US11039555B2
A method for cooling IT equipment of a velocity cooled (VC) mobile data center (MDC) includes: determining if a velocity of the VC MDC is above a minimum threshold velocity that enables ram air cooling of IT equipment within the VC MDC; and in response to the velocity not being above the minimum threshold velocity, activating a secondary cooling source to provide a flow of cooling air across the IT equipment within the VC MDC, the flow of cooling air supplementing the ram air cooling.
US11039551B1
A data center regulates supply air provided to multiple compartments including an information technology (IT) compartment having a cold aisle and a hot aisle and an operation technology (OT) compartment. An environmental subsystem of the data center includes an air handling system that provides supply air to the cold aisle and that draws return air from the hot aisle to moderate or cool a temperature of IT component(s) that may be installed within the IT compartment. Airflow regulation device(s) are positioned in at least one of (i) a supply air passage that guides a portion of the supply air in the cold aisle of the IT compartment into the OT compartment to moderate or cool a temperature of OT component(s) that may be installed within the OT compartment and/or (ii) a return air passage that guides air from the OT compartment(s) to the hot aisle of the IT compartment.
US11039545B2
A pull-out aiding device is configured for mounting on an object, in which a corresponding apparatus is mounted. The pull-out aiding device includes a pulling member and a handle member. The pulling member includes a first pivot section and an abutting section for abutting against the corresponding apparatus to move the latter forward. The handle member includes a second pivot section and an operating section. The second pivot section is pivotally connected to the first pivot section, such that the handle member is turnable about the second pivot section relative to the pulling member and brings the latter to move forward.
US11039543B2
An equipment mounting rail for use in tool-less securement of one or more cable management accessories in an electronic equipment enclosure includes a fastening portion, a generally flat first support portion, a generally flat second support portion, and a generally flat third support portion. The first support portion extends at an angle from the fastening portion, the second support portion extends at an angle from the first support portion, and the third support portion extends at an angle from, and is generally coextensive with, the second support portion. The fastening portion is adapted to interface with one or more structural members of a frame structure of an electronic equipment enclosure. The first support portion includes at least one keyhole-shaped opening disposed adjacent to a slotted opening for accommodating a boss and alignment tab, respectively, of at least one cable management accessory. The second support portion includes a plurality of generally circular openings, and the third support portion includes a column of equipment mounting holes.
US11039540B2
A multi-layer circuit board is formed multiple layers of a catalytic layer, each catalytic layer having an exclusion depth below a surface, where the cataltic particles are of sufficient density to provide electroless deposition in channels formed in the surface. A first catalytic layer has channels formed which are plated with electroless copper. Each subsequent catalytic layer is bonded or laminated to an underlying catalytic layer, a channel is formed which extends through the catalytic layer to an underlying electroless copper trace, and electroless copper is deposited into the channel to electrically connect with the underlying electroless copper trace. In this manner, traces may be formed which have a thickness greater than the thickness of a single catalytic layer.
US11039527B2
Plasma processing apparatus and associated methods for detecting air leak are provided. In one example implementation, the plasma processing apparatus can include a processing chamber to process a workpiece, a plasma chamber separated from the processing chamber by a separation grid, and an inductive coupling element to induce an oxygen plasma using a process gas in the plasma chamber. The plasma processing apparatus can detect afterglow emission strength from reaction between nitric oxide (NO) and oxygen radical(s) in a process space downstream to an oxygen plasma to measure nitrogen concentrations due to presence of air leak.
US11039522B1
A device that comprises a set of light sources such as light emitting diodes and method to control the light sources in accordance with input from a discriminator, which furthermore obtains its input from a signal such as an audio signal. A corresponding system and computer readable storage media are also disclosed.
US11039519B2
A mountable multiple angle sanitizing light for a door handle with the ability to be powered by batteries or ac mains. Preferably, ultraviolet light is used to disinfect the particular area of the door handle. A motion detection system can also be incorporated to regulate safety procedures and for controlling a light shut-off time, time off, and light illumination time.
US11039517B2
A method for generating fractional PWM pulses to drive an light emitting device includes generating multiphase clock signals using a multiphase PLL or DLL includes the steps of generating a plurality of phases of PWM pulses that correspond to a number of phases of the multiphase clock signals, selecting two or more phases amongst the plurality of PWM pulses, performing logic operations of the selected phases of PWM pulses to generate fractional PWM pulses, and generating a driving current using the fractional PWM pulses in a current source. The light emitting device is can be an LED display comprising an LED array having a plurality of channels and a plurality of scan lines. The driving current drives LEDs in one of the plurality of channels.
US11039513B1
In embodiments of the present invention improved capabilities are described for systems and methods that provide for a power outage lighting management within an environment, comprising a power outage detection device adapted to detect a power outage condition and to wirelessly transmit power outage indication data to a plurality of lighting systems within the environment, where at least one of the plurality of lighting systems include art LED light source that is powered by an internal power source.
US11039510B2
An electromagnetic cooking device includes an enclosed cavity configured to receive a food load, a plurality of high power amplifiers and RF feeds for introducing electromagnetic radiation into the cavity, and a controller for controlling the frequency, phase and amplitude of the electromagnetic radiation fed into the cavity by the RF feeds. The controller is configured to identify resonant modes, develop and implement a heating strategy based on the resonant modes, utilize an asynchronous manager to automatically detect when a variable has changed to a degree that requires an updated identification of resonant modes and an updated heating strategy, and if the asynchronous manager determines that updates are needed, repeat the steps above to determine a new heating strategy, otherwise continue with the current heating strategy.
US11039506B2
A stovetop assembly where on/off status of a burner is controlled, at least in part, based upon whether the body of a cookware vessel is: (i) placed on a burner to complete an electrical circuit (for example direct current conductive circuit) or magnetic circuit; or (ii) removed from the burner to break the electrical or magnetic circuit. Also, a control box with a tether line extending therefrom that controls on/off status of a burner based, at least in part, upon whether a clip at a distal end of the tether line is mechanically connected to a cookware vessel.
US11039498B2
In a transmission control method of connection confirmation data packets and a terminal, the terminal can optionally adjust time intervals of the connection confirmation data packets in re-transmissions to a wireless network device for keeping the data link between the wireless network device and the terminal, such that the time intervals are not kept at a fixed time interval but at adjustable time intervals.
US11039497B2
A core network receives data from at least one of an AF, a DN, or a UE. A UPF having small data capability processes the data for transport with a low overhead and without initiating a bearer set up protocol. The data may be transported between the UE and the UPF as an RRC payload over a NAS protocol. The data may be received from an AF or DN external to the core network and may be processed to transport the data to the UE based as an RRC payload. The data may be received as uplink data from a UE, e.g., in an RRC payload. The UPF may process the RRC payload to obtain the data and may transport the data to the AF or DN. The UPF may perform IP header compression, data encryption, and/or buffering of data for a UE in an idle mode.
US11039489B2
A method and system are proposed for establishing a requested connection between a source node and a destination node in a telecommunications network. The system and method are described in relation to a 3GPP network, but are applicable to other types of networks. The method includes generating a source application identifier for the connection within the source node, retrieving a source node identifier for the source node and transmitting the source application identifier and the source node identifier to the destination to provide a source connection identifier for the requested connection between the source node and the destination node.
US11039484B2
A communications device and a method therein for accessing a Resource Unit (RU) are provided. The communications device and an Access Point (AP) are operating in a wireless communications network. When wanting to start an access attempt within a time interval, the communications device selects a counter value from a first range given by zero and a first Contention-Window OFDMA (CWO) value CWO1. Further, when wanting to start an access attempt outside the time interval, the communications device selects the counter value from a second range given by zero and a second CWO value CWO2, wherein the second CWO value CWO2 is larger than the first CWO value CWO1. The communications device performs a contention procedure using the selected counter value, wherein a Resource Unit (RU) is accessed in dependence of the performed contention procedure.
US11039482B2
According to an embodiment of the present disclosure, a terminal may store a time correction value acquired from an RA response message during an RRC layer connection to a base station, receive, from the base station, an uplink resource allocation message including an uplink resource allocated to the terminal, after the RRC layer connection to the base station is released, and when an RRC layer connection to the base station is determined, establish the RRC layer connection to the base station without transmitting an RA preamble message, on the basis of the stored time correction value and the allocated uplink resource.
