authentication method comprises: receiving a user identity authentication request sent by a data authentication platform client, wherein the user identity authentication request comprises user authentication information and user identification information, and a data authentication platform server pre-stores the user authentication information and a registration number and a password, which correspond to the user identification information; acquiring, according to the user identification information, the user authentication information pre-stored in the data authentication platform server; matching the user authentication information in the acquired user identity authentication request with the acquired user authentication information pre-stored in the data authentication platform server; when the matching is successful, receiving a result, sent by the data authentication platform client, of confirming the acquisition of the registration number by a user.
US11677549B2

A processor may generate one or more encrypted policies associated with a policy creator. A processor may generate token metadata associated with a user utilizing the one or more encrypted policies. A processor may encrypt the token metadata to form encrypted token metadata. A processor may send the one or more encrypted policies and the encrypted token metadata to a policy evaluator. The policy evaluator may evaluate the one or more encrypted policies and the encrypted token metadata. The processor may return a response. The response may be based on the evaluation by the policy evaluator.
US11677546B2

The present disclosure relates to a method and system for securely transferring master keying material between to a slave dongle (12). Each slave dongle (12) is connected to a data transfer system. The slave dongle (12) contains a public key and a private key and the data transfer system holds a master keying material source that contains master keying material to be transferred securely to the slave dongle (12). The slave dongle's public key is transferred to the master keying material source. The master keying material source encrypts the master keying material with the slave dongle's public key to produce an encrypted master keying material. The encrypted master keying material is sent to the slave dongle (12) and the slave dongle (12) decrypts the encrypted master keying material with the slave dongle's private key. This allows multiple users, each having a slave dongle (12a-n) that has been configured in this manner, to use the same master keying material to securely communicate with one another.
US11677536B2

A transceiver includes a transmitter and a receiver connected to each other through a first line and a second line. The transmitter transmits signals having a first voltage range to the first line and the second line in a first mode, and transmits signals having a second voltage range less than the first voltage range to the first line and the second line in a second mode. In transmitting a (1-1)-th payload to the receiver, the transmitter is sequentially driven in the first mode, the second mode, and the first mode, and transmits a first clock training pattern and the (1-1)-th payload in the second mode. The receiver includes a clock data recovery circuit generating a first clock signal corresponding to the received first clock training pattern and a register storing first frequency information and first phase information of the first clock training pattern.
US11677528B2

A method of operating a signaling radio node in a radio access network is provided. The method includes transmitting control signaling to a feedback radio node. The control signaling includes control information having a bit pattern. The bit pattern has a subpattern with M bits in which the control information pertains to feedback signaling. A number M1 of the M bits of the subpattern is assigned to represent an assignment indication, and a number M2 of the M bits of the subpattern is assigned to represent a resource indication in which M1 and M2 are determined based on a size indication pertaining to the feedback signaling. The disclosure also pertains to related methods and devices.
US11677527B2

An integrated circuit includes control circuitry and transmitting circuitry. The control circuitry maps data or a reference signal onto resources including orthogonal subcarriers of a first numerology and a second numerology, which differ at least by subcarrier spacing and are frequency-multiplexed on a subcarrier basis. The control circuitry assigns no transmit power to at least one subcarrier located between a subcarrier of the first numerology and a subcarrier of the second numerology. The subcarriers of the second numerology include: inter-numerology-orthogonal subcarriers, each of which is centrally aligned with a subcarrier of the first numerology, and non-inter-numerology-orthogonal subcarriers not centrally aligned with any subcarrier of the first numerology and located between two adjacent subcarriers of the first numerology. The control circuitry assigns no transmit power to at least one of the non-inter-numerology-orthogonal subcarriers. The transmitting circuitry transmits the mapped data or reference signal.
US11677526B2

Disclosed herein are a method and apparatus for performing, by UE, decoding in a wireless communication system. According to the present invention, there may be a method and an apparatus for decoding data in which a demodulation reference signal (DMRS) configured by a base station according to a specific pattern is received from the base station through a DMRS symbol, the demodulation reference signal is transmitted on a specific antenna port and located on the same one or two time-axis symbols as at least one other demodulation reference signal transmitted on another antenna port, the specific pattern is determined according to characteristics of a frequency band in which the demodulation reference signal is transmitted, the demodulation reference signal is mapped to the one or two time-axis symbols using at least one of a first code division multiplexing (CDM) on a frequency axis or a second CDM on a time axis, and the data are decoded using the demodulation reference signal.
US11677514B2

Apparatuses, methods and software are provided. The first apparatus comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the device at least to transmit a transport block of a HARQ process on preconfigured resources for an uplink transmission to a second apparatus while starting a first timer and a second timer for the HARQ process. The first timer indicates a time period during which the transport block is able to be retransmitted, and wherein the second timer is configured to expire before the first timer; monitor a response associated with the transport block from the second apparatus; and in response to the second timer expiring before receiving the response and before expiry of the first timer, retransmit the transport block while restarting the second timer.
US11677510B2

The present invention discloses methods and systems for managing an error correction mode at a first communications router. The first communication router transmits data packets to a second communications router and stores the first data packet in a local storage medium. When a delay inquiry message is received from the second communications router, the first communications router activates the error correction mode. When the error correction mode is activated, the first data packet is retransmitted to the second communications router and an error correction packet corresponding to the first data packet is also transmitted. When a back-to-normal message is received from the second communications router, the first communications router deactivates the error correction mode. The back-to-normal message indicates that the first communications router no longer needs to be in error correction mode.
US11677505B2

Wireless communication devices, systems, and methods for decoding data packets for establishing latency-critical services. Each mobile station transmits multiple copies of a same data packet over a contention-based multiple access uplink channel without prior reservation of resources. Then, for a given mobile station, copies of a data packet are transmitted over identified resources of the channel, in a sequence known to the base station. Thus, for each mobile station, the base station knows which channel resources to look at in order to perform its decoding in a facilitated manner.
US11677487B2

In a general aspect, a network transmission interface can include, within an egress data path, a physical coding sublayer (PCS) operating in a constant bitrate domain for transmitting data frames on a network link; a timestamp unit configured to insert timestamps in payloads of the frames; a transmission media access control (MAC) unit located at a boundary between the constant bitrate domain and a variable bitrate domain, configured to receive the frames at a variable bitrate, encapsulate the frames, and provide the encapsulated frames at a constant bitrate; a MAC layer security unit located downstream from the timestamp unit, configured to sign and optionally encrypt the payloads and expand each frame with a security tag and an integrity check value (ICV). The timestamp unit and the MAC layer security unit (26b) can both operate in the constant bitrate domain.
US11677484B2

Systems and methods are provided for channelizing. A first stage can provide a WOLA filter bank that can apply a single multiplier resource to perform window weighting for multiple WOLA filter banks. The first stage can remove mixer-based post FFT adjustment and provide equal functionality with a particular modification of tuning mixers at inputs of second stage FIR paths. The first stage can include a variable decimation, using a particular implementation of variable sample block size.
US11677478B2

A co-packaged optical module includes a substrate, a processor arranged on the substrate and a plurality of light engines mounted around the processor on the substrate using mounting assemblies configured to attach the respective light engines to the substrate. The light engines and the mounting assemblies are disposed along a perimeter of the substrate, including at corners of the substrate. Each of the mounting assemblies includes a socket, a metal clamp clamping a corresponding one of the light engines into the socket, and a plurality of pins which when mated with corresponding holes in the substrate cause peripheries of the mounting assemblies, including the light engines, the sockets and the metal clamps, to be flush with the perimeter of the substrate.
US11677476B2

A radio apparatus and system may include a means for modulating and/or demodulating an optical signal for respective transmission and/or reception of the optical signal using an optical channel connected to a remote radio unit. There may also be provided a means for performing, based on one or more pre-trained computational models, one or more operations on a digital signal corresponding to the optical signal for mitigating one or more non-linearities introduced by the optical modulating and/or demodulating means and the optical channel. The one or more pre-trained computational models may be pre-trained based on feedback data indicative of said one or more non-linearities.
US11677475B2

A method (100) of encoding communications traffic bits onto an optical carrier signal in a pulse amplitude modulation, PAM, format. The method comprises: receiving (102) bits to be transmitted; receiving (104) an optical carrier signal comprising optical pulses having an amplitude and respective phases; performing (106) PAM of the optical pulses to encode at least one respective bit in one of a pre-set plurality of amplitudes of a said optical pulse; and performing (108) phase modulation of the optical pulses to encode at least one further respective bit in a phase difference between a said optical pulse and a consecutive optical pulse.
US11677453B2

Disclosed are techniques for wireless communication. In an aspect, a user equipment (UE) participating in a sidelink communications group increments a transmit counter for each packet transmitted by the first UE as part of group communications among the sidelink communications group, increments a receive counter for each packet received by the first UE from a second UE participating in the sidelink communications group as part of group communications among the sidelink communications group; and transmits the transmit counter and the receive counter to a network node based on a configuration received from the network node.
US11677452B2

A method for transmitting and receiving signals, performed by a terminal, in a C-RAN environment, includes sequentially transmitting fixed beams; receiving, from at least one first TRP determined as TRP(s) performing signal transmission and reception with the terminal among the plurality of TRPs, control information including information on whether to transmit a reference signal for reception of downlink data and an index of a transmission beam selected for uplink transmission; and receiving the downlink data from the at least one first TRP, and demodulating the downlink data by using a reception beam weight derived from a weight used for transmission of the fixed beams or by using the reference signal.
US11677435B2

Wide bandwidth digital pre-distortion (DPD) in a remote unit(s) for a wireless communications system (WCS) is disclosed. In embodiments disclosed herein, a remote unit(s) includes at least two transceiver circuits, each configured to process (e.g., perform DPD) a respective downlink digital communications signal corresponding to a portion of the carrier bandwidth. Each of the transceiver circuits is further configured to convert the respective downlink digital communications signal into a respective downlink RF communications signal. The respective downlink RF communications signals generated by the transceiver circuits are subsequently combined to form a downlink RF communications signal(s) associated with the carrier bandwidth. By employing multiple transceiver circuits in the remote unit(s) to each handle a portion of the carrier bandwidth, it may be possible to mitigate processing bandwidth limitations of the remote unit(s), thus making it possible to satisfy the regulatory and/or operational requirements for supporting wide bandwidth communications in the WCS.
US11677433B2

A wireless system includes an active oscillator and a front-end circuit. The active oscillator is used to generate and output a reference clock. The active oscillator includes at least one active component, and does not include an electromechanical resonator. The front-end circuit is used to process a transmit (TX) signal or a receive (RX) signal according to a local oscillator (LO) signal. The LO signal is derived from the reference clock.
US11677426B2

An adaptive filter includes, in part, a linear filter, and a non-linear resonator coupled to the linear filter and adapted to resonate at a frequency that is an integer multiple of the frequency of a received RF signal. The adaptive filter filters out the received RF signal. The resonant frequency may be twice the frequency of the received RF signal. The adaptive filter optionally includes a second non-linear resonator coupled to the linear filter and adapted to resonate at a frequency defined by a sum of the integer multiple of the frequency of the received signal and an offset frequency.
US11677418B2

An error rate measuring apparatus includes: an operation unit that sets a codeword length, an FEC symbol length, and an FEC symbol error threshold; error counting unit for counting FEC symbol error and an uncorrectable codeword; a display unit that performs display by setting one zone of a display area as one FEC symbol length, matching a zone length of a horizontal axis of the display area with one codeword length, and performing line feed in codeword length units according to presence or absence of the FEC symbol error in FEC symbol length units based on a counting result; search unit for searching for the uncorrectable codeword starting from the cursor on the identification display; and display control unit for performing display control of the cursor at a position of a head error of the searched uncorrectable codeword.
US11677415B2

A method of data compression in which the total size of the compressed data is determined and based on that determination, the bit depth of the input data may be reduced before the data is compressed. The bit depth that is used may be determined by comparing the calculated total size to one or more pre-defined threshold values to generate a mapping parameter. The mapping parameter is then input to a remapping element that is arranged to perform the conversion of the input data and then output the converted data to a data compression element. The value of the mapping parameter may be encoded into the compressed data so that it can be extracted and used when subsequently decompressing the data.
US11677413B2

Disclosed are an audio ADC for supporting voice wake-up and an electronic device. The audio ADC includes a programmable gain amplifier (PGA) having an input terminal for receiving an audio signal; a bypass switch having an input terminal for receiving an analog audio signal; and a successive approximation ADC having input terminals respectively connected to output terminals of the PGA and the bypass switch; the PGA gains and amplifies the audio signal, the bypass switch bypasses the PGA, and outputs the analog audio signal; the successive approximation performs analog-to-digital conversion with noise shaping on the analog audio signal after gain amplification at a first sampling rate/oversampling rate when the audio ADC is normal working, and turns off noise shaping when the audio ADC is sleep, performs analog-to-digital conversion on the analog audio signal output by the bypass switch at a second sampling rate/oversampling rate, and outputs to a DSP.
US11677411B2

An A/D converter includes an A/D conversion unit and an output unit. The A/D conversion unit includes a second A/D converter (successive approximation register A/D converter) and generates first digital data having a first number of bits and second digital data having a second number of bits, where the second number of bits is smaller than the first number of bits. The output unit provides first output information that is the first digital data and also provides second output information based on the second digital data. The output unit provides the second output information before providing the first output information.
US11677407B2

One or more embodiments of a successive approximation type analog-to-digital converter that converts an analog input into a digital conversion value and outputs the digital conversion value, may include: a capacitance DAC that generates a bit-by-bit potential based on an analog input; a comparator that compares the potential generated by the capacitance DAC, wherein the comparator is a memory cell rewriting type, the comparator includes a first stage current mirror type operational amplifier; and a second stage memory cell; a conversion data generator that generates conversion data of resolution bits based on a comparison result of the comparator; and a correction circuit that corrects an output error of the conversion data caused by an offset error of the comparator by adding or subtracting an offset correction value that is a fixed value, and outputs the conversion data as a digital conversion value.
US11677401B2

According to an aspect of the present inventive concept there is provided 3D IC, comprising: a plurality of logic cells stacked on top of each other, each logic cell forming part of one of a plurality of vertically stacked device tiers of the 3D IC, and each logic cell comprising a network of logic gates, each logic gate comprising a network of horizontal channel transistors, wherein a layout of the network of logic gates of each logic cell is identical among said logic cells such that each logic gate of any one of said logic cells has a corresponding logic gate in each other one of said logic cells, and wherein each logic cell comprises: a single active layer forming an active semiconductor pattern of the transistors of the logic gates of the logic cell, and a single layer of horizontally extending conductive lines comprising gate lines defining transistor gates of the transistors, and wiring lines forming interconnections in the network of transistors and in the network of logic gates of said logic cell.
US11677400B2

A circuit includes an input circuit, a level shifter circuit, an output circuit, and a first and a second feedback circuit. The input circuit is coupled to a first voltage supply, and configured to receive a first input signal, and to generate at least a second input signal. The level shifter circuit is coupled to a second voltage supply, and configured to generate at least a first and second signal responsive to at least the enable signal or the first input signal. The output circuit is coupled to at least the level shifter circuit and the second voltage supply, and configured to generate at least an output signal, a first and second feedback signal responsive to the first signal. The first and second feedback circuit are configured to receive the enable signal, and the inverted enable signal, and the corresponding first and second feedback signal.
US11677399B1

The interface circuit includes a first transistor, a second transistor, a first switch, a first logic circuit and a second logic circuit. The first transistor is controlled by a enable signal. The second transistor is controlled by a first control signal. The first switch is coupled between a second end of the first transistor and the output end of the interface circuit, wherein the first switch is controlled by a second control signal. The first logic circuit generates the first control signal according to the enable signal and at least one indication signal. The second logic circuit generates the second control signal according to the first control signal and the enable signal.
US11677397B2

A trigger assembly, for use with a power tool having an electric motor, includes a trigger, a conductor coupled for movement with the trigger, and a printed circuit board. The printed circuit board has an inductive sensor thereon responsive to relative movement between the conductor and the inductive sensor caused by movement of the trigger. An output of the inductive sensor is used to activate the electric motor.
US11677393B2

A circuit includes a power supply voltage node having a power supply voltage level, a protection circuit that generates a first signal having first and second logical voltage levels based on the power supply voltage level, and a gate driver. The gate driver includes a first n-type HEMT between the power supply voltage node and a first node, a second n-type HEMT between the first node and a power supply reference node, and a DCFL circuit between the first node and an output terminal. A gate of the first n-type HEMT receives the first signal, a gate of the second n-type HEMT receives a second signal, and the DCFL circuit generates a third signal at the output terminal based on the second signal when the first signal has the first logical voltage level, and as a DC voltage level when the first signal has the second logical voltage level.
US11677391B1

A latency controller within an integrated circuit device retimes command-stream-triggered control and timing signals into endpoint timing domains having respective time-varying phase offsets relative to a reference clock by iteratively estimating and logging the phase offsets independently of commands streaming into the integrated circuit device.
US11677390B2

This disclosure describes apparatuses, methods, and techniques for implementing a multimode frequency multiplier. In example implementations, an apparatus for generating a frequency includes a multimode frequency multiplier. The multimode frequency multiplier includes a multiphase generator and a reconfigurable frequency multiplier. The multiphase generator is configured to produce a first signal including multiple phase components and having a first frequency. The reconfigurable frequency multiplier is coupled in series with the multiphase generator. The reconfigurable frequency multiplier is configured to produce a second signal based on the first signal and having a second frequency that is a multiple of the first frequency.
US11677387B2

A clock circuit includes a latch circuit, a memory state latch circuit, a first inverter, a memory state trigger circuit and a second inverter. The latch circuit is configured to latch an enable signal, and to generate a latch output signal based on a first clock signal and a first output clock signal. The memory state latch circuit is configured to latch a second output clock signal responsive to a third output clock signal. The first inverter is configured to generate the first output clock signal responsive to the third output clock signal. The memory state trigger circuit is configured to generate the second output clock signal responsive to the latch output signal. The second inverter is configured to generate the first clock signal responsive to a second clock signal, and configured to control the latch circuit and the memory state trigger circuit based on the first clock signal.
US11677383B2

Embodiments of the invention may be used to implement a rate converter that includes: 6 channels in forward (audio) path, each channel having a 24-bit signal path per channel, an End-to-end SNR of 110 dB, all within the 20 Hz to 20 KHz bandwidth. Embodiment may also be used to implement a rate converter having: 2 channels in a reverse path, such as for voice signals, 16-bit signal path per channel, an End-to-end SNR of 93 dB, all within 20 Hz to 20 KHz bandwidth. The rate converter may include sample rates such as 8, 11.025, 12, 16, 22.05, 24, 32 44.1, 48, and 96 KHz. Further, rate converters according to embodiments may include a gated clock in low-power mode to conserve power.
US11677381B2

A film bulk acoustic resonator (FBAR) structure includes a bottom cap wafer, a piezoelectric layer disposed on the bottom cap wafer, a bottom electrode disposed below the piezoelectric layer, and a top electrode disposed above the piezoelectric layer. Portions of the bottom electrode, the piezoelectric layer, and the top electrode that overlap with each other constitute a piezoelectric stack. The FBAR structure further includes a lower cavity disposed below the piezoelectric stack. A projection of the piezoelectric stack is located within the lower cavity.
US11677379B2

A moveable micromachined member of a microelectromechanical system (MEMS) device includes an insulating layer disposed between first and second electrically conductive layers. First and second mechanical structures secure the moveable micromachined member to a substrate of the MEMS device and include respective first and second electrical interconnect layers coupled in series, with the first electrically conductive layer of the moveable micromachined member and each other, between first and second electrical terminals to enable conduction of a first joule-heating current from the first electrical terminal to the second electrical terminal through the first electrically conductive layer of the moveable micromachined member.
US11677378B2

An elastic wave device includes a piezoelectric thin film, IDT electrodes on the piezoelectric thin film, an insulating layer surrounding the piezoelectric thin film on a primary surface of a support substrate, a spacer layer surrounding the piezoelectric thin film in plan view, and a cover on the spacer layer. The spacer layer includes an outer edge and an inner edge closer than the outer edge to the piezoelectric thin film in plan view. The primary surface of the insulating layer closer to the spacer layer includes a sloping region that extends where the insulating layer overlaps the spacer layer in plan view and in which the distance from the first primary surface of the support substrate along the direction perpendicular or substantially perpendicular to the support substrate increases from the outer edge toward the inner edge.
US11677376B2

Acoustic resonator devices, filters, and methods are disclosed. An acoustic resonator includes a substrate, a piezoelectric plate having front and back surfaces, and an acoustic Bragg reflector between a surface of the substrate and the back surface of the piezoelectric plate. An interdigital transducer (IDT) is formed on the front surface of the piezoelectric plate. The IDT is configured to excite a shear primary acoustic mode in the piezoelectric plate in response to a radio frequency signal applied to the IDT. All fingers of the IDT are disposed in a respective grooves in the piezoelectric plate.
US11677352B2

An oscillator includes a package having a plurality of external terminals disposed on a mounting surface, a circuit element housed in the package, and a resonator which is housed in the package, and is electrically coupled to the circuit element, wherein the circuit element is electrically coupled to the package with a plurality of pads each of which is bonded to the package via a bump member, the circuit element has a rectangular shape in a plan view, and at least three of closest ones to four corners of the circuit element out of the bump members are bonded to the package at respective positions overlapping the plurality of external terminals in the plan view.
US11677346B2

Described is a method of controlling operation of a synchronous motor. The method comprises, during constant power/speed motor operation, determining a value of a stator voltage (vs2) for an orthogonal rotating reference frame of the motor. Comparing the value of the determined stator voltage (vs2) to a threshold voltage (vs2_max1), said threshold voltage (vs2_max1) having a value between that of a maximum stator voltage (vs2_max0) for a basic speed mode of operation of the motor and that of a maximum stator voltage (vs2_max2) of the motor closed loop controller. If the determined value of the stator voltage (vs2) is greater than or equal to the value of the threshold voltage (vs2_max1), then controlling operation of the motor in a flux weakening mode of operation until a value of a current component (id−Δid) in a d-axis reaches a maximum negative value (−idmax), or until the value of the stator voltage (vs2) is less than the value of the threshold voltage (vs2_max1).
US11677345B2

The present application provides a method and a system for controlling continuous high voltage ride-through and low voltage ride-through of a permanent magnet direct-driven wind turbine. The method includes: determining a transient time period during which the wind turbine is transitioned from a high voltage ride-through state to a low voltage ride-through state; controlling the wind turbine to provide, during the transient time period, a gradually increasing active current to the point of common coupling; and controlling the wind turbine to provide, during the transient time period, a reactive current to the point of common coupling according to an operation state of the wind turbine before the high voltage ride-through state.
US11677343B1

Systems and methods for sensorless motor control may include a back EMF (electromotive force) observer, an adaptive EMF filter, magnitude compensation, hybrid rotor position and speed determination, rotor position and speed blending, and angle compensation. In order to provide accurate and reliable rotor position and speed estimations for a motor over a wide and varied range of speeds, at low speeds, during speed reversals, and/or in the presence of external forces, loads, or torques, the sensorless motor control may utilize a hybrid rotor position and speed determination that leverages both angle-based and magnitude-based methods. Further, the outputs of the two methods may be blended based on a shaping function to generate a final estimated rotor position and speed. Then, the motor may be more accurately and reliably controlled based on the final estimated rotor position and speed.
US11677340B2

A motor drive device that includes: a power control unit that drives a motor, which configures a motive power source of a moving body, by supplying a drive signal modulated according to a carrier frequency; a memory; and a processor that is coupled to the memory, the processor being configured to: predict torque demand on the motor, and change the carrier frequency of the power control unit in a case in which an increase in the torque demand on the motor has been predicted.
US11677331B2

A system and method for an interleaved inverter including a set of module circuits and an inverter controller. The module circuits include multiple switches. The inverter controller is configured to assign a first phase shift value to each of the module circuits during a normal mode of operation and assign a second phase shift value to at least one of the module circuits during a failure mode of operation. The second phase shift value is greater than the first phase shift value.
US11677328B2

A converter and a power supply system are disclosed, and relate to the power electronics field, to resolve a problem that a sampling circuit in an OBC circuit is relatively complex. The converter includes an alternating current unit, a switching unit, a conversion unit, a direct current unit, and a controller. The alternating current unit includes a U line, a V line, a W line, and an N line. The N line is connected to a ground of the controller, so that the controller can be directly connected to the U line, the V line, and the W line, to collect a voltage of the U line, a voltage of the V line, and a voltage of the W line. This simplifies the sampling circuit.
US11677318B2

A circuit for controlling a switching power supply includes a disable signal generator generating a disable signal in response to an input clock signal, a timer circuit generating a timeout signal in response to the disable signal, a comparison signal generator generating a comparison signal in response to an output signal of the power supply, a first threshold signal generator generating a first threshold signal in response to the comparison signal, the first threshold signal having a value greater than that of the comparison signal, and a first comparator comparing the first threshold signal and a sense signal to de-assert the modulation signal when the sense signal is equal to or greater than the first threshold signal and the timeout signal has a first logic value.
US11677317B2

A control device includes a control IC that receives power supply from a power source unit activated by a first signal, and that is configured to control driving of the power source unit, a first signal acquisition unit configured to acquire the first signal, a detection unit configured to detect rising and falling of the first signal, a second signal output unit configured to output a second signal when the falling of the first signal is detected by the detection unit, and a lowering unit configured to lower, according to the second signal output from the second signal output unit, a voltage value of a terminal of the power source unit, to which the first signal is to be input, to a predetermined value or less for a predetermined period of time set in advance.
US11677314B2

A control circuit for a plurality of metal-oxide semiconductor field-effect transistors (MOSFETs) in a bridge circuit for rectifying an alternating current (AC) input to generate a direct-current (DC) output includes first and second high side controls and first and second low side controls for providing gate voltage signals to respective MOSFETs in the bridge circuit. Dead time controls are provided for establishing dead time intervals between activation of complementary MOSFETs in the bridge circuit. The low side controls provide gate voltage signals having sloped edges and the dead time controls include Zener diodes having reverse bias thresholds for determining the duration of the dead time intervals.
US11677312B2

A semiconductor device improved in deterioration detection accuracy by using an inductance of a bonding wire. The semiconductor device includes a first conductor pattern formed on the insulating substrate, the main current of the semiconductor die device flowing through the first conductor pattern; a second conductor pattern formed on the insulating substrate for sensing the potential of the surface electrode of the semiconductor die device; a first bonding wire for connecting the surface electrode and the first conductor pattern; and a second bonding wire. Further, there is a voltage sensing unit which is connected to the first conductor pattern and the second conductor pattern to sense a potential difference between the first conductor pattern and the second conductor pattern at the time of switching of the semiconductor die device; and a deterioration detection unit for detecting deterioration of the first bonding wire by using the sensed potential difference.
US11677285B2

A rotor hub comprises an inside cylindrical portion extending in an axial direction on an inner surface side of a rotor yoke and an outside cylindrical portion extending in the axial direction on an outer surface side of the rotor yoke, a motor gear wheel is integrally moulded on a portion of said outside cylindrical portion, and a rotor unit is assembled with a stator unit in such a way that a fixed shaft is inserted into a cylindrical hole in the rotor hub and a rotor magnet and pole teeth are facing.
US11677275B2

Concepts and technologies directed to wireless power transfer network management are disclosed herein. Embodiments of a system can include an optical beamforming transmitter, a processor, and a memory that stores computer-executable instructions that configure a processor to perform operations. The operations can include receiving a power charge message that requests wireless power transfer to charge a battery system of a wirelessly chargeable equipment. The operations can include detecting that the wirelessly chargeable equipment is within a power transfer range of the optical beamforming transmitter. The operations can include determining that the wirelessly chargeable equipment is not stationary. The operations can include tracking movement of the wirelessly chargeable equipment and activating the optical beamforming transmitter that provides wireless power transfer to the wirelessly chargeable equipment while the wirelessly chargeable equipment is within the power transfer range.
US11677273B2

A multi-mode wireless power transmitter includes a first drive circuit of a first type and a second drive circuit of a second type. The first drive circuit is configured to drive a first transmit coil at a first frequency. The second drive circuit is configured to drive a second transmit coil at a second frequency higher than the first frequency.
US11677258B2

A vehicle includes an auxiliary battery configured to power an electrical accessory, a traction battery configured to provide power to propel the vehicle, a winch including a motor and cable, and a controller configured to, responsive to a requested torque of the motor being less than a threshold, initiate transfer of power to the motor from the auxiliary battery, and initiate transfer of power to the motor from the traction battery otherwise.
US11677257B2

A vehicle-side charging circuit includes an AC-voltage interface, a rectifier connected thereto and at least one first and one second DC-to-DC converter. The DC-to-DC converters are electrically isolating, and each have at least one intermediate circuit capacitor and at least one switch unit. The charging circuit also includes an on-board electrical system connection. The rectifier is connected to the on-board electrical system connection by way of the DC-to-DC converters. The charging circuit has a switch device which connects the DC-to-DC converters so as to be switchable between one another. In a first switching state, the switching device connects the two intermediate circuit capacitors and the switching units of the DC-to-DC converters in parallel and, in a second switching state, connects the intermediate circuit capacitors and the switch units in series.
US11677249B2

A foldable watch charging adapter has a watch charging housing provided with an induction charge surface. The watch charging housing is coupled to a charge end of a charge arm. A joint rotatably couples a pivot end of the charge arm to a joint end of a connector arm; and an electrical connector is provided at a connector end of the connector arm. An angular interconnection orientation of the electrical connector may be adjusted by rotating the connector arm with respect to the charge arm about the joint. Further, a connection interface adapter may be included to increase the range of connection interfaces that may be utilized.
US11677239B2

A method is provided for controlling electrical load on a power grid from a load facility using demand response. The method includes accessing memory storing computer-readable program code for decision analysis of a specified time interval for a demand-response (DR) event. The method also includes executing the computer-readable program code, via a processor, to cause an apparatus to at least make a decision to participate in or opt out of the DR event. This includes the apparatus receiving values of variables that describe occupancy and usage of the load facility for one or more time intervals. The apparatus applies the values to an algorithm that maps the variables to a decision to participate in or opt out of the DR event for the specified time interval. And the apparatus automatically notifies an operator responsible for the DR event of the decision at least when the decision is to opt out.
US11677233B2

A power distribution system includes a plurality of bus plugs. Each of a respective bus plug of the plurality of bus plugs includes an electrical switch configured to selectively control a corresponding energization of the respective bus plug and an actuator operable to control a corresponding electrical switch. The system includes a remote application having commands defining the energization of at least one of the plurality of bus plugs. The system further includes a communication module configured to communicate the commands from the remote application to the at least one of the plurality of bus plugs. The commands cause the corresponding actuator to control the corresponding electrical switch. Methods of controlling energization of a bus plug with a remote application and communication module configured to operate an actuator are also provided.
US11677221B2

A bracket secured to adjacent cable baskets to form a cable routing pathway. The bracket includes a splice and a locking latch slidingly secured to the splice. The splice has a base with a top, a bottom, a first end, and a second end. The first end member extends from the first end of the base and a second end member extends from the second end of the base. The first end member and the second end member each include a vertical slot. The locking latch extends through the vertical slot of the first end member and the vertical slot of the second end member to secure the splice to the adjacent cable baskets.
US11677218B2

The present disclosure relates to the technical field of cable processing, and discloses a method for processing a reaction force cone of a cable main insulating layer. The method includes: two ends of a cable are clamped through a clamping device, and the cable is enabled to pass through a cutting device; a cutting depth of the cutting device in a radial direction and a cutting position of the cutting device in an axial direction are adjusted; the cutting device is started, and the cable is cut by the cutting device to form the reaction force cone.
US11677217B2

Motor control centers have units or buckets with an extendable/retractable power connection (stab) assembly and one or more operating lever interlocks that include a unit latch to latch to a cabinet and a power connection position interlock that blocks the handle of the units or buckets based on position of the power connection assembly, optionally also including a shutter cam that slides a shutter right and left.
US11677216B2

A light-emitting device comprising VCSELs formed in a die. The VCSEL distribution is characterized by an essentially linear decrease in VCSEL density over the die from a highest VCSEL density in a first die region to a lowest VCSEL density in another die region. The VCSELs share a common anode and a common cathode for collective switching of the plurality of VCSELs. A method of manufacturing such a VCSEL die is also described.
US11677212B2

The invention relates to a semiconductor laser diode (1) comprising: —a semiconductor layer sequence (2) having an active region (20) provided for generating radiation; —a radiation decoupling surface (10) which extends perpendicular to a main extension plane of the active region; —a main surface (11) which delimits the semiconductor layer sequence in the vertical direction; —a contact layer (3) which adjoins the main surface; and —a heat-dissipating layer (4), regions of which are arranged on a side of the contact layer facing away from the active region, wherein the contact layer is exposed in places for external electrical contact of the semiconductor laser diode. The invention also relates to a semiconductor component.
US11677198B2

A field terminal plug assembly including an RJ45 plug connected to a termination zone. The termination zone includes a wire cap, a rear sled, and an electrical board assembly with attached insulation displacement contacts (IDCs) electrically connected to the twisted wire-pairs of assembly cable. The wire cap is configured to terminate twisted wire-pairs of a communications cable to the IDCs when the wire cap is inserted into the rear sled. The IDCs contain at least a first and a second IDC, the first IDC having a first horizontal length and a first vertical length and the second IDC having a second horizontal length and a second vertical length. The first vertical length does not equal the second vertical length but the first vertical length plus the first horizontal length equals the second vertical length plus the second horizontal length.
US11677195B2

The present disclosure relates to a coaxial connector, and particularly, a coaxial connector including a fixing module which is connected to a first PCB, and a contact module which is coupled movably to the fixing module, and provided to be contactable to a second PCB facing the first panel, in which the contact module includes a contact body which is made of a conductive material, and has a hollow formed therein, a contact pin which is made of a conductive material, and disposed to penetrate the hollow of the contact body, and a contact insulator which is disposed in the hollow of the contact body to insulate the contact pin and the contact body by partitioning the contact pin and the contact body, and the contact module is configured so that the contact body, the contact pin, and the contact insulator are integrally formed to be assembled to the fixing module by a singular process, thereby providing the advantages which may reduce the cost of a product, and improve the quality of the product by improving a contact rate.
US11677190B2

A connector assembly includes a guide shielding cage, an internal biasing heat sink and two lateral heat dissipating members. The guide shielding cage includes a cage body and a partitioning bracket provided in the cage body, the cage body has a top wall and two side walls, the partitioning bracket has an upper wall and a lower wall which together define an interior receiving space, and the partitioning bracket and the cage body together define an upper receiving space and a lower receiving space, each side wall of the cage body is formed with a side window which is communicated with the interior receiving space, the lower wall of the partitioning bracket is formed with a lower window which allows the interior receiving space to be communicated with the lower receiving space. The internal biasing heat sink is provided in the partitioning bracket and has an internal heat dissipating member, the internal heat dissipating member enters into the lower receiving space via the lower window. The two lateral heat dissipating members are respectively positioned outside the two side walls of the cage body, the two lateral heat dissipating members and the internal heat dissipating member are connected with each other by means of connecting structures which respectively pass through the side windows, the two lateral heat dissipating members is capable of moving with the internal heat dissipating member along the up-down direction.
US11677187B2

A connector for sealably engaging contacts therein and permitting reliable disengagement thereof includes a first unit having one or more elongated shafts. Each elongated shaft includes at least one first contact. The connector further includes a second unit having a body with one or more channels therein. Each channel includes at least one second contact. Each channel is configured to receive at least a portion of one of the elongated shafts therein to permit electrical connection of the one or more first contacts to the respective one or more second contacts. The second unit further includes an axial slit extending radially outwardly from each channel toward an outer surface of the body of the second unit. Each slit of the second unit is a circumferentially discontinuous portion of the channel configured to prevent the second unit from forming a constrictive belt around the one or more elongated shafts therein.
US11677167B2

An electric wire with terminal includes an electric wire including a core wire and a cover covering the core wire, and a terminal to be attached to the electric wire. The terminal includes a placement portion onto which the electric wire is placed, a pair of core wire crimp pieces extending from the placement portion and configured to be crimped to the core wire, and a pair of cover crimp pieces extending from the placement portion and configured to be crimped to the cover. In a state where the pair of cover crimp pieces is crimped to the cover, the pair of cover crimp pieces includes a recessed portion positioned at an intermediate position in an electric wire extending direction in which the electric wire extends, and a pair of inclined portions continuous with both ends of the recessed portion and inclined radially outward.
US11677164B2

Some embodiments of the present disclosure are directed to a hybrid distribution unit that can distribute both power and data connections from a power and fiber cables (or from a hybrid cable containing both power and fiber) within a compact enclosure that helps reduce the overall footprint of the hybrid distribution unit mounted on a cellular tower. Other embodiments may be described or claimed.
US11677162B2

An electronic device is provided The electronic device includes a patch antenna element, at least one antenna including a first feeding unit electrically connected to the patch antenna element and a second feeding unit electrically connected to the patch antenna element so as to have a designated isolation for a signal that is input to the first feeding unit, a radio frequency integrated circuit (RFIC) which includes a first communication circuit including a first transmission circuit and a first reception circuit which are electrically connected to the first feeding unit, and a second communication circuit including a second transmission circuit and a second reception circuit which are electrically connected to the second feeding unit, and a processor.
US11677157B2