US11039480B2
Wireless communications for selecting an uplink carrier for a random access procedure are described. A base station may configure a wireless device with one or more uplink carriers associated with a downlink carrier of a cell. The one or more uplink carriers may comprise at least a normal uplink (NUL) carrier and a supplemental uplink (SUL) carrier. The wireless device may measure one or more downlink reference signals and channel occupancy level(s) of an NUL and/or an SUL. The wireless device may select one of an NUL or an SUL for a random access procedure, for example, based on a signal strength of the one or more downlink reference signals and/or the channel occupancy level(s).
US11039472B2
The disclosure relates to radio access systems, and more specifically to methods for media access in radio access systems. The disclosure relates to a method, performed in a first node 20b, 20c, 20d in a wireless communication system, of accessing a shared media for directive signal transmission from the first node, the method comprises three steps. The first step is receiving, from a second node, a pilot signal announcing a directive signal transmission to or from the second node. The second step is predicting based on information in the received pilot signal, a collision rate between an intended directive signal transmission from the first node and the announced directive signal transmission, the information defining the channel resources used by the announced directive signal transmission and the third step is accessing the shared media based on the predicted collision rate. The disclosure further relates to methods for reserving and accessing a shared media in radio access systems, as well as to wireless network nodes.
US11039465B2
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive a downlink control message from a base station. The downlink control message may include a grant for communication with the base station and an indication of a component carrier (CC) to use for transmission of uplink control information (UCI). The UE may determine a CC for UCI transmission based at least in part on the CC indication, and the UE may transmit an uplink message including the UCI via the determined CC.
US11039457B2
Systems, methods, and devices that enable coexistence of traffic for collocated transceivers are described herein. In an example embodiment, a method may comprise: receiving a QuietIE request from a wireless device communicatively coupled to a first transceiver; generating, using a processing device, a QuietIE schedule for the first transceiver and the wireless device based on a transmission parameter identifying one or more transmission times designated by a transmission protocol of a second transceiver, where the second transceiver is collocated with the first transceiver and shares a transmission medium with the first transceiver, and where the QuietIE schedule identifies a plurality of quiet periods and a plurality of available periods to the wireless device; and transmitting the QuietIE schedule to the wireless device.
US11039456B1
Methods, systems, and processing nodes for allocating resources to a control channel based on a number of wireless devices determined to be near a cell edge of an access node. An exemplary method for allocating resources to a control channel includes determining a number of wireless devices that are located near an edge of a coverage area of an access node, and adjusting an amount of resources scheduled in the control channel based on the determined number of wireless devices.
US11039436B2
A method by which a user equipment (UE) transmits device-to-device (D2D) data in a wireless communication system, according to one embodiment of the present invention, comprises the steps of: determining a bitmap to be applied to a subframe pool for data transmission by using information indicating a time resource pattern (TRP); and transmitting D2D data in a subframe indicated by the bitmap, wherein a set of bitmaps indicatable by the information indicating the TRP when a radio resource control (RRC) information element related to a TRP subset is configured in the UE is a subset of a bitmap set indicatable by the information indicating the TRP when the UE is not concerned in the RRC information element related to the TRP subset.
US11039435B2
Methods and devices are provided for communicating data in a wireless channel. In one example, a method includes adapting the transmission time interval (TTI) length of transport container for transmitting data in accordance with a criteria. The criteria may include (but is not limited to) a latency requirement of the data, a buffer size associated with the data, a mobility characteristic of a device that will receive the data. The lengths may be manipulated for a variety of reasons; such as for reducing overhead, satisfy quality of service (QoS) requirements, maximize network throughput, etc. In some embodiments, TTIs having different TTI lengths may be carried in a common radio frame. In other embodiments, the wireless channel may partitioned into multiple bands each of which carrying (exclusively or otherwise) TTIs having a certain TTI length.
US11039434B2
Embodiments of a user equipment (UE) and method for resource allocation and device-to-device (D2D) discovery hopping are generally described herein. In some embodiments, the UE may receive signaling from an enhanced node B (eNB) indicating discovery resources to transmit discovery signals on within an LTE operation zone. The discovery resources may include a discovery zone which may comprise a plurality of physical resource blocks (PRBs) and a plurality of subframes. The UE may transmit a discovery signal for receipt by one or more other UEs for D2D discovery within some of the PRBs of the discovery zone. The PRBs for the transmission of the discovery signal may be determined in accordance with a hopping mode to provide increased frequency diversity within a bandwidth of the discovery zone. The hopping mode may comprise intra-subframe hopping, inter-subframe hopping or joint intra/inter-subframe hopping.
US11039430B2
Disclosed are: a communication technique for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system; and a system therefor. The present disclosure can be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security and safety-related services, and the like) on the basis of 5G communication technology and IoT-related technology.
US11039418B2
Example methods for processing a system message and network devices are described herein. One example method includes obtaining, by a user terminal, indication information, wherein the indication information indicates that a system message of a cell cluster has changed or whether a system message of a cell cluster has changed, wherein the cell cluster comprises a set of at least one cell. The user terminal can then determine whether currently used information about the cell cluster needs to be updated. In some instances, obtaining the indication information comprises obtaining a system information update message. In those instances, determining whether currently used information about the cell cluster needs to be updated can include updating the currently used information about the cell cluster or updating a system message of a cell in the currently used cell cluster based on the indication information in the system information update message.
US11039416B2
Embodiments of this application provide a paging method, including: sending, by a network device, paging-related information at a specified time, where the paging-related information is sent in a beam sweeping manner. A paging message is obtained based on the paging-related information.
US11039413B2
Methods, apparatus and systems for managing a connection state of a Wireless Transmit/Receive Unit (WTRU) that is in Mobile Initiated Communication Only (MICO) mode are disclosed. One representative method may include the WTRU obtaining information indicating that the WTRU is to initiate registration prior to sending a Service Request (SR). The representative method may further include the WTRU sending a registration request in accordance with the obtained information and sending a SR after registering with a Network Entity.
US11039411B2
A Bluetooth device with a host system and a controller is disclosed. The host system supports a host stack of a Bluetooth protocol, and the controller supports a controller stack of the Bluetooth protocol. The device includes an interface for receiving, at the controller, a piconet-synchronized signal. The device also includes an interface for providing, by the controller to the host system, a derivative of the piconet-synchronized signal. The device also includes a circuit for determining a latency of the providing. The device also includes a circuit for synchronizing, at the host system of the Bluetooth device, a host clock with a timing reference of a master device of the Bluetooth piconet using said latency and the derivative of the piconet-synchronized signal.
US11039409B2
Systems and methods for network coordination are disclosed. A method comprises listening to a primary device during a receiving slot group of a primary/secondary (P/S) piconet shared between the primary device and the secondary device, determining based on the listening during the receiving slot group whether the primary device is attempting to communicate with the secondary device, listening to a host device on a host piconet during a transmitting slot group of the P/S piconet in response to a determination that the primary device is not attempting to communicate with the secondary device, and transmitting to the primary device over the P/S piconet during the transmitting slot group of the P/S piconet in response to a determination that the primary device is attempting to communicate with the secondary device.
US11039405B2
A terminal device generates a power headroom report (PHR) according to a PHR configuration and a PHR media access control (MAC) control element (CE) format for a PHR carrier group and transmitting the PHR to a network device. The PHR carrier group is associated with one or more carriers.
US11039401B2
Disclosed is an electronic device including an antenna including a radiating portion and a feeding portion connected to the radiating portion; a tunable element electrically connected to the radiating portion and configured to influence an electrical length of the radiating portion with respect to a specified frequency; an amplifier electrically connected to the feeding portion and configured to amplify a signal to be transmitted to an external electronic device through the radiating portion; and a control circuit electrically connected with the antenna, the tunable element, and the amplifier. The control circuit is configured to determine strength of a signal reflected from the radiating portion while the signal is transmitted to the external electronic device through the radiating portion; and adjust a value of the tunable element to reduce the strength of the reflected signal.
US11039390B2
Systems, methods, apparatuses, and computer-readable storage media for managing power consumption of a mobile device are disclosed. The systems, method, apparatus, and computer-readable storage medium may cause the base station to identify an energy metric associated with a mobile device, and to configure the transmission between the base station and the mobile device based at least in part on the energy metric. The configuration of the transmission may reduce the power consumption of the mobile device for processing the transmission.
US11039389B2
An information processing apparatus includes a receiver, a memory, an information processing unit which performs information processing and makes mode transition at least between a first mode and a second mode lower, a mode management module which has the information processing unit make mode transition from the second mode to the first mode when at least any one of the number of packets stored in the memory, a data amount of a packet stored in the memory, and a content of a packet stored in the memory satisfies a first condition, and a reading module which reads the packet stored in the memory when the information processing unit makes mode transition from the second mode to the first mode. The information processing unit makes mode transition from the first mode to the second mode when it has performed processing including reading of the packet by the reading module.
US11039388B2
This disclosure provides a method, and a network node for implementing the method, of switching a base station in a cellular telecommunications network between a first and second mode, in which the base station uses more energy when operating in the first mode than the second mode, wherein the cellular telecommunications network further includes a User Equipment, UE, having a camera, the method including storing visual data including a visual representation of at least a part of the base station; receiving visual data captured by the camera of the UE; performing a computer vision operation, trained on the stored visual data, on the captured visual data to determine whether the visual representation of the base station or part thereof is present in the captured visual data; and, in response initiating a switch in the base station between the first and second modes.
US11039385B2
A method is provided for enabling a User Equipment to access services provided by a Radio Access Network by configuring the User Equipment (UE) with configuration information which comprises rules for selecting one or more of a plurality of access procedures to be used by the UE for accessing services provided by the Radio Access Network which may be a New Radio/5G network. Access procedures may include a grant-based procedure; a grant-free procedure and a fallback procedure to be used in cases of failure of an initial access attempt. The rules may be based on the type of service required by the UE such as; transmission and/or reception of data, transmission and/or reception of a voice call, a request for System Information.
US11039376B2
Provided in an implementation of the present disclosure are an indication method, a detection method, and a related device. In the present disclosure, a network device prevents a user equipment from performing a useless search in a frequency domain range in which a synchronization signal block (SSB) does not exist by means of indicating to the user equipment a frequency domain location of the SSB in a certain frequency domain range of the user equipment.
US11039375B2
A method for transferring information between a base station and a terminal includes receiving a broadcast channel, where the broadcast channel is used to transfer basic physical layer configuration information of a cell and to transfer first specific content agreed between the terminal and the base station, wherein the first specific content includes configuration information required by the terminal to access a network; and parsing out the first specific content from the broadcast channel.
US11039374B2
A source wireless device sends an indication of support for one or more broadcast services that broadcasts information over a wireless local area network (WLAN).
US11039361B2
A method of 5G session management (5GSM) state mapping is proposed when interworking. For each PDU session in 5GSM state of PDU SESSION active, PDU SESSION MODIFICATION PENDING, or PDU SESSION INACTIVE PENDING, UE maps the PDU session to a PDN connection in 4G ESM state BEARER CONTEXT ACTIVE. For any other PDU session in 5GSM state of PDU SESSION inactive, or PDU SESSION ACTIVE PENDING, UE maps the PDU session to a PDN connection in 4G ESM state BEARER CONTEXT INACTIVE.
US11039350B2
Systems, apparatuses, and methods are described for wireless communications. A wireless device may inform a base station of a failure of a beam failure recovery procedure for a secondary cell. The wireless device may include an indicator of the failure in a report providing, or configured to provide, values for signal strength or other characteristic of a downlink signal. The indicator may be in addition to, and/or may replace, one or more indicators of signal strength or other characteristic.
US11039342B1
Disclosed is a device for reverse slot reservation in an industrial low-power wireless network, which includes: a child device configured to send a slot demand of the child device to a parent device through an information element (IE) and a solicitation (SOLICIT) packet included in an enhanced beacon (EB) and configured to select a required number of slots and respond using a Response packet to reserve the slots when an OFFER is received; and a parent device configured to transmit an OFFER packet to a device with the highest priority or a device selected in round-robin order when there is no priority on the basis of slot demands of child devices to start reverse slot reservation and configured to select some slots from among available slots of the parent device, add the selected slots to CellList, and transmit the OFFER packet to a corresponding child device.
US11039340B2
The present invention relates to a source node, a target node and methods for supporting re-distribution of load from a source cell to a target cell in a wireless network, wherein the target cell is a combined cell comprising a plurality of spatially separated sectors that are configured for downlink and/or uplink communication on a same carrier frequency. Performed in the source node, the method comprises receiving, from the target node, a load report comprising traffic load in one or more of the plurality of spatially separated target sectors comprised in the target cell. Reference signal measurements defining radio conditions for one or more of the target sectors comprised in the target cell are retrieved from one or more wireless devices served by the source node.
US11039333B2
A technique for operating a mobile station as wireless local-area network [“WLAN”] gateway. The mobile station is provided with a gateway application to control the following operations: activating (3-0) the WLAN means as a WLAN base station capable of communicating with at least one WLAN terminal over a WLAN network; creating a network identifier (3-2, 3-4) for the WLAN base station; assigning (3-8, 3-10) an internet protocol address for the at least one WLAN terminal; resolving domain name service [“DNS”] queries (3-12 . . . 3-18) in cooperation with an external DNS service system; assigning at least one port number for each protocol supported by the gateway application; and tunneling internet traffic (3-30 . . . 3-36) between the at least one WLAN terminal and an internet host over the broadband connection.
US11039330B2
A measurement gap enhancement method is disclosed for use in both synchronous and asynchronous networks. The measurement gap enhancement method employs a first measurement gap pattern, suitable for synchronous networks, including measurement gaps that are of shorter duration and available for more frequency measurements than in legacy implementations. The measurement gap enhancement method also employs a second measurement gap pattern, which also includes short duration measurement gaps, but is also characterized by flexible measurement gap repetition periods suited to asynchronous networks. The first and second measurement gap patterns are made known to an user equipment by way of novel information elements used during RRC connection reconfiguration by the enhanced NodeB base station. The measurement gap enhancement method enables the user equipment to maintain its radio frequency setting between measurements, particularly automatic gain control.
US11039327B2
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine a remaining minimum system information control resource set (RMSI CORESET) monitoring configuration based at least in part on information received by the UE in a first frame; and monitor, during a second frame and based at least in part on the RMSI CORESET monitoring configuration, for an RMSI CORESET based at least in part on a synchronization signal block (SSB), associated with the RMSI CORESET, that is received in the first frame.
US11039323B2
A method and apparatus for determining Physical Random Access Channel (PRACH) resources and using beams are disclosed herein. In an example, a wireless transmit/receive unit (WTRU) may measure a plurality of beam reference signals transmitted from a base station. Further, the WTRU may select a beam reference signal from among the plurality of measured beam reference signals. Also, the WTRU may receive a configuration message from the base station that includes correspondence information regarding the plurality of beam reference signals, wherein the correspondence information designates at least one set of PRACH resources for each of the plurality of beam reference signals. In addition, the WTRU may determine a set of PRACH resources designated for the selected beam reference signal based on the received correspondence information. Moreover, the WTRU may transmit a PRACH signal using at least one PRACH resource of the determined set of PRACH resources.
US11039321B2
An aspect of the disclosure provides a method of network slice management performed by a Communication Service Management Function (CSMF). The method includes receiving service requirements and receiving capability exposure information. The method further includes transmitting network slice requirements in accordance with the service requirements and capability exposure information. In some embodiments the capability exposure information is received from a Network Slice Management Function (NSMF). In some embodiments the network slice requirements are transmitted to the NSMF. Other aspects are directed to methods implemented by an NSMF and a Network Sub-Slice Management Function (NSSMF). Other aspects are directed to the network functions themselves.
US11039319B2
In an example implementation according to aspects of the present disclosure, a method may include receiving, at an optical receiver of a first device, a transmission signal from an optical transmitter source of a second device. The method may include decoding the transmission signal to generate a pairing code, and using the pairing code to pair the first and second devices together for wireless communication. The method may include granting a level of access control of the first device to the second device via the wireless communication, wherein the level of access control is based on the pairing code.
US11039315B2
The provision of additional network resources (e.g., in the form of a dedicated super slice), can be requested on demand a per needed basis when higher capacity or performance is requested to facilitate the delivery of a service, when the delivery of the service cannot be met by a network slice associated with the service. A request for using a super slice can be sent to a management gateway device (mGW). The mGW can send the request for authorization to access the additional resources to a management device that manages the additional resources. Authorization can be granted for the additional resources to be used to facilitate or enable tasks that allow for continued delivery of that service.