An antenna system includes a first substrate, a plurality of chips, a system board having an upper and lower surface, and a beam forming phased array that includes a plurality of radiating waveguide antenna cells for millimeter wave communication. Each radiating waveguide antenna cell includes a plurality of pins where a first pin is connected with a body of a corresponding radiating waveguide antenna cell and the body corresponds to ground for the pins. A first end of the radiating waveguide antenna cells is mounted on the first substrate, where the upper surface of the system board comprises a plurality of electrically conductive connection points to connect the first end of the plurality of radiating waveguide antenna cells to the ground.
US11677156B2

An antenna integrated in a device package is formed such that at least a portion of the antenna is elevated with respect to a substrate of the device package. The entire antenna and its functionality are positioned within a space extending vertically upwardly from a footprint of the substrate that contains circuitry of the device. The boundary of the space is defined by the perimeter of an over mold positioned on the substrate and encapsulating the circuitry.
US11677155B2

An antenna apparatus includes an antenna integrated with a filter. The antenna apparatus includes a plurality of resonators where at least some of the resonators are each enclosed in a metal cavity and at least one resonator is exposed to free space to form a radiator element. The antenna apparatus has a filter transfer function that is at least partially determined by dimensions of the radiator element and the position of the radiator element within the antenna apparatus.
US11677152B2

An antenna apparatus in a packaged electronic device includes: an antenna assembly with a conductive antenna, and an insulator; a conductive feed line extending on or in a substrate; a conductive layer with an aperture on or in the substrate between the conductive feed line and an exposed portion of the conductive antenna; and a support structure mounted to a portion of the substrate and to a portion of the antenna assembly to support the antenna assembly and to provide an air gap between the exposed portion of the conductive antenna and the aperture.
US11677150B2

An antenna includes a feed contact, a first antenna branch and a second antenna branch, wherein the first antenna branch and the second antenna branch are respectively electrically connected with the feed contact, forming electromagnetic coupling; the first antenna branch has a specified length for sending and receiving signals in a first frequency band; and the second antenna branch has a specified length for sending and receiving signals in a second frequency band. A terminal device including such an antenna can have improved appearance, improved effect of receiving communication signals in different frequency bands, reduced RF loss, and improved the utilization of the internal space.
US11677147B2

A system includes a cellular transceiver to communicate with a predetermined target; one or more antennas coupled to the 5G or 6G transceiver each electrically or mechanically steerable to the predetermined target; a processor to control a directionality of the one or more antennas in communication with the predetermined target; and an edge processing module coupled to the processor and the one or more antennas to provide low-latency computation for the predetermined target.
US11677145B1

Technologies directed to using selective true-time delay for energy efficient beam squint mitigation in phased array antennas in communication systems are described. One communication system includes a first register to store a first value indicative of a mode of operation of the communication system and a second register to store a value corresponding to a first time duration. The communication system includes antenna elements, digital beamforming (DBF) devices, phase shifters, and delay circuitry. In a first mode, the delay circuitry does not delay a first signal and, in a second mode, the delay circuitry delays a second signal.
US11677140B2

Examples disclosed herein describe an antenna architecture (e.g., a planar electronically steered antenna architecture) that enables operation at low elevation angles, down to zero degrees from the satellite. The proposed ‘3SA’ architecture may improve power consumption and array footprints. The proposed ‘3SA’ architecture can support aero terminal implementation on aircraft, enabling the use of GEO, MEO and LEO satellites even in regions having low elevation angles. The architecture may include a horizontal antenna array and vertical antenna array as well as a controller for switching between the antenna arrays.
US11677135B2

A method for forming packaged electronic device structure includes providing a conductive leadframe. The leadframe can include a die pad with a first major surface and a second major surface opposite to the first major surface, and a plurality of conductive leads. The method can include coupling an electronic device to the plurality of conductive leads. The method can include providing an antenna structure, which can include a conductive pillar structure and an elongated conductive beam structure. The method can include providing a package body encapsulating the electronic device, at least portions of each conductive lead, and at least portions of the die pad. In an example, the conductive pillar structure can extend from the first package body surface to the second package body surface, the elongated conductive beam structure can be disposed adjoining the first package body surface and is electrically connected to the conductive pillar structure, and at least a portion of the elongated conductive beam structure is exposed outside of the package body.
US11677134B2

Telemedicine systems and methods are described. In a telemedicine system operable to communicate with a remote operations center, communications can be transmitted/received using a transceiver having an antenna. The antenna can include first and second di-pole antenna elements, the first di-pole antenna element being vertically polarized and the second di-pole antenna element being horizontally polarized. A controller of the system can establish, using the transceiver, a telemedicine session with the operations center using a Transport Morphing Protocol (TMP), the TMP being an acknowledgement-based user datagram protocol. The controller can also mask one or more transient network degradations to increase resiliency of the telemedicine session. The telemedicine system can include a 2D and 3D carotid Doppler and transcranial Doppler and/or other diagnostic devices, and provides for real-time connectivity and communication between medical personnel in an emergency vehicle and a receiving hospital for immediate diagnosis and treatment to a patient in need.
US11677131B1

Described is a method for forming a planar transmission line low-pass filter and a resulting filter. The method comprises several acts, including using lithographic processes and a castable polymer with absorptive matrix as a spin-on dielectric to form the planar transmission line low-pass filter.
US11677128B2

A method includes receiving a radio frequency (RF) input signal using at least one non-reciprocal circulator. The method also includes generating an RF output signal using at least one of one or more reflective circuit elements. Each reflective circuit element is configured to receive an RF signal from the at least one non-reciprocal circulator and to provide a modified RF signal to the at least one non-reciprocal circulator. The RF output signal represents the RF input signal as modified by the at least one of the one or more reflective circuit elements.
US11677120B2

Energy storage devices, battery cells, and batteries of the present technology may include a first circuit board defining a plurality of apertures through the first circuit board. The batteries may include a battery stack overlying the first circuit board and electrically coupled with the first circuit board. The battery stack may include a plurality of battery cells. The battery stack may define a plurality of apertures axially aligned with a corresponding aperture through the first circuit board. The batteries may include a second circuit board that defines a plurality of apertures through the second circuit board. The batteries may include a plurality of fasteners, each fastener extending through a separate channel of the plurality of channels. The batteries may include a plurality of conductive extensions electrically coupling each battery cell of the battery stack with one or more fasteners of the plurality of fasteners.
US11677110B2

A heater control system for a battery pack and a method for the same in accordance with the present invention relate to a system and a method for the same in which according to temperature deviations generated during heating operations of heaters provided in each battery pack, between battery packs and cells included in the battery packs, each heater is individually controlled to allow the battery packs and the battery cells therein to be heated to a uniform temperature state.
US11677105B2

Provided is a rechargeable battery system comprising at least a battery cell and an external cooling means, wherein the battery cell comprises an anode, a cathode, an electrolyte disposed between the anode and the cathode, a protective housing that at least partially encloses the anode, the cathode and the electrolyte, and at least one heat-spreader element disposed partially or entirely inside the protective housing and wherein the external cooling means is in thermal contact with the heat spreader element configured to enable transporting internal heat of the battery through the heat spreader element to the external cooling means. Also provided is a method of operating a rechargeable battery system, the method comprising implementing a heat spreader element in one or each of a plurality of battery cells and bringing the heat spreader element in thermal contact with one or a plurality of external cooling means.
US11677103B2

A battery system for a head-mounted display is provided. A first arm member has one or more interior walls defining a first chamber, wherein one or more first batteries are positioned in the first chamber of the first arm member. A second arm member has one or more interior walls defining a second chamber, wherein one or more second batteries are positioned in the second chamber of the second arm member. A base member is coupled to the first arm member and the second arm member. The base member has a base member power connector positioned along an exterior surface. A first auxiliary battery removably couples to the exterior surface of the base member via a first fastener, the first auxiliary battery having a first side and a second side. A first auxiliary battery power connector is positioned on the first side and aligns with the base member power connector.
US11677091B2

The present invention relates to use of a quaternary ammonium salt-type anthraquinone-based active material, and a salt cavern organic aqueous redox flow battery. The quaternary ammonium salt-type anthraquinone-based active material is used as a negative active material in a salt cavern battery, and a quaternary ammonium salt group is introduced, which can improve the solubility of anthraquinone in a neutral sodium chloride solution, thereby increasing the energy density of the battery. Also, the material has a relatively good stability, without the need for charging and discharging under the protection of an inert gas environment.
US11677087B2

A rational fuel-cell power following strategy is made according to values such as vehicle fuel-cell power, battery power, and SOC (state of charge) of a lithium-ion battery; in the same time window, effects of different fuel-cell power growth rates on SOC of the lithium-ion battery are tested according to vehicle requirements; and at the same fuel-cell growth rate, effects of different time windows on SOC of the lithium-ion battery are tested according to vehicle requirements; a proper time window and a proper fuel-cell power change rate are found, so that the SOC value of the lithium-ion battery fluctuates within a certain range. The present invention can achieve a good operation mode of power distribution between the fuel cell and the lithium-ion battery, ensuring rational utilization of resources, thereby extending the application range of the lithium-ion battery to the maximum extent.
US11677083B2

Provided is a method of operating a fuel cell system equipped with a fuel cell stack, a liquid hydrogen storage unit configured to store liquid hydrogen, a boil-off gas recovery unit configured to recover boil-off gas generated from the liquid hydrogen storage unit, and a hydrogen concentration estimation unit configured to estimate the hydrogen concentration at a hydrogen electrode in the fuel cell stack in a standby state, the method including: in a case in which a hydrogen concentration at a hydrogen electrode in the fuel cell stack in a standby state has become less than a predetermined value, supplying boil-off gas recovered by the boil-off gas recovery unit to the hydrogen electrode in the fuel cell stack.
US11677071B2

A novel lithium battery cathode, a lithium ion battery using the same and processes and preparation thereof are disclosed. The battery cathode is formed by force spinning. Fiber spinning allows for the formation of core-shell materials using material chemistries that would be incompatible with prior spinning techniques. A fiber spinning apparatus for forming a coated fiber and a method of forming a coated fiber are also disclosed.
US11677068B2

An electrode active material for a nonaqueous secondary battery comprising: an alkali metal-transition metal composite oxide particles, a hole-doped graphene with an anion. The electrode active material for a nonaqueous secondary battery may be manufactured by a method which includes obtaining a hole-doped graphene by bringing a graphene raw material into contact with a two-coordinate boron cation, and bringing the hole-doped graphene into contact with an alkali metal-transition metal composite oxide particle.
US11677064B2

An electrode group includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a positive electrode lead electrically connected to the positive electrode. The positive electrode includes a positive electrode current collector and a positive electrode active material layer carried on each main surface of the positive electrode current collector. The positive electrode current collector has an exposed section that does not carry the positive electrode active material layer. The negative electrode includes a negative electrode current collector and a negative electrode active material layer carried on each main surface of the negative electrode current collector and has a first region and a second region. The mass of the negative electrode active material layer in the first region per unit area is smaller than the mass of the negative electrode active material layer in the second region per unit area.
US11677062B2

A method of manufacturing a light source device includes: disposing bumps containing a first metal on a first substrate which is thermally conductive; disposing a bonding member on the bumps, the bonding member containing Au—Sn alloy; disposing a light emitting element on the bumps and the bonding member; and heating the first substrate equipped with the bumps, the bonding member, and the light emitting element.
US11677060B2

Provided is a method for transferring and bonding devices. The method includes applying an adhesive layer to a carrier, arranging a plurality of devices, attaching the arranged devices to the carrier, applying a polymer film to a substrate, aligning the carrier to which the plurality of devices are attached with the substrate, bonding the plurality of devices to the substrate by radiating laser, and releasing the carrier from the substrate to which the plurality of devices are bonded.
US11677053B2

A method of manufacturing a light emitting element includes: providing a first light emitting part and a second light emitting part, the first light emitting part comprising a first base member and a first semiconductor layered body, the second light emitting part comprising a second base member and a second semiconductor layered body; bonding the first and second light emitting parts to each other such that the first base member and the second base member are disposed between the first semiconductor layered body and the second semiconductor layered body; disposing a light reflecting member to cover the bonded first and second light emitting parts; removing a portion of the light reflecting member to expose surfaces of the first and second base members; and disposing a wavelength conversion member on the exposed surface of the first base member and the exposed surface of the second base member.
US11677045B2

A light-emitting diode includes a semiconductor body and electrical connection points for contacting the semiconductor body, the semiconductor body including an active region including a quantum well that generates electromagnetic radiation, a first region and a second region that impede passage of charge carriers from the active region, wherein the semiconductor body is based on a nitride compound semiconductor material, the first region is directly adjacent to the active region on a p-side, the second region is arranged on a side of the first region facing away from the active region, the first region has an electronic band gap larger than the electronic band gap of the quantum well and less than or equal to an electronic band gap of the second region, the first region and the second region contain aluminum, and the active region emits electromagnetic radiation having a peak wavelength of less than 480 nm.
US11677044B2

A gallium nitride (GaN) based light emitting diode (LED), wherein light is extracted through a nitrogen face (N-face) of the LED and a surface of the N-face is roughened into one or more hexagonal shaped cones. The roughened surface reduces light reflections occurring repeatedly inside the LED, and thus extracts more light out of the LED. The surface of the N-face is roughened by an anisotropic etching, which may comprise a dry etching or a photo-enhanced chemical (PEC) etching.
US11677042B2

Disclosed herein are methods, systems, and apparatuses for an light emitting diode (LED) array apparatus. In some embodiments, the LED array apparatus may include a plurality of mesas etched from a layered epitaxial structure. The layered epitaxial structure may include a P-type doped semiconductor layer, a active layer, and an N-type doped semiconductor layer. The LED array apparatus may also include one or more regrowth semiconductor layers, including a first regrowth semiconductor layer, which may be grown epitaxially over etched facets of the plurality of mesas. In some cases, for each mesa, the first regrowth semiconductor layer may overlay etched facets of the P-type doped semiconductor layer, the active layer, and the N-type doped semiconductor layer, around an entire perimeter of the mesa.
US11677037B2

A method of forming a multijunction solar cell that includes an InGaAs buffer layer and an InGaAlAs grading interlayer disposed below, and adjacent to, the InGaAs buffer layer. The grading interlayer achieves a transition in lattice constant from one solar subcell to another adjacent solar subcell.
US11677034B2

A FPCB/FCCL replacing a tinned-copper welding strip as a photovoltaic module bus bar is a composite material including an insulating base material and a conductive layer, and the insulating base material is made from PI or PET, and the conductive layer is generally the copper foil. According to the present invention, when the flexible solar module adopts the FPCB/FCCL to replace the tinned-copper welding strip as the photovoltaic module bus bar, the product quality and product stability are greatly improved, and the FPCB/FCCL bus bar is also suitable for the double-glass solar module and the single-glass solar module. The copper foil of FPCB/FCCL may be integrated with circuits, or be the complete copper foil (without circuits), or the copper foil of FPCB/FCCL may simultaneously has the part with circuits and the part without circuits.
US11677032B2

A sensor includes a lead frame having a first surface, a second opposing surface, and a plurality of leads and a semiconductor die having a first surface attached to the first surface of the lead frame and a second, opposing surface. The sensor further includes a non-conductive mold material enclosing the die and at least a portion of the lead frame, a conductive coil secured to the non-conductive mold material, a mold material secured to the non-conductive mold material and enclosing the conductive coil, wherein the mold material has a central region and an element disposed in the central region of the mold material.
US11677031B2

The present application discloses an oxide semiconductor thin-film and a thin-film transistor consisted thereof. The oxide semiconductor thin-film is fabricated by doping a certain amount of rare-earth oxide (RO) as light stabilizer to metal oxide (MO) semiconductor. The thin-film transistor comprising a gate electrode, a channel layer consisted by the oxide semiconductor thin-film, a source and drain electrode; the thin-film transistor employing etch-stop structure, a back-channel etch structure or a top-gate self-alignment structure.
US11677028B2

A semiconductor device includes a fin structure disposed on a substrate, a shallow-trench isolation (STI) region on opposite sides of the fin structure, dielectric fin sidewall structures extending along sides of the fin structure and extending from a top of the STI region partially up the fin structure, and a source/drain region disposed within an upper portion of the fin structure. A bottom surface of the source/drain region contacts a top surface of the dielectric fin sidewall.
US11677027B2

A semiconductor device including a source/drain region having a V-shaped bottom surface and extending below gate spacers adjacent a gate stack and a method of forming the same are disclosed. In an embodiment, a method includes forming a gate stack over a fin; forming a gate spacer on a sidewall of the gate stack; etching the fin with a first anisotropic etch process to form a first recess adjacent the gate spacer; etching the fin with a second etch process using etchants different from the first etch process to remove an etching residue from the first recess; etching surfaces of the first recess with a third anisotropic etch process using etchants different from the first etch process to form a second recess extending below the gate spacer and having a V-shaped bottom surface; and epitaxially forming a source/drain region in the second recess.
US11677026B2

Embodiments of the invention are directed to a method of forming a semiconductor device. A non-limiting example of the method includes performing fabrication operations to form a field effect transistor (FET) device on a substrate. The fabrication operations include forming a channel region over the substrate, forming a bottom conductive layer of a wrap-around source or drain (S/D) contact over the substrate, and forming a S/D region over the bottom conductive layer and adjacent to the channel region. The S/D region is communicatively coupled to the channel region and the bottom conductive layer.
US11677025B2

An electronic device includes a ferroelectric layer arranged on a channel region and a gate electrode arranged on the ferroelectric layer. The ferroelectric layer includes a plurality of first oxide monolayers and a second oxide monolayers that is arranged between the substrate and the gate electrode and include a material different from a material of the first oxide monolayers. The first oxide monolayers include oxide monolayers that are alternately formed and include materials different from one another.
US11677016B1

A nano-vacuum tube (NVT) transistor comprising a source having a knife edge, a drain, and a channel formed between the source and the drain, the channel having a width to provide a pseudo-vacuum in a normal atmosphere. The NVT transistor utilizing a space charge plasma formed at the knife edge within the channel.
US11677011B2

A method of fabricating transistors with a vertical gate in trenches includes lithographing to form wide trenches; forming dielectric in the trenches and filling the trenches with flowable material; and lithography to form narrow trenches within the wide trenches thereby exposing well or substrate before epitaxially growing semiconductor strips atop substrate exposed by the narrow trenches; removing the flowable material; growing gate oxide on the semiconductor strip; forming gate conductor over the gate oxide and into gaps between the epitaxially-grown semiconductor strips and the dielectric; masking and etching the gate conductor; and implanting source and drain regions. The transistors formed have semiconductor strips extending from a source region to a drain region, the semiconductor strips within trenches, the trench walls insulated with a dielectric, a gate oxide formed on both vertical walls of the semiconductor strip; and gate material between the dielectric and gate oxide.
US11677009B2

A semiconductor device of an embodiment includes: a silicon carbide layer including a first silicon carbide region of n-type containing one metal element selected from a group consisting of nickel (Ni), palladium (Pd), platinum (Pt), and chromium (Cr) and a second silicon carbide region of p-type containing the metal element; and a metal layer electrically connected to the first silicon carbide region and the second silicon carbide region. Among the metal elements contained in the first silicon carbide region, a proportion of the metal element positioned at a carbon site is higher than a proportion of the metal element positioned at an interstitial position. Among the metal elements contained in the second silicon carbide region, a proportion of the metal element positioned at an interstitial position is higher than a proportion of the metal element positioned at a carbon site.
US11677008B2

The present disclosure provides a method for preparing a semiconductor device with a T-shaped buried gate electrode. The method includes forming an isolation structure in a semiconductor substrate to define an active region, and forming a doped region in the active region. The method also includes etching the semiconductor substrate to form a first trench and a second trench. The first trench has a first portion extending across the doped region and a second portion extending away from the first portion, and the second trench has a third portion extending across the doped region and a fourth portion extending away from the third portion. The method further includes forming a first gate electrode in the first trench and a second gate electrode in the second trench.
US11677005B2

A semiconductor device includes: a substrate; and an n-type layer including a nitride semiconductor formed on the surface of the substrate. In the n-type layer, the concentration of donor impurities (excluding O) is 1×1015 cm−3 or more and 1×1020 cm−3 or less, the concentration of C impurities is 1×1016 cm−3 or less, the concentration of O impurities is 1×1016 cm−3 or less, the concentration of Ca impurities is 1×1016 cm−3 or less, and the sum total of the concentrations of the C impurities, the O impurities, and the Ca impurities is lower than the concentration of the donor impurities. Such a semiconductor device can be fabricated by using a halogen-free vapor phase epitaxy (HF-VPE) device.
US11676995B2

A semiconductor device includes a semiconductor body, an electrode provided on a surface of the semiconductor body. The semiconductor body includes a first semiconductor layer and a second semiconductor layer provided between the first semiconductor layer and the second electrode. The second semiconductor layer includes first and second regions arranged along the surface of the semiconductor body. The first region has a surface contacting the electrode, and the second region includes second conductivity type impurities with a concentration lower than a concentration of the second conductivity type impurities at the surface of the first region. The second semiconductor layer has a first concentration of second conductivity type impurities at a first position in the second region, and a second concentration of second conductivity type impurities at a second position between the first position and the electrode, the second concentration being lower than the first concentration.
US11676994B2

The present invention provides a manufacturing method of a semiconductor device and a semiconductor device. A semiconductor device is provided, the semiconductor device includes a substrate, a stacked structure disposed on the substrate, the substrate comprises a cell array region, a peripheral circuit region and a middle region between the cell array region and the peripheral circuit region, the stacked structure comprises a first support layer, a first trench located in the middle region, a second support layer located on an upper surface of the stacked structure, wherein parts of the second support layer is disposed in the first trench, a portion of a sidewall of the first support layer directly contacts a portion of a sidewall of the second support layer, and a capacitor structure located in the cell array region.
US11676991B2

A semiconductor light-emitting device has an emitter matrix with an arrangement of emitter cells interspersed with non-emitter cells. The emitter cell has a semiconductor emitter, and a non-emitter cell does not have a semiconductor emitter. A number of bond pads for connection to a power supply and a plurality of wirebonds are present. Each wirebond extends from a bond pad to the semiconductor emitter of an emitter cell. An imaging arrangement includes a light source for illuminating a scene. The light source has a pair of such semiconductor light-emitting devices. A method of manufacturing such a semiconductor light-emitting device is also described.
US11676987B2

The present invention provides a semiconductor structure for forming a CMOS image sensor. The semiconductor structure includes at least a photodiode formed in the substrate for collecting photoelectrons, and the photodiode has a pinning layer, a first doped region and a second doped region in order from top to bottom in a height direction of the substrate. The semiconductor structure further includes a third doped region located in the substrate corresponding to a laterally extending region of the second doped region. The first doped region has an ion doping concentration greater than the ion doping concentration of the second doped region, the ion doping concentration of the second doped region is greater than the ion doping concentration of the third doped region, and the third doped region is in contact with the second doped region after diffusion. The present invention also provides a method of manufacturing the above-described semiconductor structure.
US11676983B2

A sensor includes a first chip, a dam structure and a cover. The first chip includes a substrate, a sensing area and a low-k material layer. The sensing area is located on the surface of the substrate. The low-k material layer is located in the substrate. The dam structure is located on the first chip. The dam structure covers the edge of the low-k material layer. The cover is located on the dam structure and covers the sensing area. A manufacturing method of a sensor is also provided.
US11676968B2

In method for forming a semiconductor device, a first opening is formed in a dielectric stack that has a cylinder shape with a first sidewall. A first conductive layer is deposited along the first sidewall of the first opening and a first insulating layer is deposited along an inner sidewall of the first conductive layer. The dielectric stack is then etched along an inner sidewall of the first insulating layer so as to form a second opening that extends into the dielectric stack with a second sidewall. A second conductive layer is further formed along the second sidewall of the second opening and a second insulating layer is formed along an inner sidewall of the second conductive layer. A bottom of the second conductive layer is positioned below a bottom of the first conductive layer to form a staggered configuration.
US11676960B2

A semiconductor device is provided that has a semiconductor substrate, a drift layer of a first conductivity type formed in the semiconductor substrate, a base region of a second conductivity type formed in the semiconductor substrate and above the drift layer, and an accumulation region of the first conductivity type provided between the drift layer and the base region and having an impurity concentration higher than an impurity concentration in the drift layer, wherein the accumulation region has a first accumulation region and a second accumulation region that is formed more shallowly than the first accumulation region is and on a side of a boundary with a region that is different from the accumulation region in a planar view.
US11676954B2

A semiconductor structure includes a memory die bonded to a logic die. The memory die includes an alternating stack of insulating layers and electrically conductive layers; memory openings extending through the alternating stack, memory opening fill structures located in the memory openings and comprising a respective vertical semiconductor channel and a respective memory film, a source layer contacting the vertical semiconductor channels, a backside isolation dielectric layer contacting a backside surface of the source layer, and a source power supply mesh including a planar portion of a source-side electrically conductive layer that is located on a backside of the backside isolation dielectric layer and electrically connected to the source layer by conductive material portions that extend through the backside isolation dielectric layer.
US11676949B2

A semiconductor package includes a lower substrate including a lower passivation layer, a lower pad, element pads and a supporting pad that are disposed on a lower surface of the lower substrate. The lower passivation layer partially covers the lower pad, the element pads and the supporting pad. A semiconductor chip is disposed on an upper surface of the lower substrate. An upper substrate is disposed on the semiconductor chip and is connected to the lower substrate. An encapsulator is disposed between the lower substrate and the upper substrate. An element is disposed on the lower surface of the lower substrate. The element is bonded to the element pads. A lower supporting member is disposed on the lower surface of the lower substrate. A supporting bonding member bonds the lower supporting member to the supporting pad.
US11676948B2

An electronic package is provided, including: an encapsulation layer embedded with a first electronic component and conductive pillars; a circuit structure disposed on one surface of the encapsulation layer; a second electronic component disposed on the circuit structure; an insulation layer formed on the other surface of the encapsulation layer; and a circuit portion disposed on the insulation layer. Since the first and second electronic components are disposed on two sides of the circuit structure, respectively, the electronic package has various functions and high performance. A method for fabricating the electronic package is also provided.
US11676947B2

The present disclosure provides a driving substrate, a method for preparing the same, and a flexible display device. The driving substrate includes: a base substrate; a stress buffer layer located on the base substrate; a wiring structure located on a surface of the stress buffer layer away from the base substrate, a thickness of a wiring of the wiring structure in contact with the stress buffer layer being greater than a threshold; a first insulating layer located on a surface of the wiring structure away from the base substrate; a plurality of electronic components on a surface of the first insulating layer away from the base substrate; the electronic component being connected to the wiring structure through a via hole penetrating the first insulating layer.
US11676936B2

A manufacturing method includes the step of forming a diced semiconductor wafer (10) including semiconductor chips (11) from a semiconductor wafer (W) typically on a dicing tape (T1). The diced semiconductor wafer (10) on the dicing tape (T1) is laminated with a sinter-bonding sheet (20). The semiconductor chips (11) each with a sinter-bonding material layer (21) derived from the sinter-bonding sheet (20) are picked up typically from the dicing tape (T1). The semiconductor chips (11) each with the sinter-bonding material layer are temporarily secured through the sinter-bonding material layer (21) to a substrate. Through a heating process, sintered layers are formed from the sinter-bonding material layers (21) lying between the temporarily secured semiconductor chips (11) and the substrate, to bond the semiconductor chips (11) to the substrate. The semiconductor device manufacturing method is suitable for efficiently supplying a sinter-bonding material to individual semiconductor chips while reducing loss of the sinter-bonding material.
US11676934B2

The present disclosure is directed to a high throughput clip bonding tool or system which is flexible and easily adapts to different clip bond pitches or sizes. The clip bonding system may be an integrated system with various modules, including a clip singulation module, a feeder module, a transfer module and a clip attach module within a shared footprint. For example, an incoming clip source may be fed to the clip singulation module for clip singulation before the singulated clips are transferred by the feeder and transfer modules to a clip presentation area for clip alignment before pickup. A pickup tool of the clip attach module is configured to facilitate pickup and attachment of clips onto the semiconductor packages to be clip bonded. For example, the pickup head is programmable to facilitate clip bonding process of different applications which may require clips and packages with different sizes.
US11676925B2

A semiconductor package includes a first semiconductor chip having a through-electrode and an upper connection pad on an upper surface of the first semiconductor chip that is connected to the through-electrode; a second semiconductor chip stacked on the first semiconductor chip, and having a lower connection pad on a lower surface of the second semiconductor chip; a non-conductive film between the first semiconductor chip and the second semiconductor chip, with the non-conductive film including voids having an average diameter of 1 μm to 100 μm, the voids having a volume fraction of 0.1 to 5 vol %; and a connection conductor that penetrates the non-conductive film and connects the upper connection pad and the lower connection pad.
US11676921B2

A driving chip and a display panel are provided. The display panel includes the driving chip, and a plurality of first bonding pads and a plurality of second bonding pads disposed at two opposite sides out of the driving chip. The driving chip includes a group of first input leads and a group of second input leads. There is an interval between the group of first input leads and the group of second input leads. The group of first input leads is disposed near the first bonding pads, and the group of second input leads is disposed near the second bonding pads.
US11676920B2

A method for fabricating a semiconductor device includes the steps of first forming an aluminum (Al) pad on a substrate, forming a passivation layer on the substrate and an opening exposing the Al pad, forming a cobalt (Co) layer in the opening and on the Al pad, bonding a wire onto the Co layer, and then performing a thermal treatment process to form a Co—Pd alloy on the Al pad.
US11676911B2

A semiconductor device has a substrate. A conductive layer is formed over the substrate and includes a ground plane. A first tab of the conductive layer extends from the ground plane and less than half-way across a saw street of the substrate. A shape of the first tab can include elliptical, triangular, parallelogram, or rectangular portions, or any combination thereof. An encapsulant is deposited over the substrate. The encapsulant and substrate are singulated through the saw street. An electromagnetic interference (EMI) shielding layer is formed over the encapsulant. The EMI shielding layer contacts the first tab of the conductive layer.
US11676904B2

A semiconductor package includes a first sub-semiconductor device, an interposer, and a second sub-semiconductor device stacked on each other, and a heat sink covering the second sub-semiconductor device. The first sub-semiconductor device includes a first substrate and a first semiconductor chip. The interposer includes a dielectric layer, a thermal conductive layer in contact with a bottom surface of the dielectric layer, a first thermal conductive pad in contact with a top surface of the dielectric layer, and thermal conductive vias penetrating the dielectric layer to connect the thermal conductive layer to the first thermal conductive pad. A bottom surface of the thermal conductive layer is adjacent to and connected to a top surface of the first semiconductor chip. The second sub-semiconductor device is disposed on the dielectric layer without overlapping the first thermal conductive pad. The heat sink further covers the first thermal conductive pad to be connected thereto.
US11676894B2

A semiconductor structure includes a resistance tunable fuse stack structure. A fabrication method for forming the same includes forming on a substrate layer a first fuse conductive layer, directly on, and contacting a top surface of, the substrate layer, followed by forming a first inter-layer dielectric (ILD) layer, directly on, and contacting a top surface of, the first fuse conductive layer. The method forms a second fuse conductive layer, directly on, and contacting a top surface of, the first ILD layer, followed by forming a second ILD layer, directly on, and contacting a top surface of, the second fuse conductive layer, the layers are interleaved in a stack forming a fuse stack structure. First and second fuse contacts are formed in the fuse stack structure vertically extending through the layers and contacting the first and second fuse conductive layers. Selection of various attributes of the fuse stack structure tunes a resistance of a fuse formed between the first and second fuse contacts in the fuse stack structure.
US11676893B2

A reliable semiconductor device and a method for preparing the reliable semiconductor device are provided. The semiconductor device includes at least one die comprising an integrated circuit region; a first recess region surrounding the integrated circuit region; and a second recess region surrounding the first recess region. A first columnar blocking structure is disposed in the first recess region and a second columnar blocking structure is disposed in the second recess region.
US11676892B2

Embodiments of the present invention are directed to methods and resulting structures for integrated circuits having metal-insulator-metal (MIM) capacitors that serve as both decoupling capacitors and crack stops. In a non-limiting embodiment, an interconnect is formed on a first portion of a substrate in an interior region of the integrated circuit. A second portion of the substrate is exposed in an edge region of the integrated circuit. A MIM capacitor is formed over the second portion of the substrate in the edge region. The MIM capacitor includes two or more plates and one or more dielectric layers. Each dielectric layer is positioned between an adjacent pair of the two or more plates and a portion of the two or more plates extends over the interconnect in the interior region. A plate of the two or more plates is electrically coupled to a last metal wiring level of the interconnect.
US11676891B2

A package substrate and package assembly including a package substrate including a substrate body including electrical routing features therein and a surface layer and a plurality of first and second contact points on the surface layer including a first pitch and a second pitch, respectively, wherein the plurality of first contact points and the plurality of second contact points are continuous posts to the respective ones of the electrical routing features. A method including forming first conductive vias in a package assembly, wherein the first conductive vias include substrate conductive vias to electrical routing features in a package substrate and bridge conductive vias to bridge surface routing features of a bridge substrate; forming a first surface layer and a second surface layer on the package substrate; and forming second conductive vias through each of the first surface layer and the second surface layer to the bridge conductive vias.
US11676889B2

Guard ring designs enabling in-line testing of silicon bridges for semiconductor packages, and the resulting silicon bridges and semiconductor packages, are described. In an example, a semiconductor structure includes a substrate having an insulating layer disposed thereon. A metallization structure is disposed on the insulating layer. The metallization structure incudes conductive routing disposed in a dielectric material stack. The semiconductor structure also includes a first metal guard ring disposed in the dielectric material stack and surrounding the conductive routing. The first metal guard ring includes a plurality of individual guard ring segments. The semiconductor structure also includes a second metal guard ring disposed in the dielectric material stack and surrounding the first metal guard ring. Electrical testing features are disposed in the dielectric material stack, between the first metal guard ring and the second metal guard ring.
US11676885B2

A method of manufacturing a semiconductor device is provided. The method includes forming a package leadframe assembly. The package leadframe includes a plurality of leads. An adhesive is placed on a portion of the plurality of leads. A die pad is placed onto the adhesive. A portion of the die pad overlaps the portion of the plurality of leads. A semiconductor die is attached to the die pad. A molding compound encapsulates the semiconductor die and a portion of the package leadframe assembly.
US11676877B2

A method for fabricating an electronic package is provided. A filling material is formed in an interval S, at which a plurality of electronic components disposed on a carrying structure are spaced apart from one another. The filling material acts as a spacer having a groove, and the groove acts as a stress buffering region. Therefore, the electronic components can be prevented from being broken due to stress concentration.
US11676867B2

Methods of manufacturing a semiconductor structure are provided. One of the methods includes the following operations. A substrate is received, and the substrate includes a first conductive region and a second conductive region. A first laser anneal is performed on the first conductive region to repair lattice damage. An amorphization is performed on the first conductive region and the second conductive region to enhance silicide formation to a desired phase transformation in the subsequent operations. A pre-silicide layer is formed on the substrate. A thermal anneal is performed to the substrate to form a silicide layer from the pre-silicide layer. A second laser anneal is performed on the first conductive region and the second conductive region.
US11676865B2

Semiconductor structures and fabrication methods thereof are provided. The method includes providing a substrate; forming a stacked material structure on the substrate; and forming trenches in the stacked material structure. Bottoms of the trenches are in the first material layer, the trenches are arranged along a first direction and form an initial stacked structure sequentially including an initial first layer, an initial second layer and an initial third layer. The method also includes etching the initial third layer to form transitional third layers arranged along a second direction perpendicular to the first direction; removing a portion of the initial first layer and a portion of the initial second layer of the initial stacked structure at two sides along the second direction to form a stacked structure including a first layer, a second layer and the transitional third layers; and forming a gate structure.
US11676859B2

Generally, the present disclosure provides example embodiments relating to conductive features, such as metal contacts, vias, lines, etc., and methods for forming those conductive features. In an embodiment, a barrier layer is formed along a sidewall. A portion of the barrier layer along the sidewall is etched back by a wet etching process. After etching back the portion of the barrier layer, an underlying dielectric welding layer is exposed. A conductive material is formed along the barrier layer.
US11676853B2

A method includes: forming a first conductive structure in a first dielectric layer; forming a conductive protection structure that is coupled to at least part of the first conductive structure; forming a second dielectric layer over the first dielectric layer; forming a via hole extending through at least part of the second dielectric layer to expose a portion of the conductive protection structure; cleaning the via hole; and refilling the via hole with a conductive material to form a via structure.
US11676851B2