US11039313B1
According to certain embodiments, a method by a user equipment (UE) for securing network steering information includes transmitting a registration request to a Visited Public Land Mobile Network (VPLMN). Upon successful authentication by an authentication server function (AUSF), a home network root key is generated. A protected message comprising Network Steering Information is received from a first network node. The protected message is protected using a configuration key (Kconf) and a first Message Authentication Code (MAC-1). The configuration key (Kconf) is determined from the home network root key, and the UE verifies the MAC-1. Based on the Kconf and the MAC-1, it is verified that the VPLMN did not alter Network Steering Information. An acknowledgement message, which is protected with a second Message Authentication Code (MAC-2), is transmitted to a Home Public Land Mobile Network (HPLMN).
US11039310B2
A method for performing vehicle-to-everything (V2X) communication in a wireless communication system and a device for same are disclosed. Particularly, a method for a user equipment (UE) performing V2X communication by means of a PC5 interface in a wireless communication system comprises the steps of: receiving from an upper layer a request for transmitting a V2X message; requesting radio resources, for V2X communication by means of a PC5 interface, to a base station or selecting radio resources for V2X communication by means of the PC5 interface; and performing transmission of V2X communication by means of the PC5 interface, wherein, if a UE has emergency packet data network (PDN) connection, an indication, indicating that transmission by means of the emergency PDN connection is a higher priority than the V2X communication by means of the PC5 interface, can be transmitted from the upper layer.
US11039309B2
A method of coordinating a change in cryptographic key sets from a first cryptographic key set to a second cryptographic key set between a radio access network (RAN) node and a wireless device (WD) served by the RAN node. The RAN node includes a user plane (UP) component and a control plane (CP) component. The method includes transmitting, from the UP component to the wireless device (WD), a key change indicator indicative of changeover to the second cryptographic key set, the key change indicator included in one of a data protocol data unit (PDU) and a control PDU; and subsequently cryptographically encoding PDUs for transmission to the WD and cryptographically decoding PDUs received from the WD in accordance with the second cryptographic key set.
US11039293B2
For transmitting a secured data package from a computer system to a short-range communication device, the secured data package is transmitted from the computer system via a mobile radio network to a mobile communication apparatus. The mobile communication apparatus is placed in the communication range of the short-range communication device and receives from the short-range communication device a data read request, which includes device location information. The mobile communication apparatus determines the current location of the mobile communication apparatus. In case of correspondence of the current apparatus location with the received device location information, the mobile communication apparatus determines positive access authorization and transfers the secured data package to the short-range communication device.
US11039281B2
Methods, apparatus, systems and articles of manufacture are disclosed to facilitate proximity detection and location tracking. An example method includes receiving messages collected by a badge in an environment, the messages including signal strength and a timestamp. The example method also includes assigning a location in the environment to the badge based on a first subset of the messages. The example method also includes identifying an asset in a second subset of the messages. The example method also includes updating a current location associated with the asset based on a relative proximity of the asset to the badge, wherein the current location corresponds to a first time and the updated location corresponds to a second time, and wherein a change in location between the current location and the updated location indicates movement of the asset in the environment.
US11039279B1
The described methods and systems decrease instances of distracted driving, encourage more frequent use of vehicle tracking services, and generally improve the risk profile of a driver and vehicle. These benefits are achieved by way of a vehicle computer system that incentivizes users to place mobile devices in a do-not-disturb (DND) mode and to activate vehicle tracking services. The vehicle computer system encourages these behaviors by enabling content delivery for devices within the vehicle based on the status of the mobile device(s) and the status of the vehicle tracking service(s).
US11039278B1
A method includes determining an operating condition associated with a mobile device based on contextual information associated with one or more of usage information of the mobile device, user activity of a user of the mobile device, or location information. If the operating condition satisfies a threshold power-consumption condition, the method further includes adjusting a frequency of collecting location information of the mobile device and collecting information on a plurality of locations associated with the mobile device for a particular time period based on the adjusted frequency of collecting the location information. The method further includes adjusting a frequency of uploading collected location information to a server associated with a social-networking system and sending the information on the plurality of locations for a particular time period to the social-networking system based on the adjusted frequency of uploading collected location information for building a location timeline for the mobile device.
US11039272B2
Disclosed are methods, circuits, systems and associated computer executable code for detecting the presence of a mobile computing device in a specific area. Included are means for receiving a message from the mobile device including a coarse location indicator, determining that the received coarse location indicator is in proximity with one or more local (e.g. retailer) stations, and causing at least one of the one or more local stations to transmit a mobile device specific poling signal to the device.
US11039270B2
Systems, and methods for predicting that a user is located at a labeled place corresponding to a point of interest. A server computer accesses historical data comprising location data, and wireless network data collected from a plurality of client devices of a plurality of users over a period of time. For one or more labeled places, the data points corresponding to one of the users being located at the labeled place are identified. A labeled dataset is generated by tagging the identified data points with a label corresponding to the corresponding labeled place. A machine learning model is trained on the labeled dataset, so that when current location data are receiving from a client device of a user, it is possible to determine, using the trained machine learning model, whether the user is located at one of the one or more labeled places.
US11039262B2
Provided are a directional acoustic sensor that detects a direction of sound, a method of detecting a direction of sound, and an electronic device including the directional acoustic sensor. The directional acoustic sensor includes a sound inlet through which a sound is received, a sound outlet through which the sound received through the sound inlet is output, and a plurality of vibration bodies arranged between the sound inlet and the sound outlet, in which one or more of the plurality of vibration bodies selectively react to the sound received by the sound inlet according to a direction of the received sound.
US11039257B2
An exemplary system includes a sound processor apparatus that is configured for external use by a patient and includes 1) a position sensor that detects a positioning of the sound processor apparatus and 2) a control module that is communicatively coupled to the position sensor and performs a predetermined action with respect to the system in accordance with the detected positioning of the sound processor apparatus. Corresponding systems and methods are also described.
US11039256B2
An implanted microphone is provided that allows for isolating an acoustic response of the microphone from vibration induced acceleration responses of the microphone. The present invention measures the relative motion between a microphone diaphragm, which is responsive to pressure variations in overlying media caused by acoustic forces and acceleration forces, and a cancellation element that is compliantly mounted within a housing of the microphone, which moves primarily in response to acceleration forces. When the microphone and cancelation element move substantially in unison to acceleration forces, relative movement between these elements corresponds to the acoustic response of the microphone diaphragm. This relative movement may be directly measured using various optical measuring systems.
US11039254B2
The invention relates to the field of electronic technology, and more particularly, to a microphone structure. A MEMS (Micro-Electro-Mechanical System)-based bone conduction sensor comprises: a closed cavity within which a uniaxial or biaxial accelerometer sensor is arranged to be adjacent to bones of a human ear; an ASIC (application-specific integrated circuit) processing chip coupled to the uniaxial or biaxial accelerometer sensor, the ASIC processing chip being provided with an output end for a vibration signal. By adopting the above-mentioned technical solution, a bone conduction sensor with a closed cavity is provided in the present invention. Furthermore, a uniaxial or biaxial accelerometer sensor and an ASIC processing chip are arranged inside the closed cavity. In this way, the production costs are reduced, and interference of the sensor caused by ambient environment is reduced.
US11039252B2
The present invention relates to a membrane plate structure for generating sound waves, the membrane plate structure comprises a vibrating element for generating sound waves and a membrane plate which is coupleable to the vibrating element. The membrane plate has a different width with respect to its length, wherein the width is shorter than the length. The membrane plate comprises an UD layer made of fibers, wherein the fibers of the UD layer are oriented along the width of the membrane plate.
US11039248B2
According to an embodiment, a microspeaker includes an acoustic micropump structure configured to pump at a first frequency above an upper audible frequency limit. The acoustic micropump structure is further configured to generate an acoustic signal having a second frequency by adjusting the pumping. Adjusting the pumping includes adjusting a direction of pumping for the acoustic micropump structure according to the second frequency. Adjusting the direction of pumping includes changing a direction of flow of an elastic medium through the acoustic micropump structure from a first direction to a second direction. The second frequency is below the upper audible frequency limit.
US11039246B2
The present disclosure provides a volume adjusting method, a device, and a terminal device. In the method, audio information of an audio source may be obtained when a terminal device is playing the audio source. An audio amplitude corresponding to the audio information is determined basing on the audio information. The audio amplitude is adjusted according to an amplitude adjustment coefficient, and the amplitude adjustment coefficient is assigned according to the value of the audio amplitude.