According to an aspect of the present inventive concept there is provided a method for manufacturing a fluid sensor device comprising: bonding a silicon-on-insulator arrangement comprising a silicon wafer, a buried oxide, a silicon layer, and a first dielectric layer, to a CMOS arrangement comprising a metallization layer and a planarized dielectric layer, wherein the bonding is performed via the first dielectric layer and the planarized dielectric layer; forming a fin-FET arrangement in the silicon layer, wherein the fin-FET arrangement is configured to function as a fluid sensitive fin-FET arrangement; removing the buried oxide and the silicon wafer; forming a contact to the metallization layer and the fin-FET arrangement, wherein the contact comprises an interconnecting structure configured to interconnect the metallization layer and the fin-FET arrangement; forming a channel comprising an inlet and an outlet, wherein the channel is configured to allow a fluid comprising an analyte to contact the fin-FET arrangement.
US11676847B2

A substrate placing table according to an exemplary embodiment includes a base and an electrostatic chuck provided on the base. The electrostatic chuck includes a lamination layer portion, an intermediate layer, and a covering layer. The lamination layer portion is provided on the base. The intermediate layer is provided on the lamination layer portion. The covering layer is provided on the intermediate layer. The lamination layer portion includes a first layer, an electrode layer, and a second layer. The first layer is provided on the base. The electrode layer is provided on the first layer. The second layer is provided on the electrode layer. The intermediate layer is provided between the second layer and the covering layer and is in close contact with the second layer and the covering layer. The second layer is a resin layer. The covering layer is ceramics.
US11676843B2

A method and system for connecting electronic assemblies and/or for manufacturing workpieces, having a plurality of modules for connecting the electronic assemblies, includes at least one module configured as a loading station and/or unloading station. At least one further module is configured as a manufacturing station. A manufacturing workpiece carrier is provided for accommodating the electronic assemblies and/or the workpieces, and is movable in automated manner by way of a conveying unit from the loading station via the manufacturing station to the unloading station. The system is configured in particular for assembly line production. In a secondary aspect, a foil/film transfer unit is proposed which provides automated application of foils/films as a process cover in the loading station.
US11676838B2

A wafer cassette for receiving a wafer is provided. The wafer cassette includes a cassette housing, a first supporting rib and a second supporting rib. The first supporting rib is disposed in the cassette housing, wherein the first supporting rib includes a front supporting portion, a middle supporting portion and a rear supporting portion, the front supporting portion is connected to one end of the middle supporting portion, the rear supporting portion is connected to the other end of the middle supporting portion, and the front supporting portion has a front curved edge. The second supporting rib is disposed in the cassette housing. An edge portion of the wafer is supported by the first supporting rib and the second supporting rib, and the front supporting portion, the middle supporting portion and the rear supporting portion contact the wafer simultaneously.
US11676837B2

One object of this application is to provide an advanced substrate holder including a clamper. A substrate holder holds a substrate by interposing the substrate between frames. The substrate holder includes a front frame, a rear frame, and one or a plurality of clampers. Each of the clampers includes a hook portion including a hook base and a hook main body, and a plate including at least one claw. At least one of the clampers includes the plate including a first claw for a lock and a second claw for a semi-lock.
US11676828B2

A semiconductor manufacturing apparatus according to the present embodiment includes a tank, a heater, a bubble supplier, a sensor and a controller. The tank stores a chemical solution for processing a substrate. The heater heats the chemical solution. The bubble supplier supplies bubbles to the chemical solution in the tank. The sensor detects at least one of a concentration of the chemical solution, a water concentration of the chemical solution, specific gravity of the chemical solution and a vapor concentration of a gas discharged from the tank. The controller controls the supply of bubbles by the bubble supplier based on a detection result of the sensor.
US11676824B2

A chemical mechanical polishing (CMP) apparatus includes a polishing pad on a polishing platen, a polishing head on the polishing pad, the polishing head having a membrane to hold a wafer on the polishing pad, and a polishing slurry feeding line to feed a polishing slurry, and a retainer ring around the membrane and in contact with the polishing pad to prevent detachment of the wafer, the retainer ring including a polishing slurry feeding inlet connected to the polishing slurry feeding line to feed the polishing slurry onto the polishing pad.
US11676822B2

A method for fabrication of a semiconductor structure according to some embodiments of the present disclosure comprises following steps. A first mandrel is formed over a target layer over a substrate, wherein the first mandrel comprises a mandrel island connecting a first mandrel strip and a second mandrel strip. A first spacer is formed along first and second sidewalls of the mandrel island, the first mandrel strip, and the second mandrel strip. The first mandrel is then removed, and the target layer is patterned with the first spacer remains over the target layer. The first mandrel strip and the second mandrel strip are misaligned from one another.
US11676813B2

Exemplary deposition methods may include delivering a silicon-containing precursor and a boron-containing precursor to a processing region of a semiconductor processing chamber. The methods may include delivering a dopant-containing precursor with the silicon-containing precursor and the boron-containing precursor. The dopant-containing precursor may include one or more of carbon, nitrogen, oxygen, or sulfur. The methods may include forming a plasma of all precursors within the processing region of the semiconductor processing chamber. The methods may include depositing a silicon-and-boron material on a substrate disposed within the processing region of the semiconductor processing chamber. The silicon-and-boron material may include greater than or about 1 at. % of a dopant from the dopant-containing precursor.
US11676812B2

A method for fabricating a layer structure in a trench includes: simultaneously forming a dielectric film containing a Si—N bond on an upper surface, and a bottom surface and sidewalls of the trench, wherein a top/bottom portion of the film formed on the upper surface and the bottom surface and a sidewall portion of the film formed on the sidewalls are given different chemical resistance properties by bombardment of a plasma excited by applying voltage between two electrodes between which the substrate is place in parallel to the two electrodes; and substantially removing the sidewall portion of the film by wet etching which removes the sidewall portion of the film more predominantly than the top/bottom portion according to the different chemical resistance properties.
US11676803B2

Disclosed are a liner assembly for vacuum treatment apparatuses and a vacuum treatment apparatus, wherein the liner assembly for vacuum treatment apparatuses comprises: an annular liner including a sidewall protection ring and a support ring which are interconnected, the outer diameter of the support ring being greater than that of the sidewall protection ring, the annular liner enclosing a treating space; and a gas channel provided in the support ring, the gas channel communicating with the treating space. The liner assembly for vacuum treatment apparatuses offer an improved performance.
US11676802B2

Embodiments disclosed herein include a substrate support having a sensor assembly, and processing chamber having the same. In one embodiment, a substrate support has a puck. The puck has a workpiece support surface and a gas hole exiting the workpiece support surface. A sensor assembly is disposed in the gas hole and configured to detect a metric indicative of a deflection of a workpiece disposed on the workpiece support surface, wherein the sensor assembly is configured to provide the benefit of allowing gas to flow past the sensor assembly when positioned in the gas hole.
US11676798B2

In one embodiment, the disclosed apparatus is a heat-pipe cooling system that includes a conical structure having an upper portion that is truncated. The conical structure is configured to be formed above a dielectric window with the conical structure being configured to condense vapor from a heat-transfer fluid placed or formed within a volume formed between the dielectric window and the conical structure. At least one cooling coil is formed on an exterior portion of the conical structure. Other apparatuses and systems are disclosed.
US11676792B2

Disclosed herein is an apparatus comprising: a source of charged particles configured to emit a beam of charged particles along a primary beam axis of the apparatus; a condenser lens configured to cause the beam to concentrate around the primary beam axis; an aperture; a first multi-pole lens; a second multi-pole lens; wherein the first multi-pole lens is downstream with respect to the condenser lens and upstream with respect to the second multi-pole lens; wherein the second multi-pole lens is downstream with respect to the first multi-pole lens and upstream with respect to the aperture.
US11676789B2

Provided is a semiconductor device capable of detecting an abnormal state in which two fuses are both short-circuited or cut. The semiconductor device includes: a trimming circuit having a first fuse and a second fuse connected in series; a current source circuit configured to supply current to the trimming circuit; and a determination circuit configured to determine whether a connection state or disconnect state of the first fuse and the second fuse are abnormal or not based upon signals derived from an output signal of the trimming circuit.
US11676786B2

A device includes an armature, a coil, and a circuit. The armature is configured to move between a close position that electrically couples the armature to a contact and an open position that is not electrically coupled to the contact. The coil is configured to release a voltage configured to de-magnetize the coil, thereby causing the armature to move from the close position to the open position. The circuit is configured to provide reverse driving current to the coil during a period of time when the armature moves from the close position to the open position.
US11676782B2

A dome-actuator structure for use in a dome switch is disclosed. The dome-actuator structure comprises a lower substantially horizontal lower dome, an upper actuator portion attached to the lower dome and that is positioned vertically over the lower dome such that depressing of the actuator portion operates to depress the lower dome, and a lateral arm that couples the actuator portion to the lower dome. The lateral arm and the lower dome are formed from a common piece of material. The actuator portion comprises an actuation block, made of plastic or synthetic material or made of natural or synthetic elastomer, fixed to the lateral arm.
US11676771B2

A method for manufacturing a perovskite solar cell, includes disposing an electron transport layer on a transparent conductive substrate, disposing an additive-doped perovskite light absorption layer on the electron transport layer, disposing a hole transport layer on the additive-doped perovskite light absorption layer, and disposing an electrode on the hole transport layer. The disposing of the additive-doped perovskite light absorption layer includes adding an additive having hydrophobicity to a perovskite precursor solution, and applying the additive-added perovskite precursor solution onto the electron transport layer to form the additive-doped perovskite light absorption layer.
US11676767B2

Disclosed herein a thin film capacitor that includes a lower electrode layer, an upper electrode layer, and a dielectric layer disposed between the lower electrode layer and the upper electrode layer. The dielectric layer has a through hole. An inner wall surface of the through hole has a first tapered surface and a second tapered surface surrounded by the first tapered surface. The first and second tapered surfaces are not covered with the upper electrode layer and have respective first and second taper angles with respect to a surface of the lower electrode layer. The second taper angle is smaller than the first taper angle.
US11676761B2

An inductor component comprising a spiral wiring wound on a plane; a first magnetic layer and a second magnetic layer located at positions sandwiching the spiral wiring from both sides in a normal direction relative to the plane on which the spiral wiring is wound; a vertical wiring extending from the spiral wiring in the normal direction to pass through the first magnetic layer; and an external terminal disposed on a surface of the first magnetic layer to connect an end surface of the vertical wiring. The first magnetic layer has magnetic permeability lower than that of the second magnetic layer.
US11676760B2

A method for producing a coil for electric apparatus of the present invention is the method for producing a coil for electric apparatus for cutting spirally a block-shaped workpiece formed with a cylindrical portion corresponding to the coil in a circumferential direction of the cylindrical portion, the spiral coil is formed by turning a cutting means while moving it relatively to the workpiece from a part corresponding to one end of the coil to a part corresponding the other end of the coil along a machining line spirally set in the circumferential direction of the cylindrical portion. According to the invention, since the coil is formed by cutting the continuous cutting machining plane without generating a step in design from the block-shaped workpiece formed with a cylindrical portion corresponding to the coil using a wire-tool etc., it is possible to constitute a high-quality coil.
US11676754B2

A coil component includes a core including a winding core portion, a first flange portion, and a second flange portion, and a plate member that is mounted on the first flange portion and the second flange portion. A distance in a height direction between the plate member and the first flange portion, or a distance in the height direction between the plate member and the second flange portion, or both vary in a length direction, or in a width direction, or both.
US11676744B2

A thermistor element includes: a thermistor film; a pair of first electrodes in contact with one surface of the thermistor film; an insulation film opposite to a contact side of the pair of first electrodes, the contact side on which the pair of first electrodes is in contact with the thermistor film; and at least one opening portion located in a region which overlaps each of the first electrodes when viewed in a plan view and passing through the insulation film. Each first electrode has a first portion located where each of the first electrodes and the opening portion overlap when viewed in a plan view and a second portion outside of where each of the first electrodes and the opening portion overlap when viewed in a plan view and is over the first portion and second portion to be in contact with the one surface of the thermistor film.
US11676737B2

The invention relates to an encapsulation composition for the storage or the confinement of waste which is toxic to health and/or the environment, comprising a resin composition containing at least one epoxy resin, and a hardening composition containing at least one polyamidoamine and at least one aromatic polyamine, said encapsulation composition having an aromaticity rate which is equal to, or higher than, 35%. The invention also relates to the use of said composition for encapsulating said waste.
US11676726B2

An apparatus and method for generating a treatment plan for salutogenesis, the apparatus comprising a at least a processor and a memory communicatively connected to the processor, the memory containing instructions configuring the at least a processor to receive physiological data associated with a user and comprising a plurality of biomarkers, wherein the plurality of biomarkers comprise at least a glycocalyx degradation biomarker, determine a concentration for each at least a glycocalyx degradation biomarker of the plurality of biomarkers, classify the at least a glycocalyx degradation biomarker to a disease condition and a treatment label as a function of the concentration, and generate a treatment plan as a function of the disease condition and the treatment label.
US11676725B1

In some examples, unstructured data is evaluated using a natural language processing model to output a set of subjective indicators. These subjective indicators are scored using a predictive model to determine whether a dependent user has or is likely to develop a particular condition such as a cellular abnormality.
US11676712B2

The present invention relates to a method for calculating or approximating a value representing the relative blood volume (RBV) at a certain point of time, or a value representing the refilling volume of a patient that may be observed or found during or due to a blood treatment of the patient, the method involving considering one or more calculated or measured value(s) reflecting an overhydration level of the patient or an approximation thereof. It relates further to an apparatus and a device for carrying out the present invention, a blood treatment device, digital storage means, a computer program product, and a computer program.
US11676700B2

A system for recording, storing and processing diagnostic information, including: a computer implementing a computer-readable media including digital data and ground truth; a registry constructed and arranged to store and associate transactions or accesses on the data; and a machine learning system that considers each learning step modification a microtransaction for the data used in that step and which is recorded in the transaction registry. Other embodiments of this aspect include corresponding computer systems, apparatus, and computer programs recorded on one or more computer storage devices, each configured to perform the actions of the methods.
US11676698B2

Athletic performance sensing and/or tracking systems include components for measuring or sensing athletic performance data and/or for storing and/or displaying desired information associated with the athletic performance to the user (or others). Such systems can allow users a wide variety of options in creating workouts, selecting and presenting media content during the athletic performance, etc., e.g., to help keep users entertained and motivated. In some instances, user feedback may be used, optionally in combination with objective data relating to a workout, to control features of the workout routine, to control the music or other media content selected and/or presented, and/or to control features of future workout routines and/or the presented media content.
US11676696B2

Athletic performance sensing and/or tracking systems include components for measuring or sensing athletic performance data and/or for storing and/or displaying desired information associated with the athletic performance to the user (or others). Such systems can allow users a wide variety of options in creating workouts, selecting and presenting media content during the athletic performance, etc., e.g., to help keep users entertained and motivated. In some instances, user feedback may be used, optionally in combination with objective data relating to a workout, to control features of the workout routine, to control the music or other media content selected and/or presented, and/or to control features of future workout routines and/or the presented media content.
US11676680B2

A method for dynamically handling the failure of the static random-access memory (SRAM) dynamic failure handling system using a cyclic redundancy check (CRC) includes obtaining a write data; determining a write address; storing the write data at the write address of a frame memory which is composed of the SRAM and includes a real address area and a spare address area which are distinguished from each other; storing, in response to the write address, a write cyclic redundancy check (CRC) generated by performing a CRC calculation on the write data; determining a read address; reading a read data from the read address of the frame memory; determining whether, based on the A CRC remainder W_CRC corresponding to the read address and the read data, a CRC error occurs, and generating an error flag when the CRC error occurs; determining a fault address based on the error flag; and mapping the fault address to one of non-fault spare addresses of the spare address area when the fault address is an address of the real address area.
US11676671B1

An amplification-based read disturb information determination system includes a storage device coupled to a global read temperature identification system. The storage device amplifies data errors in a first row in its storage subsystem by shifting a first value voltage reference level associated with the first row to provide a second value voltage reference level, reads data stored in bits provided in the first row and error correction information associated with the data, and uses the error correction information to identify a number of the bits that store portions of the data with errors. For the first row and based on the number of bits that store portions of the data with errors, the storage device determines read disturb information and uses it to generate a read temperature for a second row in its storage subsystem that it provides to the global read temperature identification system.
US11676670B2

Methods of peak power management (PPM) for a storage system having multiple memory dies are disclosed. Each memory die includes a first PPM circuit and a second PPM circuit. First PPM circuits of the multiple memory dies are electrically connected to form a first PPM group. Similarly, second PPM circuits are electrically connected to form a second PPM group. Peak power operations can be managed by switching on a first pull-down driver of the first PPM circuit on a selected memory die when a first PPM enablement signal of the first PPM group is zero; waiting for a first delay period; switching on a second pull-down driver of the second PPM circuit on the selected memory die when a second PPM enablement signal of the second PPM group is zero. The first and second PPM enablement signals depend on the current flowing through each pull-down driver in the first and second PPM groups.
US11676669B2

An integrated circuit includes a memory and peripheral circuits with a temperature sensor used to automatically adjust operating voltages. The temperature sensor includes a first circuit to generate a temperature-dependent voltage (TDV) that is dependent on an operating temperature of the integrated circuit, and a second circuit to generate a plurality of temperature reference voltages, based on or more codes. One or more comparator circuits compare individual ones of the plurality of reference voltages with the TDV, to generate one or more comparison signals that are indicative of the operating temperature of the integrated circuit.
US11676667B2

Provided herein may be a memory device having a page buffer. The memory device may include a memory cell configured to store data, and a page buffer coupled to the memory cell through a bit line and configured to store data to be used in a program operation and to precharge the bit line to a first precharge voltage or a second precharge voltage lower than the first precharge voltage depending on the data during a program verify operation performed in the program operation.
US11676663B2

A memory system includes a memory cell array and a controller coupled to the memory cell array. The controller is configured to control applying a first program voltage to a word line to program memory cells in the memory cell array, the memory cells being coupled to the word line, and in response to receiving a suspend command, control applying a positive bias discharge voltage to the word line when the first program voltage ramps down.
US11676662B2

A crossbar array apparatus suppressing deterioration of write precision due to a sneak current is provided. A synapse array apparatus includes a crossbar array configured by connecting resistance-variable type memory elements, a row selecting/driving circuit, a column selecting/driving circuit, and a writing unit performing a write operation to a selected resistance-variable type memory element. The writing unit measures the sneak current generated when applying a write voltage to a selected row line before applying the write voltage, and then the writing unit performs the write operation to the selected resistance-variable type memory element by applying a write voltage having a sum of the measured sneak current and a current generated for performing the write operation.
US11676659B2