US11039243B2
An apparatus for processing an audio signal for reproduction by a sound transducer includes an equalization parameter determinator for determining a set of equalization parameters and an equalizer configured to equalize an input audio signal, to obtain an equalized audio signal. Different concepts for the determination of the set of equalization parameters include an image recognition, an evaluation of an identification signal which is provided by the sound transducer via an audio connection, and a measurement of the impedance of the sound transducer over frequency. Also, an upload functionality and a download functionality are provided.
US11039241B2
An earpiece includes a feed-forward microphone coupled to the environment outside the headphones, a feedback microphone coupled to an ear canal of a user when the earpiece is in use, a speaker coupled to the ear canal of the user when the earpiece is in use, a digital signal processor implementing feed-forward and feedback noise compensation filters between the respective microphones and the speaker, and a memory storing an ordered sequence of sets of filters for use by the digital signal processor. Each of the sets of filters includes a feed-forward filter that provides a different frequency-dependent amount of sound pass-through or cancellation, which in combination with residual ambient sound reaching the ear results in a total insertion gain at the ear of a user.
US11039240B2
Various implementations include headphone systems configured to adapt to changes in user environment. In some particular cases, a headphone system includes at least one headphone including an acoustic transducer having a sound-radiating surface for providing an audio output; a sensor system configured to detect an environmental condition proximate the at least one headphone; and a control system coupled with the at least one headphone and the sensor system, the control system configured to: receive data about the environmental condition from the sensor system; and modify the audio output at the at least one headphone in response to a change in the environmental condition, wherein the audio output includes a continuous audio output provided across a transition between environmental conditions and is configured to vary with the change in the environmental condition.
US11039230B2
A device for controlling upstream transmission of bursts from optical network units (ONUs) to an optical line termination (OLT) in a passive optical network (PON), wherein the upstream transmission is organized in time intervals that form part of an upstream timeframe, includes obtain respective optical power levels received at the OLT for the ONUs; obtain respective extinction ratios at the OLT for the ONUs; obtain respective transmission wavelengths for the ONUs; distinguish pairable ONUs and non-pairable ONUs at least based on the wavelengths; pair the pairable ONUs based on the optical power levels and/or the extinction ratios to generating one or plural subsets of paired ONUs; allow paired ONUs that belong to a same subset to simultaneously transmit bursts within a time interval.
US11039229B2
An optical network communication system utilizes a passive optical network (PON) and includes an optical line terminal (OLT) having a downstream transmitter and an upstream receiver, and an optical network unit (ONU) having a downstream receiver and an upstream transmitter. The downstream transmitter is configured to provide a coherent downlink transmission, and the downstream receiver is configured to obtain one or more downstream parameters from the coherent downlink transmission. The system further includes a long fiber configured to carry the coherent downlink transmission between the OLT and the ONU. The ONU is configured to communicate to the OLT a first upstream ranging request message, the OLT is configured to communicate to the ONU a first downstream acknowledgement in response to the upstream first ranging request message, and the ONU is configured to communicate to the OLT a second upstream ranging request message based on the first downstream acknowledgement.
US11039222B2
A method for targeted content placement using overlays includes receiving media content from a content feed and displaying the media content from the content feed at a display of the media device. As the display of the media device displays the media content, the method also includes fingerprinting at least one frame of the media content to obtain a fingerprint and identifying an in-frame advertisement based on the obtained fingerprint. The in-frame advertisement corresponds to an advertisement within a portion of the at least one frame. The method further includes determining a target overlay location within the at least one frame with the in-frame advertisement, the target overlay location corresponding to a size of the in-frame advertisement, and superimposing overlay content at the target overlay location when the display of the media device displays the at least one frame with the in-frame advertisement.
US11039201B2
Aspects of the subject disclosure may include, for example, a device that includes a processing system including a processor and a memory that stores executable instructions that, when executed by the processing system, facilitate performance of operations, where the operations include receiving a request from a viewer of a content stream to invoke a trick mode to seek another viewing location in the content stream, displaying a trick mode screen, requesting an advertisement to display during the trick mode, retrieving content for the advertisement, and displaying the advertisement after completion of the trick mode. Other embodiments are disclosed.
US11039194B2
A method to create interactivity between a main device and a secondary device. The method comprises receiving a main stream comprising a signal indicating the availability of the ongoing interactive experience related to the audio/video content and extracting the interactive data from the main stream, obtaining a main interactive application related to the interactive data by the main device, obtaining a secondary interactive application related to the interactive data by the secondary device, loading the main interactive application into a software module of the main device, executing the main interactive application with all or part of the interactive data, collecting by the main interactive application of the main device, result of user's interactions made on the secondary device during execution of the secondary interactive application, processing the received user's interaction by the main interactive application to produce a result, displaying the result on the screen together with the audio/video content.
US11039183B2
The present invention provides an apparatus of transmitting broadcast signals, the apparatus including, an encoder for encoding service data, a frame builder for building at least one signal frame by mapping the encoded service data, a modulator for modulating data in the built at lease one signal frame by an Orthogonal Frequency Division Multiplexing, OFDM, scheme and a transmitter for transmitting the broadcast signals having the modulated data.
US11039180B2
Systems and methods for providing multichannel video programming or content through a terrestrial fiber network of a telecommunications network. One or more high-quality content feeds may be provided to one or more replicator devices of the telecommunications network over a communication line. The replicator devices of the network then deliver one or more replicated content streams generated from the content feeds to any number of customers or receivers of the content also connected to the network. The replicators may be configured to, among other things, provide content streams according to a specific schedule, provide alternative content streams for particular customers or in response to particular events, or operate in conjunction with data analyzers for assessing the quality of the content stream or the reliability of the telecommunications network.
US11039173B2
A system and method are disclosed for communicating video/images from a first electronic device to a second electronic device via a network. The first electronic device can include a digital video camera and the second electronic device can include a mobile electronic device, such as a smart phone. The method can include, with the first electronic device, acquiring a first image (as part of a video) having a first resolution, transmitting the first image with a second resolution to the second electronic device, receiving a cropping parameter from the second electronic device, acquiring a second image (as part of a video), cropping the second image based on the crop parameter resulting in a third image having a third resolution, and transmitting the third image with the third resolution.
US11039172B2
The present technology relates to an image processing device and an image processing method which allow a deblocking filtering process to apply filtering appropriately. A pixel (p0i) of which the value is 255 (solid line) before a deblocking process changes greatly to 159 (dot line) after a conventional deblocking process. Therefore, a clipping process having a clipping value of 10 is performed in strong filtering, whereby the pixel (p0i) of which the value is 255 (solid line) before the deblocking process becomes 245 (bold line). Thus, a change in the pixel value occurring in the conventional technique can be suppressed as much as possible. This disclosure can be applied to an image processing device, for example.
US11039158B2
A method includes determining whether a reference block for a current block is located in a different coding tree unit (CTU) than a CTU of the current block. If the reference block is located in the different CTU, the method includes determining whether the CTU of the current block and a memory have a same size. If the CTU of the current block and reference sample memory have a same size, the method includes (i) determining a first area in the CTU of the current block collocated with a second area in the different CTU; (ii) determining, based on a decoding status of the first area, whether a memory location of the memory for the reference block is available; and (iii) if the memory location for the reference block is available, retrieving, from the memory location, one or more samples to decode the current block.
US11039156B2
Aspects of the disclosure provide methods and apparatuses for video encoding/decoding. An apparatus for video decoding includes processing circuitry that decodes prediction information for a current block in a current picture that is a part of a coded video sequence. The prediction information indicates an intra prediction direction for the current block that is one of (i) a diagonal intra prediction direction or (ii) a neighboring intra prediction direction adjacent to the diagonal intra prediction direction. The processing circuitry determines a usage of a position dependent prediction combination (PDPC) process according to the intra prediction direction of the current block. The same PDPC process is applied to both the diagonal intra prediction direction and the neighboring intra prediction direction. The processing circuitry reconstructs the current block based on the usage of the PDPC process on the current block.