A method for operating a memory device includes initiating an access operation to a corresponding row of an array of bit cells of the memory device. Responsive to an expansion mode signal having a first state, the method further includes dynamically operating each column of a plurality of columns of the array to access each bit cell of a corresponding row within the plurality of columns during the access operation. Alternatively, responsive to the expansion mode state signal having a second state different than the first state, the method includes dynamically operating each column of a first subset of columns of the plurality of columns to access each bit cell of a corresponding row within the first subset of columns during the access operation, and maintaining each column of a second subset of columns of the plurality of columns in a static state during the access operation.
US11676643B2

The present technology relates to an electronic device. More specifically, the present technology relates to a memory device, a storage device, and a method of operating a memory controller. According to an embodiment, a memory device that outputs read data in response to a read enable signal provided from a memory controller includes a plurality of memory cells configured to store data, a plurality of page buffers configured to sense the data stored in the plurality of memory cells through a plurality of bit lines, and a data output controller configured to select a target page buffer to output data from among the plurality of page buffers according to a page buffer address control signal provided from the memory controller and control the selected target page buffer to output data stored in the selected target page buffer according to the read enable signal, while the read enable signal is input.
US11676642B2

A memory, comprising: a plurality of storage groups, first signal lines and second signal lines. The plurality of storage groups is arranged along a first direction, each one of the storage groups includes multiple banks, which are arranged along a second direction, and the first direction is perpendicular to the second direction; the first signal lines extend along the first direction, each first signal line is arranged correspondingly to more than one of the multiple banks, and configured to transmit storage data of the more than one of the multiple banks; and the second signal lines extend along the first direction, each one of the second signal lines is arranged correspondingly to a respective bank, and configured to transmit the storage data of the respective bank; wherein the first signal lines exchange the storage data with the second signal lines through respective data exchange circuits.
US11676630B1

The present disclosure is generally related to a servo track writer (STW) head for writing a rotated servo pattern. The STW head comprises a first writer stripe having a first length tilted at a first angle and a second writer stripe having a second length tilted at a second angle. The STW head may be tilted at a non-perpendicular angle relative to the edge of a tape configured to pass under the STW head.
US11676624B2

This invention is a gunshot detection device that provides very reliable inside and outside real-time situational awareness of gunshot events, while reducing Gunshot Detection False Positives and Negatives.
US11676621B2

A hearing device includes: an input module for provision of a first input signal; a processor configured to provide an electrical output signal based on the first input signal; a receiver configured to provide an audio output signal; and a controller comprising a speech intelligibility estimator configured to determine a speech intelligibility indicator indicative of speech intelligibility based on the first input signal, wherein the controller is configured to control the processor based on the speech intelligibility indicator; wherein the speech intelligibility estimator comprises a decomposition module configured to decompose the first input signal into a first representation of the first input signal in a frequency domain, wherein the first representation comprises one or more elements representative of the first input signal; and wherein the decomposition module comprises one or more characterization blocks for characterizing the one or more elements of the first representation in the frequency domain.
US11676616B2

A method for decoding an encoded audio bitstream is disclosed. The method includes receiving the encoded audio bitstream and decoding the audio data to generate a decoded lowband audio signal. The method further includes extracting high frequency reconstruction metadata and filtering the decoded lowband audio signal with an analysis filterbank to generate a filtered lowband audio signal. The method also includes extracting a flag indicating whether either spectral translation or harmonic transposition is to be performed on the audio data and regenerating a highband portion of the audio signal using the filtered lowband audio signal and the high frequency reconstruction metadata in accordance with the flag.
US11676614B2

Disclosed are a method and an apparatus for high frequency decoding for bandwidth extension. The method for high frequency decoding for bandwidth extension comprises the steps of: decoding an excitation class; transforming a decoded low frequency spectrum on the basis of the excitation class; and generating a high frequency excitation spectrum on the basis of the transformed low frequency spectrum. The method and apparatus for high frequency decoding for bandwidth extension according to an embodiment can transform a restored low frequency spectrum and generate a high frequency excitation spectrum, thereby improving the restored sound quality without an excessive increase in complexity.
US11676613B2

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for coding speech using neural networks. One of the methods includes obtaining a bitstream of parametric coder parameters characterizing spoken speech; generating, from the parametric coder parameters, a conditioning sequence; generating a reconstruction of the spoken speech that includes a respective speech sample at each of a plurality of decoder time steps, comprising, at each decoder time step: processing a current reconstruction sequence using an auto-regressive generative neural network, wherein the auto-regressive generative neural network is configured to process the current reconstruction to compute a score distribution over possible speech sample values, and wherein the processing comprises conditioning the auto-regressive generative neural network on at least a portion of the conditioning sequence; and sampling a speech sample from the possible speech sample values.
US11676611B2

An audio encoder has a first information sink oriented encoding branch such as a spectral domain encoding branch, a second information source or SNR oriented encoding branch such as an LPC-domain encoding branch, and a switch for switching between the first and second encoding branches, the second encoding branch having a converter into a specific domain different from the spectral domain such as an LPC analysis stage generating an excitation signal, and the second encoding branch having a specific domain coding branch such as LPC domain processing branch, and a specific spectral domain coding branch such as LPC spectral domain processing branch, and an additional switch for switching between the specific domain coding branch and the specific spectral domain coding branch. An audio decoder has a first domain decoder, a second domain decoder, and a third domain decoder as well as two cascaded switches for switching between the decoders.
US11676597B2

Techniques for altering default language, in system outputs, with language included in system inputs are described. A system may determine a word(s) in user inputs, associated with a particular user identifier, correspond to but are not identical to a word(s) in system outputs. The system may store an association between the user identifier, the word(s) in the user inputs, and the word(s) in the system outputs. Thereafter, when the system is generates a response to a user input, the system may replace the word(s), traditionally in the system outputs, with the word(s) that was present in previous user inputs. Such processing may further be tailored to a natural language intent.
US11676592B2

A natural-language voice chatbot engages a consumer in a voice dialogue. The chatbot is customized for engaging the specific consumer based on features and characteristics of that specific consumer's speech and a lexicon associated with terms, words, and commands for item ordering. The consumer can perform voice queries for specific items and/or specific establishments for placing a pre-staged order with the chatbot. Once the consumer selects options with a specific establishment, a pre-staged order is provided to the corresponding establishment on behalf of the user. Location data for a consumer-operated device is monitored and when it is determined that the consumer will arrive at the establishment within a time period required by the establishment to prepare the pre-staged order, a message is sent to the establishment to begin preparing the pre-staged order.
US11676591B1

In some examples, a method is disclosed. The method includes detecting, by a smart device, an audible utterance of a trigger word. The method also includes, responsive to the detection of the audible utterance of the trigger word, recording audio via the smart device. The method also includes processing, via the smart device, the recorded audio to determine whether the recorded audio contains a command for the smart device or a different smart device to perform an action. The method also includes, responsive to determining that the recorded audio includes a command for the smart device or a different smart device to perform the action, determining whether the command is serviceable by the smart device without involvement of the different smart device. The method also includes, responsive to determining whether the command is serviceable by the smart device without involvement of the different smart device, taking action regarding the command.
US11676576B2

Systems and methods are provided for acquiring training data and building an organizational-based language model based on the training data. In organizational data is generated via one or more applications associated with an organization, the collected organizational data is aggregated and filtered into training data that is used for training an organizational-based language model for speech processing based on the training data.
US11676574B2

A method, computer system, and a computer program product for task monitoring is provided. The present invention may include training an AI voice response system based on task performance data, wherein the task performance data originates from at least one monitoring device. The present invention may include receiving a request for instructions to complete a task from a user. The present invention may include monitoring a performance of the task by the user, wherein the performance of the task by the user is monitored utilizing at least one monitoring device. The present invention may include determining differences between the performance of the task by the user and a task sequence.
US11676561B1

A plectrum for use with a stringed musical instrument is provided. The plectrum includes a rigid outer shell and an inlay portion, partially inserted within, and secured to, the outer shell. A portion of the inlay portion extends beyond the outer shell. The outer shell includes a first material configured to produce first tonal properties in a string of a stringed musical instrument when placed in contact with the string, and the inlay portion includes a second material configured to produce second tonal properties in the string when placed in contact with the string. The first tonal properties are different from the second tonal properties.
US11676560B2

Disclosed is an improved string saddle or yoke that can have a string bent thereover without causing a separation of the string's windings.
US11676559B2

A soundboard for a musical instrument is disclosed the soundboard having at least one layer of material. In some embodiments the material comprising carbon fiber, fibrous laminate material, resin or a plastic matrix and combinations thereof. At least one bracing structure is engaged to the at least one layer of material. The at least one bracing structure comprising at least one layer of honeycomb or shaped core and at least one sheet of material bonded to the honeycomb or shaped core.
US11676552B2

A display panel and an electronic device are disclosed. The display panel includes a display area and a functional area. The functional area includes a first switch transistor, a second switch transistor, a sensing transistor, and a sensing capacitor. Specifically, an upper plate of the sensing capacitor is a transparent plate. The functional area can also serve a displaying function while performing color temperature sensing, gas sensing, or laser sensing, which increases an aperture ratio and transmittance of the display panel, so that an overall visual effect of the display panel is improved.
US11676549B2

The embodiments of the present application disclose a method of controlling display of a display device, an apparatus thereof and a display apparatus. The display device includes a backlight unit and a display panel, wherein the backlight unit includes a plurality of backlight partitions, each of which is independently driven, and the display panel includes a plurality of display partitions in one-to-one correspondence with the backlight partitions. The method comprises: causing the display panel to display a test image, wherein each pixel of the test image has a same gray value; acquiring a luminance of each display partition of the display panel; determining a compensation coefficient according to the luminance of each display partition; adjusting backlight data of the backlight partition according to the compensation coefficient to obtain adjusted backlight data of each backlight partition; and providing the adjusted backlight data to the backlight unit for display by the display panel.
US11676535B2

A pixel of a display device includes a light-emitting diode and a pixel circuit that provides a current corresponding to a data signal to the light-emitting diode in response to a plurality of scan signals and a light emission control signal. The light emission control signal includes a first section and a second section, the second section includes a light-emission-on section and a light-emission-off section, the light emission control signal has an active level in the light-emission-on section and has an inactive level in each of the first section and the light-emission-off section, and the light-emission-on section and the light-emission-off section of the light emission control signal may vary depending on a light emission ratio of a dimming mode.
US11676532B2

A display substrate, a display panel, and a display device are provided. The display substrate includes: a base substrate; a plurality of sub-pixels in the display pixel region, wherein each sub-pixel includes a pixel driving circuit; a plurality of first dummy sub-pixel structures on the base substrate and in the first dummy pixel region, wherein at least one first dummy sub-pixel structure includes a compensation capacitor; and a plurality of scan signal lines arranged on the base substrate and configured to transmit a scan signal to the pixel driving circuit. At least one scan signal line extends through the display pixel region and the first dummy pixel region, and the at least one scan signal line is electrically connected to the pixel driving circuit of each sub-pixel in a row of sub-pixels and is further electrically connected to the compensation capacitor of the at least one first dummy sub-pixel structure.
US11676531B2

A pixel arrangement structure of an organic light emitting diode (OLED) display is provided. The pixel arrangement structure includes: a first pixel having a center coinciding with a center of a virtual square; a second pixel separated from the first pixel and having a center at a first vertex of the virtual square; and a third pixel separated from the first pixel and the second pixel, and having a center at a second vertex neighboring the first vertex of the virtual square. The first pixel, the second pixel, and the third pixel have polygonal shapes.
US11676527B2

A display driver is provided. A designation of an output timing at each of first and kth output channels is received, and first and second delay pulse signals are generated at respective output timings of the first and the kth output channels. First to kth first direction delay shift signals where a first delay pulse signal is present after a delay increased for each output channel from the first toward the kth output channel are generated. First to kth second direction delay shift signals where a second delay pulse signal is present after the delay increased for each output channel from the kth toward the first output channel are generated. One whose timing at which a delay pulse signal is present is earlier is selected from each of the direction delay shift signals corresponding to the same output channel, and set as first to kth output timing signals.
US11676525B1

Display Pixel Design and Control for Lower Power and Higher Bit Depth Craig Michael Waller A method to generate pixel control signals more rapidly and with less overhead is disclosed. The method generates pixel control signals for a first block of pixels having a first first-block pixel and a second first-block pixel and a second block of pixels having a first first-block pixel and a second second-block pixel. A first-block base control signal that is shared by the first block of pixels is generated. A first first-block sharpening control signal for the first first-block pixel is generated and a first second-second-block sharpening control signal for the first second-block pixel is generated. The first first-block pixel control signal is generated using the first first-block sharpening signal and the first-block base control signal. The first second-block pixel control signal is generated using the first second-block sharpening signal and the second-block base control signal.
US11676522B2

A display panel and a display device are provided. A shift register of the display panel includes a first control unit, configured to receive an input signal and control a signal of a first node in response to a first clock signal; a second control unit, configured to receive a first voltage signal and control a signal of a second node in response to the input signal and the first clock signal; a third control unit, configured to receive the first voltage signal and a second voltage signal and control a signal of a fourth node in response to the signal of the second node and a signal of a third node; and a fourth control unit, configured to receive a third voltage signal and a fourth voltage signal and generate an output signal in response to the signals of the second node and the fourth node.
US11676521B2

Provided is a display panel. The display panel includes multiple scanning lines, a gate driver circuit, and a timing controller. The timing controller is configured to: receive multiple data enable signals, generate a gate control signal, and provide the gate control signal for the gate driver circuit. The gate control signal includes a start signal, a first clock signal and a second clock signal. The multiple data enable signals are only within the active cycle. The timing controller is configured to generate a rising edge of the start signal within the vertical blanking cycle of the (N−1)th frame cycle. Alternatively, the timing controller is configured to generate a rising edge and a falling edge of the start signal within a time interval formed by a rising edge and a falling edge of a first data enable signal in the Nth frame cycle.
US11676518B2

A processing unit, comprising a display interface to control a foldable display with multiple segments created by fold lines in the foldable display. The processing unit also including a plurality of lanes to connect the display interface to the foldable display, where each segment of the foldable display is connected to a lane. The processing unit also including a multi-segment protocol component to instruct the display interface to drive data to each segment of the display through the plurality of lanes.
US11676516B2

An engageable lockout and tagout device for aircraft pushbutton switches prevents attempts to electrically engage a corresponding control panel circuit of a system under service. The lockout and tagout device is configured to lock different pushbutton switch types present in a flight deck, including Korry switches, thereby preventing operators from actuating switches and alerting them that the switches have been disengaged.
US11676507B2

Disclosed embodiments include apparatuses, methods and storage media associated with modifying a food record database. The method comprises receiving a plurality of food records from a plurality of sources, each of the plurality of food records comprising at least a food record description, the plurality of sources including (i) at least one non-user entity that is an owner of a third party food database and (ii) users of the food record database. The method further comprises receiving search requests from users, and returning one or more top search results from the food record database in response. The method also comprises determining a score for a particular food record identified by the top search results, wherein the score is calculated based at least in part on one of: a number of times the particular food record has been included in the top search results of the search requests or a number of times the particular food record has been logged.
US11676504B1

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for adaptive educational activities are disclosed. In one aspect, a computer-implemented method includes receiving, by a computing device that is configured to grant a given user access to a first group of activity modules based on a classification of the given user, user data and classification data. The method includes granting the user access to a first activity module and a second activity module, and preventing the user from accessing a third activity module. The method includes receiving interaction data based on the user interacting with the first activity module, and determining that the interaction data indicates an improper classification of the user. Based on the interaction data, the method includes maintaining the classification of the user, granting the user access to a fourth activity module, and preventing the user from accessing the second activity module.
US11676501B2

A method for execution by a computing entity includes obtaining first and second learning objects regarding a topic. The method further includes deriving a first set of knowledge test-points for the first learning object regarding the topic based on a first set of knowledge bullet-points. The method further includes deriving a second set of knowledge test-points for the second learning object regarding the topic based on the second set of knowledge bullet-points. The method further includes generating a first knowledge assessment asset for the first learning object regarding the topic based on the first set of knowledge test-points, an illustrative asset, and a first descriptive asset of the first learning object. The method further includes generating a second knowledge assessment asset for the second learning object regarding the topic based on the second set of knowledge test-points, the illustrative asset, and a second descriptive asset of the second learning object.
US11676494B2

The present invention discloses a vessel collision avoiding system and method based on Artificial Potential Field algorithm, the method comprises the following steps: (S1) obtaining a vessel information, at least one obstacle information and a target information; (S2) establishing an Artificial Potential Field (APF) by the vessel information, the at least one obstacle information and the target information, wherein the Artificial Potential Field comprises an attractive field of the target and a repulsive field of the obstacle; (S3) combining the attractive field and the repulsive field to obtain a first resultant force; (S4) Adding an external force to the Artificial Potential Field based on the vessel information or the obstacle information; (S5) combining the first resultant force and the external force to obtain a second resultant force; and (S6) the vessel sails in the direction of the second resultant force to avoid the obstacle.
US11676492B2

A method performed in a system comprising a plurality of autonomous vehicles. The method comprises a first vehicle transmitting a geometric configuration information to be adopted by one or more other vehicles participating in a transport operation in combination with the first vehicle, wherein the geometric configuration information comprises information regarding respective distances and orientations the one or more other vehicles are required to adopt relative to the first vehicle, a second vehicle, upon receipt of the geometric configuration information, adopting a position relative to the first vehicle or to a further vehicle participating in the transport operation, the position of the second vehicle defined by the geometric configuration information and the first and second vehicles performing a transport operation in a synchronised manner once the second vehicle has adopted said position.
US11676485B2

The present disclosure relates to systems and methods for determining traffic information of a region. The method may include determining a first region and a second region. The method may also include obtaining a set of links associated with the first region and the second region. The method may also include obtaining a plurality of driving routes of a plurality of vehicles in the first region and the second region in a predetermined time period. The method may also include selecting one or more driving routes that traverse a first boundary of the first region and a second boundary of the second region based on the set of links associated with the first region and the second region. The method may also include determining traffic information of the first region based on information related to the one or more selected driving routes.
US11676483B2

A bridge device, in communication with a smart device, functions to command one or more controllable appliances in response to communications received from the smart device. The bridge device also includes input elements by which the bridge device can be used to directly command common functional operations of the one or more controllable appliances. In this manner, common functional operations, such as volume control, playback pause/resume control, etc., may be made readily available without necessitating the use of the smart device, whilst the more sophisticated GUI provided by the smart device remote control app may be advantageously utilized when more complex or less frequently used command functions are to be performed.
US11676472B2