US11039153B2
A video keying processing device is provided which comprises memory configured to store data and a processor configured to determine, which pixel portions, in a YUV color space of a first video comprising a foreground object and a background color, represent the foreground object and the background color of the first video. The processor is also configured to, for each pixel portion of the first video determined to represent the foreground object and the background color, convert YUV values of the pixel portion to red-green-blue (RGB) color component value and determine a blended display value for each RGB color component of the pixel portion based on a blending factor. The processor is also configured to generate a composite video for display using the blended display values of each pixel portion determined to represent the foreground object and the background color.
US11039148B2
Disclosed are an image encoding/decoding method and apparatus. The method and apparatus select at least one reference pixel line from among multiple reference pixel lines and derive a predicted value of a pixel within a current block by using the value of at least one pixel within the selected reference pixel line(s). Alternatively, the method and apparatus derive an intra prediction mode of a reconstructed pixel region on the basis of a reference pixel region of at least one reconstructed pixel region, derive an intra prediction mode of a current block on the basis of the derived intra prediction mode of the reconstructed pixel region, obtain an intra prediction block of the current block by using the derived intra prediction mode, and reconstruct the current block by summing the obtained intra prediction block and a residual block of the current block.
US11039142B2
A data encoding method for encoding an array of data values as data sets and escape codes for values not encoded by the data sets, an escape code including a unary coded portion and a non-unary coded portion, the method including: setting a coding parameter defining a minimum number of bits of a non-unary coded portion; adding an offset value of 1 or more to the coding parameter to define a minimum least significant data portion size; generating one or more data sets indicative of positions, relative to the array of data values, of data values of predetermined magnitude ranges, to encode the value of at least one least significant bit of each data value; generating respective complementary most-significant data portions and least-significant data portions; encoding the data sets; encoding the most significant data portions; and encoding the least-significant portions.
US11039133B2
A filter processing section 352 performs a filter process for applying an offset to pixels of a decoded image. A filter controller 351 inhibits the offset from being applied to an edge portion depending on occurrence of a transform unit in a transformation skip mode in which orthogonal transformation is not performed on a predicted residual. Furthermore, the filter controller 351 determines whether an offset for gradation adjustment using the decoded image is to be applied in the filter processing section 352 or not, and sets an offset in case the offset is to be applied. It is possible to make less conspicuous in the boundary between a transform unit where orthogonal transformation is performed by the offset for gradation adjustment and the transform unit where orthogonal transformation is skipped. The image quality of the decoded image is restrained from being lowered.
US11039132B2
A code amount estimation device includes a code amount estimation unit configured to estimate a first target code amount on the basis of a first code amount estimation area in first image information and a code amount estimation model for estimating the first target code amount for each first code amount estimation area using the first code amount estimation area and multiple first quantization parameters determined in advance, and the code amount estimation model is a model generated by associating a second code amount estimation area in second image information, multiple second quantization parameters, and a second target code amount for each second code amount estimation area when coding is performed with respective values of multiple second quantization parameters with each other.
US11039127B2
The present disclosure provides a video image decoding method in which a size of an affine motion compensation image sub-block in an affine image block is determined based on a motion vector difference, motion vector precision, a distance between control points in the affine image block, and a size of the affine image block, where the size includes a length in a horizontal direction and a length in a vertical direction, so that a length of the affine image block in a horizontal/vertical direction is an integer multiple of the length of the affine motion compensation image sub-block in the horizontal/vertical direction.
US11039123B2
An electrically controlled spectacle includes a spectacle frame and optoelectronic lenses housed in the frame. The lenses include a left lens and a right lens, each of the optoelectrical lenses having a plurality of states, wherein the state of the left lens is independent of the state of the right lens. The electrically controlled spectacle also includes a control unit housed in the frame, the control unit being adapted to control the state of each of the lenses independently.
US11039116B2
A subtitle-embedding method for a virtual-reality (VR) video is provided. The method includes the following steps: obtaining a VR video; in response to execution of a display operation of the VR video, analyzing a current stereoscopic image of the VR video to obtain at least one object and an object parallax corresponding to the object in the current stereoscopic image; adjusting a subtitle parallax of a subtitle to be superimposed onto the current stereoscopic image according to the object parallax, wherein the subtitle parallax is greater than the object parallax; and superimposing the subtitle onto the current stereoscopic image using the calculated subtitle parallax.
US11039106B2
A distribution element for a self-calibrating RF network and system and method for use of the same are disclosed. In one embodiment of the distribution element, the distribution element is located between a headend layer and an endpoint layer. An upstream directional control circuit and a downstream directional control circuit are positioned in a spaced opposing relationship such that respective upstream line and the downstream line are separated into a forward line and reverse line therebetween while being combined at the respective upstream directional control circuit and the downstream directional control circuit. A pair of amplifier circuits positioned between the upstream and downstream control circuits are under the control of a controller to amplify and shape the signal of the forward line and the reverse line. The controller monitor and analyzes signals through the distribution element.
US11039103B2
A system and method for handling data captured by a body worn camera are disclosed. The system may include a body worn camera, a docking station, and a recorder. The camera may include a local storage device. The docking station may include a data interface for connecting the local storage device to the docking station, and a first network interface for connecting the docking station to the recorder. The docking station may be physically separate from the recorder. The recorder may include a second network interface for connecting the recorder to the docking station, and a recorder storage device. The recorder may be arranged to retrieve the captured data from the camera and store it in the recorder storage device, and may include a third network interface for transfer of stored data to a data management system.
US11039100B2
A signal conversion circuit and a signal readout circuit are provided. The signal conversion circuit includes: an input switched capacitor, one end receiving an electric signal output by a sensing array, and the other end being coupled to an input end of an operational amplifier; a feedback switched capacitor, one end being coupled to the input end of the operational amplifier, and the other end being coupled to an output end of the operational amplifier; an input switch controlling the input switched capacitor to access the signal conversion circuit or not; and a feedback switch controlling the feedback switched capacitor to access the signal conversion circuit or not, wherein the electric signal output by the sensing array comprises a charge signal, a current signal or a voltage signal, and equivalent impedance of the input switched capacitor and the feedback switched capacitor is related to output characteristics of the sensing array.
US11039096B2
In an aspect, an image processing device includes: first specification means for specifying an abnormal pixel from a plurality of pixels according to a first method; and second specification means for specifying an abnormal pixel, from the plurality of pixels excluding the abnormal pixel specified by the first specification means, according to a second method different from the first method.
US11039095B2
Decrease of the frame rate is suppressed in a solid-state image pickup device that generates a frame having an increased dynamic range. A measurement section measures a reception light amount in each of a plurality of regions to generate a measurement result. A selection section selects one of a plurality of exposure periods different from each other based on the measurement result in each of the plurality of regions. An image data generation section performs exposure for each of the plurality of regions over the selected exposure period to generate image data. An image processing section adjusts a value of the image data generated for each of the plurality of regions based on the measurement result.
US11039093B2
An image sensor, includes: a plurality of pixels arranged along a first direction, each of which includes a photoelectric conversion unit that generates an electric charge through photoelectric conversion of light, and outputs a signal generated based upon the electric charge generated in the photoelectric conversion unit; a first signal line to which signals from one or more pixels among the plurality of pixels are output; a second signal line to which a signal from another pixel among the plurality of pixels is output; and an arithmetic unit that executes an arithmetic operation with a signal generated by combining the signals from the one or more pixels output to the first signal line and the signal output to the second signal line.
US11039090B2
A multi-purpose imaging and display system includes a display; a detector coupled to the display and having a field of view; and a filter communicating with the detector. The field of view is imaged by the detector through the filter, the filter configured to be sensitive to a first frequency spectrum, so the detector displays only objects within the field of view on the detector that emit one or more frequencies within the first frequency spectrum. The detector and filter can work together in different operational states or modes for acquiring image data of a target object under investigation. A computing device can be included to process acquired image data, and communication interfaces can be employed to achieve networking of multiple systems. A peripheral interface allows a plurality of peripheral devices to be selectively added to tailor the data acquisition and display capabilities of the imaging and display system.
US11039086B2
A system includes an optical element configured to separate light into a first light beam and a second light beam, a first optical module configured to capture a first image having a first field of view from the first light beam, a second optical module configured to capture a second image having a second field of view different from the first field of view from the second light beam, and one or more processors configured to generate a scaled image by scaling one of the first image or the second image, and generate a combined image by aligning the scaled image and an unscaled one of the first image or the second image.
US11039085B2
A camera configured to maintain an image in a preferred orientation when the camera is passed from one user to another is provided. The camera detects a spatial orientation of the camera in at least a first position. The camera detects a vector information generated when the camera is passed from one user to another. The camera processes the spatial orientation and vector information so as to retain the image in a preferred orientation.
US11039082B2
An image capturing apparatus, comprising: an image sensor configured to capture an image of a subject and output image signals, a dividing unit configured to vertically divide the image signals into a plurality of regions, a detection unit configured to detect flicker based on a signal level of each of the plurality of regions, and a control unit configured to cause a plurality of image captures with different exposure conditions to be performed using the image sensor, wherein the detection unit, by adjusting a phase of a flicker appearing in each of the plurality of image signals obtained by the plurality of image captures, detects a flicker from the plurality of image signals.
US11039068B2
There is provided an image processing apparatus including a display image generation section configured to generate display image data by performing a display projection process in a case where panorama image data to be a display target is judged to be a full circumference panorama image.
US11039065B2
An electronic device according to an embodiment of the present disclosure comprises: an image sensor for generating image data on the basis of incident light; and a plurality of image processing blocks (IP blocks), and may comprise an image signal processor (ISP) for processing the image data. The image signal processor may set a first processing path and a second processing path by at least one IP block among the plurality of image processing blocks on the basis of designated control information, divide the image data into first image data and second image data when the image data is received, process the first image data by using a first group image processing block on the first processing path, and process the second image data by using a second group image processing block on the second processing path. Various other embodiments understood from the specification are also possible.
US11039058B2
A method and an apparatus for focusing are disclosed. The apparatus includes: a determining module, configured to determine that an imaging mode switches from a first imaging mode to a second imaging mode; an image position estimating module, configured to estimate a position of an image of a target object on a picture taking device in the second imaging mode according to a position of an image of the target object on a picture taking device in the first imaging mode and a principle of epipolar geometry; and a searching module, configured to search for the image of the target object in the second imaging mode according to the estimated position of the image of the target object on the picture taking device in the second imaging mode.
US11039056B2
An electronic device is provided. The electronic device includes a camera module including a lens assembly and an image sensor, a display, and a processor. At least one pixel of the image sensor includes a first sub-pixel, a second sub-pixel, a third sub-pixel, and a fourth sub-pixel. The first sub-pixel may be covered by a first micro lens, the second sub-pixel may be covered by a second micro lens, and the third sub-pixel and the fourth sub-pixel may be covered by a third micro lens. The processor obtains a light reflected from an external object, generates depth data, generates pixel data generates an image based on the pixel data, outputs the image, and moves one or more lenses based on the depth data.
US11039049B2
A hub and a camera mount configured to support a video camera. The camera mount and hub are detachably mountable with respect to each other in any of at least two different configurations, preferably with adjustability in at least one configuration. In some embodiments, the camera mount includes a first structure including a retainer and camera support, a slide translatably mounted to the first structure, and a foot having a first end pivotably attached to the slide. The retainer is shaped to engage a surface of an object to which the camera mount is to be mounted. Other aspects are a camera mount, and a camera mount alone. Optionally, in one configuration the hub is mountable to a wall or other surface.
US11039038B2
The disclosed technique is an image processing apparatus that corrects gradation values of monochrome data converted from color data, including correction unit configured to, in the case where there are three or more gradation values after conversion and there are a plurality of gradation value differences between adjacent gradation values arranged in order of magnitude, if there is a gradation value difference smaller than a prescribed threshold value among the plurality of gradation value differences, correct the gradation value difference smaller than the threshold value to increase in the range of the threshold value or smaller by reducing other gradation value differences adjacent to the gradation value difference smaller than the threshold value.
US11039031B2
This information processing system (100) includes an information processing device (1) and a display input device (2). The display input device (2) receives settings of a first target, first processing, a second target, and second processing. The information processing device (1) takes, as a condition, the execution of the set first processing by using the set first target, and, when the condition is satisfied, generates a workflow (5) for executing the set second processing by using the set second target.
US11039025B2
The display input device includes an operation display part, a call button correspondingly associated with a default process of displaying a setting screen in the operation display part, and a controller for, when the call button is operated while another screen other than the setting screen is displayed, executing the default process to display the setting screen. The controller decides whether or not a changeover condition has been satisfied during display of the setting screen, and in a case where the call button is operated for a second time during the display of the setting screen, on condition that the changeover condition has been satisfied, the controller executes a process corresponding to a status of use of the operation display part during a period lasting from execution of the default process until the second-time operation of the call button.
US11039024B2
An image forming apparatus includes a first detector that detects an operation from which input of a start instruction for forming an image is predicted, a second detector that detects a human body, and a controller that controls starting a preparation operation even without input of the start instruction in a case where the operation is detected. The controller controls ending the preparation operation where the start instruction is not input even after a first predetermined time has passed since the start of the preparation operation and the second detector does not detect the human body, and controls continuing the preparation operation in a case where the start instruction is not input even after the first predetermined time has passed since the start of the preparation operation and the second detector detects the human body.
US11039023B2
An information processing apparatus includes a generation unit and a determination unit. In a case where the determination unit determines that a second processing button has been generated, the generation unit generates a fourth processing button for executing a new plurality of processes in which a process corresponding to a third processing button among a plurality of processes is replaced with a process corresponding to a first processing button.
US11039015B2
An apparatus and/or method discloses a video conference with enhanced audio quality using high-fidelity audio sharing (“HAS”). In one embodiment, a network connection between a first user equipment (“UE”) and a second UE is established via a communication network for providing an interactive real-time meeting. After sending a first calibration audio signal from the first UE to the second UE, a second calibration audio signal is retuned from the second UE to the first UE according to the first calibration audio signal. Upon identifying a far end audio (“FEA”) delay based on the first calibration audio signal and the second calibration audio signal, a first mixed audio data containing the first shared audio data and first FEA data is fetched from an audio buffer. The first FEA data is subsequently removed or extracted from the mixed audio data in response to the FEA delay.
US11039014B1
A method starts with processor retrieving member's initial context data. Processor receives a string that is a transcribed utterance or an electronic message from the communication session established between member client device and agent client device. Processor determines potential relationships between the member and a patient that is the subject of the string by processing the string using Long Short-Term Memory (LSTM) neural networks to generate a plurality of relationship values. Relationship values are associated with relationship types. Processor generates weight values based on member's initial context data for each of the plurality of relationship types, and generates probability values for the relationship types based on the relationship values and the weight values. Processor narrows the potential relationships, generates relationship data that includes the narrowed potential relationships, and causes the relationship data to be displayed by the agent client device. Other embodiments are disclosed herein.
US11039013B1
The invention relates to systems/methods that enable real-time monitoring/processing of contact center communications to provide timely, actionable analytic insights and real-time critical call alerts, while simultaneously providing best-in-class protection of sensitive customer information.
US11039012B2
A computer-implemented method for proactive fraudster exposure in a customer service center having multiple service channels is provided herein. The computer-implemented method may collect call interactions based on predefined rules by a calls collection engine and store the collected call interactions. The computer-implemented method may further analyze the call interactions by a Proactive Fraud Exposure engine by: (i) generating a voiceprint for each call interaction; (ii) using machine learning technique to group the call interactions into one or more clusters based on respective voiceprints in the voiceprints database; (iii) storing the one or more clusters; and (iv) ranking and classifying the one or more clusters to yield a list of potential fraudsters. The computer-implemented method may further transmit the list of potential fraudsters to a user to enable the user to review said list of potential fraudsters and to add fraudsters from the list to a watchlist database.
US11038986B1
Techniques are disclosed for modifying an application-level configuration of a cluster of virtual application servers in response to an automatic provisioning of server instances to or from the cluster. An auto-scaling service receives an indication that one or more metrics associated with a cluster in a service provider environment triggers a specified scaling condition. The cluster includes application server instances executing one or more services provided by an application. The auto-scaling service provisions an additional application server instance in response to the indication. One or more services provided by the application are installed on the additional application server instance. A configuration engine obtains one or more scripts for configuring the additional application server instance to execute the services as part of the cluster. The scripts are executed on the application server instances to include the additional application server instance to the cluster.
US11038984B2
The present invention is notably directed to a computer-implemented method of accessing data by an application. The method comprises detecting an application that is accessing an initial file stored in a storage system; fetching an application model of the detected application, the application model comprising an association between access patterns of the detected application when accessing first files with first metadata information of the said first files; identifying one or more second files stored in the storage system, the identified one or more second files having second metadata information that are similar to the first metadata information; and prefetching the identified one or more second files.