Systems, methods, and devices for automatic signal detection in an RF environment are disclosed. A sensor device in a nodal network comprises at least one RF receiver, a generator engine, and an analyzer engine. The at least one RF receiver measures power levels in the RF environment and generates FFT data based on power level data. The generator engine calculates a power distribution by frequency of the RF environment in real time or near real time, including a first derivative and a second derivative of the FFT data. The analyzer engine creates a baseline based on statistical calculations of the power levels measured in the RF environment for a predetermined period of time, and identifies at least one signal based on the first derivative and the second derivative of the FFT data in at least one conflict situation from comparing live power distribution to the baseline of the RF environment.
US11676471B2

A computer implemented method including receiving, by a monitoring system that is configured to monitor a property and from an electronic pool device that is configured to monitor a swimming pool at the property, sensor data, analyzing, by the monitoring system, the sensor data, based on analyzing the sensor data, generating, by the monitoring system, an instruction to activate a camera of the electronic pool device, providing, by the monitoring system to the electronic pool device, the instruction to activate the camera, receiving, by the monitoring system from the electronic pool device, image data, analyzing, by the monitoring system, the image data, based on analyzing the image data, identifying a monitoring system action to perform, and performing the monitoring system action.
US11676470B2

A computerized method for determining whether a first wireless communication module of a first network device located within a vehicle is disabled is disclosed. The computerized method includes operations of detecting movement of the first network device at a speed greater than or equal to a predetermined threshold, determining that a first communicative coupling with a transceiver using the first wireless communication module of the first network device cannot be established, determining that a second communicative coupling with the transceiver using a second wireless communication module of the first network device has been established, and generating an alert indicating that the first wireless communication module of the first network device is disabled while the first network device is located in the vehicle and in proximity to the transceiver. The first wireless communication module may be a BLUETOOTH® module and the second wireless communication module may be a WI-FI® module.
US11676467B2

Systems and methods to provide a watch as a dashboard of a plurality of components by utilizing a mesh protocol are disclosed. Exemplary implementations may: generate output signals, by a module group of one or more modules, configured to conveying information related to the subject, wherein the one or more modules are configured by a mesh protocol to communicate the information via wireless communication; by one or more processors of a watch: receive wireless communication from at least a first module via the mesh protocol; obtain the output signals from the module group based on the mesh protocol; perform analysis on the output signals to determine values to one or more metrics related to the subject; and effectuate, via a user interface of the watch, presentation of the values, wherein the watch includes one or more sensors, and a transmitter receiver that communicates via the mesh protocol.
US11676465B1

A distributed temperature system with at least one optical fiber is provided. Each optical fiber runs horizontally and vertically within at least one compartment of a ship. Each optical fiber connects to a distributed temperature system unit or is multiplexed to a single temperature system unit. The system employs Optical Time Domain Reflectometry to support measurements of optical pulses in processing bins defined along the fiber. The spatial fidelity of the measurement capability is sufficient to localize a fire detection in individual shipboard compartments. The system can diagnosis conflagration events that produce fire and also flooding in the compartment.
US11676461B2

There is provided an information processing device to reduce the difference in way of feeling a tactile sense in accordance with a state or situation, the information processing device including: an acquisition unit configured to acquire context information concerning a state or a situation user of an external environment or context information concerning a user; and a modulation unit configured to modulate a control signal for controlling a haptics unit for presenting haptics to a predetermined part of the user on the basis of the context information having been acquired.
US11676453B2

The present disclosure relates generally to a gaming system, device, and method supportive of an enhanced electronic gaming machine auto play mode. A gaming system, device, and method are provided that identify data associated with a set of previous gameplay sessions, the data including a set of previous gameplay decisions associated with the set of previous gameplay sessions; generate a set of playstyle models based on the set of previous gameplay decisions; and enable a gameplay mode in which a playstyle model of the set of playstyle models may be utilized to provide automated player inputs to a gameplay session.
US11676452B2

A gaming system includes electronic components that implement a value-aggregation procedure for displaying, combining, and awarding credit values in a reel-spinning venue.
US11676450B2

A system and method of providing a player loyalty program to award a player of an electronic gaming machine, including conducting games with enhanced payouts based on a cash in or initial investment amount. In response to a player's initial investment or cash in amount, a payout schedule is selected. The larger the initial investment the better the selected payout schedule for the player. Live games facilitated by electronic gaming machines or devices and server-based games may utilize the method disclosed herein. Players may also receive enhanced awards such as enhanced player points based on the amount of the initial investment. Awards and bonuses may also be provided to players who exhaust an initial investment exceeding a threshold amount.
US11676447B2

In accordance with some embodiments, an RFID-enabled table game system provides for determining whether there is a variance between an expected balance of inventory and an actual balance of inventory in a game element container. If a variance is detected, the RFID-enabled game system may identify at least one characteristic associated with an RFID-enabled game element that is determined to be a source of the variance (e.g., a player position at which the RFID-enabled game element had last been detected, a denomination or value of the game element, and/or an identifier associated with the game element). In some embodiments, an alert may be output to game provider personnel (e.g., a dealer of a card game) at the end of a game play when such a variance is detected, thus allowing the variance to be corrected in an efficient and timely manner.
US11676443B2

A system and method for utilizing video analysis to enhance in-play sports wagering by overlaying potential play outcomes with the live video and adjusting the display of the potential outcomes based on the video analysis of the actual play's outcome.
US11676440B2

A pharmaceutical dispenser for dispensing a quantity of pharmaceuticals into a container includes a pharmaceutical counter to count and release the quantity of pharmaceuticals. A pharmaceutical outlet delivers the quantity of pharmaceuticals to the container. A pharmaceutical gate receives the quantity of pharmaceuticals from the pharmaceutical counter. The pharmaceutical gate includes a receiver sized and shaped to define a pharmaceutical receiving space to hold the quantity of pharmaceuticals. The receiver moves between a receiving position and a dispensing position. In the receiving position, the receiver receives the quantity of pharmaceuticals in the pharmaceutical receiving space from the pharmaceutical counter. In the dispensing position, the receiver dispenses the quantity of pharmaceuticals toward the pharmaceutical outlet.
US11676437B1

Embodiments are directed to systems and techniques to provide smart access control devices with legacy access control systems.
US11676430B2

Methods, computer-readable media, software, and apparatuses may determine, based upon edge-computing operations, that a vehicular trip has been initiated and cause one or more sensors to collect vehicle data. One or more trip segments for at least a portion of the vehicular trip may be determined. In some aspects, for each trip segment, a first plurality of time features and a second plurality of frequency features may be determined, and may be concatenated with a third plurality of GPS features to form a feature vector. An accuracy measure may be determined based on the feature vector, and a mode for the vehicle may be predicted.
US11676424B2

An iris or other object detection method and apparatus are disclosed. In one embodiment, the method comprises sending image data to a display of a device that is captured with a first camera of the device with an indication to guide a user to position a body part of the user with respect to the display while the image data is being sent to the display, providing feedback to the user to indicate to the user that the body part is in position so that an image of the body part can be captured by a second camera of the device, capturing an image of the body part with the second camera, and performing recognition on the body part using the image.
US11676419B2

An electronic apparatus is provided. The electronic apparatus includes a user interface, a camera, a memory configured to store a first artificial intelligence model trained to obtain information on an emotion based on an input image, and a processor, connected to the user interface, the camera, and the memory, configured to control the electronic apparatus. The processor is configured to, based on text being input through the user interface, identify whether the text includes first information on a user's emotion, based on the text including the first information, obtain second information for the emotion by inputting the image obtained through the camera to the first artificial intelligence model, and identify a type of the user's emotion based on the first information obtained from the text and the second information obtained from the image.
US11676414B2

A liquid crystal protection film is capable of ultrasonic fingerprint recognition in order to improve ultrasonic fingerprint recognition performance. The liquid crystal protection film includes a liquid crystal protection film part attached to an upper portion of a liquid crystal so as to protect the liquid crystal. The liquid crystal protection film part includes: a first layer attached to the upper portion of the liquid crystal; a second layer formed on an upper portion of the first layer; and a liquid crystal adhesive layer formed under the first layer and provided so that the liquid crystal adheres to the first layer.
US11676411B2

Systems and methods for automatic information retrieval from imaged documents. Deep network architectures retrieve information from imaged documents using a neuronal visual-linguistic mechanism including a geometrically trained neuronal network. An expense management platform uses the neuronal visual-linguistic mechanism to determine geometric-semantic information of the imaged document.
US11676408B2

A computer that identifies a fake image is described. During operation, the computer receives an image. Then, the computer performs analysis on the image to determine a signature that includes multiple features. Based at least in part in the determined signature, the computer classifies the image as having a first signature associated with the fake image or as having a second signature associated with a real image, where the first signature corresponds to a finite resolution of a neural network that generated the fake image, a finite number of parameters in the neural network that generated the fake image, or both. For example, the finite resolution may correspond to floating point operations in the neural network. Moreover, in response to the classification, the computer may perform a remedial action, such as providing a warning or a recommendation, or performing filtering.
US11676407B2

Disclosed are an X-RAY image reading support method including the steps of acquiring a target X-RAY image photographed by transmitting or reflecting X-RAY in a reading space in which an object to be read is disposed; applying the target X-RAY image to a reading model that extracts features from an input image; and identifying the object to be read as an object corresponding to a classified class when the object to be read is classified as a set class based on a first feature set extracted from the target X-RAY image, and an X-RAY image reading support system performing the method.
US11676400B2

A vehicular control system includes a camera and a control having a processor that processes image data captured by the camera to determine an approaching vehicle that is approaching an intersection forward of the equipped vehicle. The system determines projected path of the equipped vehicle. Estimated time to arrival of the approaching vehicle at the intersection is determined at least in part by processing of captured image data. Responsive to determination that the equipped vehicle will complete a turn at the intersection before the estimated time to arrival elapses, the system may determine that it is safe to proceed along the projected path of travel. Responsive at least in part to determination that the equipped vehicle will not complete the turn at the intersection before the estimated time to arrival elapses, the system may determine that it is not safe to proceed along the projected path of travel.
US11676398B2

Aspects of the disclosure relate to detecting an emergency vehicle. For instance, a plurality of images may be taken from a perspective of an autonomous vehicle. One or more gates representing a region of interest at a respective distance from the vehicle may be generated for the images. A plurality of lights may be detected within the one or more gates. A first candidate emergency vehicle may be identified from a detected plurality of lights in one or more gates of one of the images, and a second candidate emergency vehicle may be identified from a detected plurality of lights in one or more gates of another of the images. The first and second candidate emergency vehicles are determined to be the same emergency vehicle and to be active. An operational system of the autonomous vehicle is controlled based on the determination that the given emergency vehicle is active.
US11676396B2

An automated valet parking system provides an automated valet parking service in a parking lot. Recognition result information is generated based on a result of recognition by a recognition sensor when a vehicle exists in the parking lot. The automated valet parking system identifies the vehicle position in the parking lot by using an infrastructure sensor installed in the parking lot. The automated valet parking system acquires expected recognition result information expected to be obtained at the vehicle position. Then, the automated valet parking system compares the recognition result information with the expected recognition result information to calculate reliability of the recognition result information based on a difference between them. When the reliability is lower than a threshold, the automated valet parking system transmits notification information for notifying an abnormality of the recognition sensor to a terminal device operated by a user of the vehicle.
US11676392B2

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for using surfels for vehicle localization. One of the methods includes obtaining surfel data comprising a plurality of surfels, wherein each surfel corresponds to a respective different location in an environment, and each surfel has associated data that comprises a stability measure, wherein the stability measure characterizes a permanence of a surface represented by the surfel; obtaining sensor data for a plurality of locations in the environment, the sensor data having been captured by one or more sensors of a first vehicle; determining a plurality of high-stability surfels from the plurality of surfels in the surfel data; and determining a location in the environment of the first vehicle using the plurality of selected high-stability surfels and the sensor data.
US11676385B1

A target video and video description information corresponding to the target video are acquired; salient object information of the target video is determined; a key frame category of the video description information is determined; and the target video, the video description information, the salient object information and the key frame category are input into a processing model to obtain a timestamp of an image corresponding to the video description information in the target video.
US11676383B2

A system may be configured to perform object counting in high volume traffic. In some aspects, the system may detect a candidate object within the region of interest in a current video frame, and determine that the candidate object is a detected object based at least in part on comparing an attribute value of the candidate object to historic attribute information determined during a plurality of previous video frames. Further, the system may determine track information based on the detected object and determine an object count representing a number of the objects that have entered the region of interest and/or a number of the objects that have exited the region of interest.
US11676382B2

A distributed systems and methods for generating composite media including receiving a media context that defines media that is to be generated, the media context including: a definition of a sequence of media segment specifications and, an identification of a set of remote devices. For each media segment specification, a reference segment may be generated and transmitted to at least one remote device. A media segment may be received from each of the remote device, the media segment having been recorded by a camera. Verified media sequences may replace the corresponding reference segment. The media segments may be aggregated and an updated sequence of media segments may be defined. An instance of the media context that includes a subset of the updated sequence of media segments may then be generated.
US11676381B2

A mobile device can generate real-time complex visual image effects using asynchronous processing pipeline. A first pipeline applies a complex image process, such as a neural network, to keyframes of a live image sequence. A second pipeline generates flow maps that describe feature transformations in the image sequence. The flow maps can be used to process non-keyframes on the fly. The processed keyframes and non-keyframes can be used to display a complex visual effect on the mobile device in real-time or near real-time.
US11676380B2

A computer-implemented method for automatically detecting events and creating photo-product designs based on the events in a photo-product design system includes automatically identifying an event by an event detection module based on daily numbers of captured photos over a plurality of days, automatically selecting a photo-product type by an intelligent product design creation engine in the photo-product design system, calculating a daily weight for a photo product design in the photo-product type based on the daily numbers of captured photos, automatically determining a number of product photos allocated to each day based on associated daily weight, automatically selecting product photos from the captured photos each day at the event according to the number of product photos allocated to each day, and automatically creating a photo-product design for the event using the selected product photos.
US11676375B2

An integrative computational soil mapping system and process that reduces the required number of soil property measurements without jeopardizing the statistical precision of the resulting digital soil maps. The integrative computational soil mapping system and process saves monetary resources and time by reducing the number of soil property measurements required to produce digital soil maps and by offering soil sample locations which capture the maximum amount of representativeness of the soil characteristics in a determined area. In addition, the inventive system and process are integrative computational soil mapping that utilize algorithms based on state-of-the-art computational statistics and machine learning methods for the production of digital soil property maps and also provides soil sampling locations to collect new soil property measurements. These soil property measurements can be used to update and potentially improve previous versions of digital soil property maps, produced by the computational process.
US11676373B2

Systems and methods are provided for control of a personal computing device based on user face detection and recognition techniques.
US11676368B2

A computing system may train an autoencoder to generate a first set of codes from a first set of thermal video images of activities of a user in an environment. The activities may represent routine behaviors of the user in the environment. The computing system may use an unsupervised machine-learning algorithm to categorize the first set of codes into a set of clusters. The computing system may use the autoencoder to determine a code representative of a second set of thermal video images of an activity in the environment. Based on the code not being associated with any cluster in the set of clusters, the computing system may determine that the code is an anomalous code. The computing system may perform an alert action based on the anomalous code.
US11676355B2

A method of merging distant virtual spaces is disclosed. Data describing an environment surrounding a MR merging device is received. A first slice plane is generated, positioned, and displayed within the environment. A second MR merging device is connective with in a second environment. Data describing inbound content from the second MR merging device is received. Content data is sent from the MR merging device to the second MR merging device. The inbound content data is processed and displayed on the first slice plane.
US11676354B2

Systems, methods, and computer readable media for augmented reality beauty product tutorials. Methods disclose determining from live images of an augmented reality (AR) tutorial effects, the effects indicating changes to the live images of a presenter of the AR tutorial from a beauty product being applied to a body part of the presenter. The methods further comprising determining from the live images motion, the motion indicating motion of the beauty product from the beauty product being applied to the body part of the presenter and storing the effects and the motion.
US11676341B2

The invention relates to a first computer implemented method for automatically generating a first 3D garment model representing a first garment to be fabricated from first garment panels, a second computer implemented method for virtually finishing a second 3D garment model representing a second garment to be fabricated without finishes or with default finishes, and a third computer implemented method for automatically generating a plurality of third 3D garment models in a batch process, each third 3D garment model representing a third garment to be fabricated from third garment panels.
US11676340B2

A system for computational localization of fibrillation sources is provided. In some implementations, the system performs operations comprising generating a representation of electrical activation of a patient's heart and comparing, based on correlation, the generated representation against one or more stored representations of hearts to identify at least one matched representation of a heart. The operations can further comprise generating, based on the at least one matched representation, a computational model for the patient's heart, wherein the computational model includes an illustration of one or more fibrillation sources in the patient's heart. Additionally, the operations can comprise displaying, via a user interface, at least a portion of the computational model. Related systems, methods, and articles of manufacture are also described.
US11676337B2

Hardware tessellation units include a sub-division logic block that comprises hardware logic arranged to perform a sub-division of a patch into two (or more) sub-patches. The hardware tessellation units also include a decision logic block that is configured to determine whether a patch is to be sub-divided or not and one or more hardware elements that control the order in which tessellation occurs. In various examples, this hardware element is a patch stack that operates a first-in-last-out scheme and in other examples, there are one or more selection logic blocks that are configured to receive patch data for more than one patch or sub-patch and output the patch data for a selected one of the received patches or sub-patches.
US11676329B1

Aspects of the present disclosure are directed to a holographic calling system providing holographic calling between an artificial reality device and a mobile device having both front and back facing cameras. The user of the mobile device can position it so one of the cameras is pointed toward their face and another camera captures the user's hand not holing the mobile device. The holographic calling system can automatically determine the position of the mobile device in relation to the user's face and hand. Once the mobile device is positioned within an appropriate capture zone, the captured images of the user's face are used to create a first representation of the sending user's face, the captured images of the user's hand are used to create a second representation of the sending user's hand. Each representation is provided as output from a receiving artificial reality device, positioned relative to each other.
US11676328B1

A system prioritizes the rendering and streaming of image data based on risk maps that predict change in a three-dimensional (“3D”) environment. The system receives primitives that are distributed across a 3D space to represent the 3D environment. The system generates a first image based on primitives that fall within a first view frustum, and generates a risk map with a risk value for each particular pixel of the first image. Each risk value quantifies a probability that a pixel of the first image associated with that risk value changes as a result of changing the first view frustum to a second view frustum. The system then performs an out-of-order rendering of primitives that fall within the second view frustum based on the risk value for each first image pixel that is replaced in a second image with a rendered primitive from the second view frustum.
US11676325B2

A method of generating an intermediate layer comprises generating local surface properties for a graphics object from parameter image maps, generating a first object image surface layer based on the local surface properties, storing intermediate surface results as an object image layer from the object local surface properties, and rendering a second object image surface layer based on the stored intermediate surface results.
US11676324B2

In one embodiment, a method includes the steps of receiving, from a client device, a first viewpoint from which to view a virtual object, the virtual object having a shape defined by multiple geometric primitives, identifying, relative to the first viewpoint, visible geometric primitives from multiple geometric primitives, allocating a region in a texture atlas for each of the visible geometric primitives, generating shading information for each of the visible geometric primitives, storing the shading information of each of the visible geometric primitives in a portion of the allocated region smaller than the allocated region to create a buffer around the portion of the allocated region where the shading information is stored, and sending, to the client device, the texture atlas and a list identifying the visible geometric primitives, the texture atlas being configured for rendering images of the visible geometric primitives from different viewpoints.
US11676316B1

A system for sharing settings for modifying images is described. In an example embodiment, an image-modification application may display an image and editing elements in a user interface programed to edit image-adjustment settings that affect aspects of the image on the user interface. The image-modification application may receive user inputs modifying the editing elements and, in response, modify image-adjustment settings and apply the modified image-adjustment settings to the visual aspects of the image. In some embodiments, the image-modification application may receive a first user input requesting to export a settings file including the modified image-adjustment settings, generate the settings file based on the modified image-adjustment settings, and export the settings file.
US11676308B2

A method of processing an image divided into a plurality of pixel blocks which are processed according to a processing sequence is provided, which comprises, for a current pixel block: determining an application area consisting of a set of pixels in blocks preceding the current block in the processing sequence, for each pixel of the application area, computing a gradient representing a directional change of an intensity at the pixel, and selecting, based on at least one of the computed gradients, an intra prediction video coding mode among a plurality of intra prediction video coding modes usable for encoding and/or decoding the current block.
US11676305B2

A method for automated calibration is provided. The method may include obtaining a plurality of interest points based on prior information regarding a device and image data of the device captured by a visual sensor. The method may include identifying at least a portion of the plurality of interest points from the image data of the device. The method may also include determining a transformation relationship between a first coordinate system and a second coordinate system based on information of at least a portion of the identified interest points in the first coordinate system and in the second coordinate system that is applied to the visual sensor or the image data of the device.
US11676304B2

An apparatus (1) for calibrating an ADAS sensor of an advanced driver assistance system of a vehicle (9), comprises: a base unit (2); a support structure (3) connected to the base unit (2); a vehicle calibration assistance structure (4), including a first surface which has a first combination of predetermined graphical features and which can be associated with the support structure so that the first surface, at an operating position, faces towards the service area (8); a flexible panel roller assembly connected to the support structure and including a roller and a flexible target panel (40).
US11676301B2

A system and method for scoring trained probes for use in analyzing one or more candidate poses of a runtime image is provided. A set of probes with location and gradient direction based on a trained model are applied to one or more candidate poses based upon a runtime image. The applied probes each respectively include a discrete set of position offsets with respect to the gradient direction thereof. A match score is computed for each of the probes, which includes estimating a best match position for each of the probes respectively relative to one of the offsets thereof, and generating a set of individual probe scores for each of the probes, respectively at the estimated best match position.
US11676275B2

Methods and systems for analysis of image data generated from various reference points. Particularly, the methods and systems provided are useful for real time analysis of image and sequence data generated during DNA sequencing methodologies.
US11676270B2

There is provided a computer implemented method of measuring a temperature of a subject, comprising: receiving a sequence of a plurality of thermal images of a subject captured by a thermal sensor, analyzing the sequence of the plurality of thermal images to identify at least one target thermal image depicting an upper region of a tongue of the subject, analyzing the at least one target thermal image to identify an estimated temperature of the upper region of the tongue, and providing the estimated temperature of the upper region of the tongue.
US11676265B2

A method and an image processing device for mura detection on a display are proposed. The method includes the following steps. An original image of the display is received and segmented into region of interest (ROI) patches. A predetermined range of spatial frequency components are filtered out from the ROI patches to generate filtered ROI patches. A mura defect is identified from the display according to the filtered ROI patches and predetermined mura patterns.
US11676245B2

A normal candidate information generation unit of an information processor generates normal candidate information for each pixel indicating, for example, a zenith angle, or an azimuth angle, or a zenith angle and an azimuth angle, on the basis of a polarization image in a plurality of polarization directions obtained by a polarization imaging unit. The in-plane pixel selection unit selects a plurality of pixels indicating the plane to be observed in the polarization image. A normal calculation unit calculates a normal of the plane to be observed on the basis of the normal candidate information of the pixels selected by the in-plane pixel selection unit.
US11676243B2

Systems and methods are disclosed for adjusting plane positions in multi-dimensional models. Disclosed is moving a plane associated with an architectural element based on a scale and a translation positional error, wherein the scaled is determined based on the architectural element, and the translation position error is based on a position of the architectural element, and reconstructing the multi-dimensional building model based on the moved plane.
US11676241B2

A projector includes a correction information generation unit, an image information correction unit, and an image projection unit. The correction information generation unit sets a first coordinate in a two-dimensional projection formed by flattening out a three-dimensional projection surface onto a plane. The correction information generation unit arranges a first quadrilateral having a first aspect ratio within the two-dimensional projection, based on the first coordinate as a reference position, in such a way that the first quadrilateral comes into contact with an outline of the two-dimensional projection. The correction information generation unit determines whether the first quadrilateral is in contact with the outline of the two-dimensional projection at two or more points, or not. When the first quadrilateral is determined as being in contact with the outline of the two-dimensional projection at two or more points, the image information correction unit corrects image information, based on the first quadrilateral, and thus generates corrected image information. The image projection unit projects an image based on the corrected image information onto the projection surface.
US11676239B2

Embodiments described herein include, software, firmware, and hardware logic that provides techniques to perform arithmetic on sparse data via a systolic processing unit. Embodiment described herein provided techniques to skip computational operations for zero filled matrices and sub-matrices. Embodiments additionally provide techniques to maintain data compression through to a processing unit. Embodiments additionally provide an architecture for a sparse aware logic unit.
US11676238B2

This disclosure relates to image signal processing technology including signal encoding. One claim recites a method of detecting plural-bit code conflicts within an image, the image includes at least one color separation. The image includes a first plural-bit code carried by a first symbology, and a second plural-bit code carried by a second symbology, the first symbology and the second symbology comprising different symbology types. The method includes: accessing a subset of the image that comprises the first plural-bit code carried by the first symbology; analyzing the subset of the image to decode the first plural-bit code; analyzing the at least one color separation to spatially locate and decode the second plural-bit code carried by the second symbology; comparing the first plural-bit code and the second plural-bit code; and outputting information if a conflict is identified by said act of comparing, in which the information comprises a spatial location within the image of the conflict. Of course, other claims, features and combinations are described as well.
US11676235B1

A computer-based system for facilitating the execution of law enforcement duties is disclosed. More particularly, according to one aspect of the invention, an electronic system is configured to facilitate the performance of law enforcement duties by quasi-instantaneously providing actionable intelligence to its users, such as front-line law enforcement officers, in response to a real-time query. According to another aspect of the invention, a system implements a set of automated status classifications for subjects with suspected or confirmed involvement in criminal activities. The status classifications specifically and concisely establish the subject's involvement in criminal activities. According to yet another aspect of the invention, a system executes a streamlined electronic process for handling and processing seized items so as to ensure that criminal assets are efficiently and effectively seized, and that asset forfeiture actions are effectively initiated against the seized items.
US11676230B2

A method and apparatus for controlling digital evidence comprising creating a case record comprising information about an investigative case, electronically storing at least one piece of digital evidence into memory, and associating the stored at least one piece of evidence with the case record.
US11676226B1

A home cost analysis server for executing a customized home search may include a processor programmed to define a user's budget constraint and a level of flexibility thereof, including a threshold difference from the budget constraint, retrieve a list of homes and public listing information associated with each home, and determine a monthly cost associated with each home. The processor may also isolate a first subset of homes having a monthly cost that satisfies the budget constraint, and a second subset of homes having a monthly cost within the threshold difference of the budget constraint, and display the first and second subsets along with respective first and second graphical indicators, as well as a third graphical indicator of a first adjustable expense data element, the third graphical indicator recommending reducing the first adjustable data element to move at least one first home from the second subset into the first subset.
US11676207B2

Example methods, apparatus, and computer readable storage media are described and disclosed. An example method includes receiving, by a computing device, market data related to a tradeable object. The example method includes displaying, by the computing device, a flexible price-volume indicator, the flexible price-volume indicators aligned with a specific value level in a value axis. The example method includes updating, by the computing device, a display property associated with the flexible price-volume indicator, the display property reflecting a quantity value determined based on the received market data. The example method includes displaying, by the computing device, the flexible price-volume indicator in a differentiated state based on a change in the market data.
US11676201B2

Methods and systems are provided for providing an alternative payment platform, including method and systems for providing a platform for presenting an alternate offer to a user who is engaged with a primary offer and receiving an indication of the user's engagement with the alternate offer, wherein the user's engagement with the alternate offer serves as an alternative form of payment for an item associated with the primary offer. Such methods and systems may further include methods and systems for selecting one or more alternate offers engagement with which serves as an alternative form of payment for an item associated with a primary offer, presenting the selected alternate payment offers to a user, receiving an indication of engagement with at least one of the alternate offers, receiving payment in exchange for presenting the accepted offer and providing payment to the offeror of the primary offer.
US11676181B2

Systems and methods are described herein for resolving advertisement placement conflicts. Specifically, a number of parameters may be entered into a system in order to distribute advertisements into advertisement slots. In many instances, a combination of these parameters causes a conflict in the system where all the parameters cannot be applied in order to place advertisements into advertisement slots. The conflict may be resolved by using an advertisement assignment model to determine which parameters may be relaxed in order to arrive at an optimal solution that violates a smallest number of parameters having the least priority. When such a solution is found, the advertisement assignment model may be modified and advertisements may be placed into advertisement slots based on the modified advertisement assignment model.
US11676174B2

Methods and systems provide information products relating to past, present and future advertising transactions (i.e., contracts to place advertisements in various media) to enable a marketplace in advertising products. Information regarding a plurality of advertising transactions are gathered. Data is analyzed to determine its attributes. Some attribute values are transformed and the attribute values are stored in a database. Attributes are organized or indexed according to a taxonomy of attributes to provide indexes to advertising transaction records. Indexes and benchmarks for various selected types of advertising transactions can be generated by selecting certain records from the database and aggregating the data or otherwise synthesizing information products, such as benchmarks and market entities for the selected types of advertising transactions. Information products may be published and syndicated as market indexes and benchmarks.
US11676167B2

A device may receive, from a client device associated with a customer, an agreement of the customer to join a rewards program, and may receive, from the client device and based on the customer joining the rewards program, item data identifying an item placed in a shopping cart by the customer and customer data identifying the customer, wherein the item data is received by a transaction card from a price tag of the item, and wherein the item data is received after the item has been removed from a shelf and placed in the shopping cart. The device may receive rewards data identifying rewards associated with a plurality of items, and may process the item data, the rewards data, and the customer data, with a machine learning model, to identify a reward for the customer. The device may provide, to the client device, data identifying the reward.
US11676158B2

A system and method for automatic remediation of non-compliance events are provided. In embodiments, a computer-implemented method includes: accessing a compliance profile and a remediation profile, wherein the compliance profile includes compliance data regarding rules for an enterprise and the remediation profile includes remediation data regarding remediation actions to address non-compliance with one or more of the rules; generating mapped data by mapping compliance data in the compliance profile to remediation data in the remediation profile; receiving non-compliance event data from a workload node in a network; extracting information from the non-compliance event data including the workload node associated with the event and a cause of event; determining a remediation action for the event based on the information and the mapped data; and invoking automatic performance of the remediation action at the workload node based on the determined remediation action.
US11676156B2

An intent confusion evaluation engine receives conversation data corresponding to conversations between customers and agents. The engine evaluates annotations in the conversation data corresponding to intents identified from messages exchanged between customers and agents to determine levels of confusion amongst different intents. Based on these levels of confusion, the engine creates a graphical representation that illustrates the various intents and the level of confusion between different pairings of intents for the set of conversations. If an update is provided to the annotations, the graphical representation is updated dynamically and in real-time to provide updated levels of confusion amongst the various intents in accordance with the update.
US11676151B2

The present disclosure relates to techniques for automated and adaptive cloud security management. Embodiments provide for, at an electronic device configured to interface with a cloud computing environment, initiating one or more transactions in the cloud computing environment using a first identifier to cause a first service of the cloud computing environment to generate a first set of data including the first identifier and a second identifier, and a second service of the cloud computing environment to generate a second set of data including a third identifier and a fourth identifier. Embodiments also provide for automatically determining whether the first identifier corresponds to the third identifier, and, in accordance with a determination that the first identifier corresponds to the third identifier, associating the second identifier and the fourth identifier to generate a linkage between the first and second services.
US11676146B2

An identity chaining fraud detection method that allows each current transaction to be linked to other transactions through commonly shared identities. Over a period of time the links create a chain of associated transactions which can be analyzed to determine if identity variances occur, which indicates that fraud is detected. Additionally, if a specific identity is detected as being fraudulent, that identity can be tagged as fraudulent and can be referenced by a plurality of other merchant transaction chains to determine fraud.
US11676133B2

The method 10 for mobile cryptocurrency wallet connectivity can include facilitating a blockchain transaction S100 and establishing an initial connection between a mobile client and a web client S200. The system 20 for mobile cryptocurrency wallet connectivity can include a browser 110, one or more websites 120, a web client 130, a mobile application 140, and a backend server 150.
US11676131B2

Disclosed are systems and methods for processing gift transactions. An example method includes receiving an identification of a first merchant from a giver at a first time, wherein a gift from the giver to a recipient is redeemable at the first merchant. The method can include generating a policy comprising the first merchant. The policy can be at least in part giver-defined and linked to the recipient payment account. The method can then include transmitting an electronic notice to a recipient device, receiving a selection from the recipient of a second merchant at which to redeem the gift from the giver, updating the policy to apply to the second merchant selected by the recipient to yield an updated policy and, upon receiving an indication of a triggering event caused by use of the recipient payment account as defined by the updated policy, applying an amount of money to the gift.
US11676119B2

An automated method is provided for enabling and implementing a beacon-based service location application in a user device having a beacon monitoring application. A service location facilitation server establishes service need criteria for a user of the user device and estimates a service need state for the user. The service need state includes information indicative of a relative need for a desired service. The service location facilitation server then determines whether the service need state meets the service need criteria, and, if so, transmits an instruction to the user device to transition the beacon monitoring application from an inactive state to an active monitoring state.
US11676116B1

Tandem transactions facilitated through automatic application of a tandem transaction limit are provided. A system includes a group manager that identifies a group including respective identifications indicative of a first user and a second user. A transaction limit manager establishes a first transaction limit for the first user, a second transaction limit for the second user, and a third transaction limit for a combination of the first and second user. A transaction manager dynamically applies the third transaction limit based on a determination that the first and second user are performing a joint transaction. The transaction manager revokes the third transaction limit after a threshold time and applies the first transaction limit to first user transactions and the second transaction limit to second user transactions. Incentives are provided if a user remains at a location for a threshold amount of time or causes other users to visit the location.
US11676114B2

A method includes receiving a service ticket corresponding to an undesired state of a client device, assigning the service ticket to a technician, and coordinating a remote control session between a technician device and the client device. The method includes obtaining a set of actions performed under remote technician control to transition the client device from the undesired state to a desired state. Each action describes one or more user interface interactions with the client device. The method includes storing a resolution profile (RP) based on the set of actions and textual descriptors. The method includes classifying a second service ticket received from a second client device. The method includes, in response to the classification indicating that the RP is applicable to the second service ticket, selectively instructing a software agent executing on the second client device to programmatically replay the set of actions from the RP without technician intervention.
US11676110B2

A system providing for user-initiated, account-type limiting, association-limiting, and duration-dependent public access file disclosures over a semi-private network.
US11676107B1

Systems and methods to facilitate interaction with a collaboration environment based on assignment of project-level roles are described herein. Exemplary implementations may: manage environment state information maintaining a collaboration environment; obtain role information specifying roles of the users within units of work and projects; update the environment state information based on the role information; effectuate presentation of the collaboration environment based on the environment state information so that access, by the users, to the individual units of work and the individual projects reflects the roles of the users within the units of work and the projects; and/or perform other operations.
US11676093B2

A system and method are disclosed for assigning a ticket including one or more databases that store data describing electronic communication between one or more customer system communication devices and one or more service center communication devices. Embodiments further include a computer coupled with one or more databases and configured to monitor communication activity to determine whether a communication channel is opened between one or more customer system communication devices and one or more service center communication devices, responsive to a ticket being opened between one or more customer system communication devices and one or more service center communication devices, analyze the ticket for at least one topic and customer data, search the one or more databases for missing customer data, and in response to detecting missing customer data, identify one or more relationship models that predicts a value for the missing customer data based on known customer data.
US11676089B2

A data processing system for providing a black-box optimization exchange implements receiving a black-box optimization problem, presenting the problem on a user interface, receiving a candidate solution, inserting the candidate solution into a candidate solution queue, providing the candidate solution to a simulator service cause the simulator service to execute an objective function associated with the black-box optimization problem on the candidate solution, determining an improvement value provided by the candidate solution by analyzing one or more previously determined solutions to the first black-box optimization problem and the first objective value to determine an amount of improvement provided by the candidate solution, determining a reward by analyzing the improvement value using a reward function associated with the black-box optimization problem, and notifying the user that provided the candidate solution that the candidate solution has earned the user the reward.
US11676086B2

A graphical workflow definition and management tool enables administrators and other authorized users to implement a workflow process that can be used to evaluate project submissions or other applications that require step-by-step process completion. The steps required to navigate through the workflow are first defined. Inputs, outputs, and actions, including conditional criteria, can be specified for the steps. The flow of control between the individual steps in the workflow is mapped out; changes to the status of a project submission can cause a submission to migrate to a succeeding step in the workflow. A “sandbox” testing environment allows changes to any aspect of the workflow to be safely evaluated without affecting live data. Conflicts between production and test workflows are identified and intelligently resolved.
US11676084B2

System and methods for dynamic replenishment in a facility are disclosed. A mobile inventory processing device reads a machine readable tag affixed to a perishable item and transmits an indication of the perishable item to a stock inventory processing device. The stock inventory processing device retrieves a stock inventory value corresponding to the perishable item and a historic daily sales value for the perishable item from a database. The stock inventory processing device determines a restocking value based on whether the historic daily sales value exceeds the stock inventory value. The stock inventory processing device transmits a second indication to the mobile inventory processing device. The second indication correspond to insufficient shelf stock of the perishable item. The mobile inventory processing device receives the second indication and outputs an auditory alert in response to the second indication.