US11038975B2
An information pushing method and device. One particular embodiment of the method includes: acquiring a push instruction; acquiring information about at least one candidate push user with the category of push information the same as the category of to-be-pushed information; according to the push instruction and the information about at least one candidate push user, selecting at least one to-be-pushed user; and pushing the to-be-pushed information to the at least one to-be-pushed user. The method realizes that the push information is sent to the same user only once within a certain time length, thus preventing too much interference to a user.
US11038971B2
A system for displaying a map to passengers on a commercial passenger vehicle is disclosed. The system comprises a storage configured to store (1) personal information of passengers either located in or expected to board the commercial passenger vehicle; and (2) location-related information including location-related information associated with an area covered by the map; a server located in the commercial passenger vehicle and configured to perform a method comprising: sending, to a media playback device associated with a passenger, a message to display a list of selectable map features; receiving, from the media playback device, a selection of at least one map feature among the selectable map features; retrieving the personal information or the location-related information from the storage; and integrating retrieved personal information or retrieved location-related information to map data, thereby rendering the map.
US11038970B2
Mobile usage data representing the access of one or more resources on a network by mobile devices is accessed. The mobile usage data includes information received from mobile devices as a result of beacon instructions included with the one or more resources. A first set of data representing information about accesses to the one or more resources by mobile devices with persistent beacon cookies is determined. A second set of data representing information about accesses to the one or more resources by mobile devices with non-persistent beacon cookies is determined. One or more adjustment factors are determined based on the first set of data. A count of unique visitors accessing the one or more resources from the mobile devices is determined based on a count of accesses by the mobile devices with persistent beacon cookies and a count of accesses by the mobile devices with non-persistent beacon cookies adjusted by the one or more adjustment factors.
US11038967B2
A device can receive, from a user device, a hypertext transfer protocol (HTTP) CONNECT request associated with a toll-free data service. The user device can establish a first transmission control protocol (TCP) connection with a proxy server. The HTTP CONNECT request can request the proxy server to establish a second TCP connection with a content provider server. The device can determine, based on the HTTP CONNECT request, that an authorization condition is satisfied. The device can store information associated with a flow between the user device and the content provider server. The user device and the content provider server can establish a transport layer security (TLS) connection based on the first TCP connection and the second TCP connection. The device can provide the information associated with the flow to permit an account of an entity to be adjusted in association with the toll-free data service.
US11038957B2
The present disclosure describes a system and method for efficient, coordinated, distributed execution. Processes are registered into a process registry which includes a table or list of processes. Processes which are determined to be no longer running are removed from the registry. Each process is configured to send a broadcast when it starts or stops. Each process periodically reads the registry, sorts the list, and uses it to determine the current master process based on an algorithm.
US11038956B2
Provided is a method and apparatus for determining a network central node, and a node equipment. The method includes: acquiring a weighted average value of a node in a network, where the weighted average value is used for describing appropriateness of the node in the network as a central node; and determining a node having a maximum weighted average value in the network as the central node of the network. In this way, a technical problem of poor communication stability in the related art is solved.
US11038953B1
Internet bound traffic that is being routed through a particular interface within an edge router can, under some circumstances, be moved to a different interface. In some situations, one or more Internet protocol (IP) flows can be moved to a different interface within the same edge router. In other situations, one or more IP flows can be moved to a different interface within a different edge router. Decisions to move Internet traffic to a different interface can be based on information about interfaces within the various edge routers in a cloud computing provider's network, information about IP flows that are being sent through the various interfaces, peering capacity information and information about the latency associated with particular Internet paths. Some or all of the information that is used in connection with traffic steering decisions can be based on real-time measurements.
US11038952B2
In a networked data system, a discovery protocol enables clients to establish connections to one a plurality of database servers to utilize a distributed connection service. The service manages connections between application servers, i.e. clients, and databases. An initial request from the client is received by a load balancer. The load balancer responds to the client by identifying an assigned connection to one of the database servers based on load considerations. The client sends a secondary request directly to the assigned connection, bypassing the load balancer. The service establishes a persistent link on the assigned connection and assigns a time-to-live (TTL), during which the service connects data requests to the databases. Upon expiration of the TTL, the service completes a next data request received, then notifies the client that the connection is no longer valid, thereby requiring a new connection through the load balancer and rebalancing system traffic.
US11038948B2
Systems, methods, and devices are disclosed for providing real-time updates and predictive functionality in a supply distribution chain of a product. A request is received from a user to view decentralized status information for a product, where the decentralized status information can include real time updates for building the product, assembling the product, shipping the product, and/or exchanging payments between suppliers, partners, or both. This decentralized status information for the product is received from one or more nodes on a distributed network, with the nodes being suppliers and/or partners in the supply distribution chain of the product. The user is granted at least read access to the decentralized status information of the product, as well as a prediction of product build completion based on node supply chain relationships specified within a smart contract.
US11038946B2
An approach provides access to cloud services that are impractical or difficult to implement on end-user devices without a high level of programming skill and customization. The approach uses a first set of cloud services, referred to herein as Integrated Cloud Environment (ICE) cloud services, to access to a second set of cloud services, referred to herein as Smart Integration (SI) cloud services, on end-user devices. The ICE cloud services provide a user-friendly user interface for accessing the SI cloud services via an end-user device, implement the Application Program Interfaces (APIs) of the SI cloud services, and also manage results generated by the SI cloud services. The ICE cloud services also manage user information, authorization credentials and tokens needed to access third-party services. According to another embodiment, the SI cloud and the ICE cloud are integrated using direct linking, i.e., directly linking an end-user device to the SI cloud.
US11038944B2
Technology to provide improved quality-of-experience-aware multimedia streaming is disclosed. Several types of communications that can be made between clients and servers are described. These communications enable improvements to current approaches that are used to achieve hyper-text transfer protocol (HTTP) adaptive streaming. These messages can be used in conjunction with computer circuitry configured to: determine a bandwidth available to the server for transmitting HTTP adaptive streaming content to a plurality of clients; receive HTTP requests from the plurality of clients for representations offered by the server in a manifest file for the HTTP adaptive streaming; and calculate an availability of each representation that is offered in the manifest file for the server. The availability can be calculated, at least in part, based on the determined bandwidth. The availability of each representation can be communicated from the server to the plurality of clients.
US11038940B2
A processing system including at least one processor may collect a first set of time series features relating to requests for a content item at a content distribution node in a communication network, generate a first prediction model based upon the first set of time series features to predict levels of demand for the content item at the content distribution node at future time periods, identify, via the first prediction model, a first time period of the future time periods when a predicted level of demand for the content item exceeds a threshold level of demand, identify a second time period of the future time periods when a predicted level of utilization of the communication network is below a threshold level of utilization, the second time period being prior to the first time period, and transfer the content item to the content distribution node in the second time period.
US11038929B1
The instant application provides a method providing one or more of: receiving, by a control node coupled to a SIP node, a SIP message from the SIP node, parsing the SIP message to determine a message type and content, modifying the SIP message content to create a modified SIP message, transmitting the modified SIP message to the SIP node, receiving, by the SIP node, the modified SIP message within a predetermined time period, and forwarding, by the SIP node, the modified SIP message to a destination SIP node in the SIP call path. The control node is not in a SIP call path.
US11038927B1
Disclosed embodiments relate to systems and methods for multidimensional vectors for analyzing and visually displaying identity permissions. Techniques include identifying a plurality of identities, privileges used by the identities, and data associated with the identities, developing privilege vectors based on the identified information, and generating groupings of the identities based on the privilege vectors. Further techniques include generating a group score for an identity grouping, using the group score to determine if the grouping is a least privilege grouping, and updating the privileges of the identities within the grouping.
US11038926B2
In one example, a cloud computing environment may be probed to detect an actual topology including connectivity between infrastructure security nodes and management nodes. Each management node may execute a corresponding centralized management service. Each infrastructure security node may execute a corresponding infrastructure security service that handles at least one infrastructure security function. Further, a set of candidate topologies may be generated based on the actual topology. Each candidate topology may indicate a way to replicate the infrastructure security service into the management nodes. Furthermore, a replication partner associated with each of the management nodes may be determined based on a selection of one of the candidate topologies. An operation to deploy the infrastructure security service on the management nodes may be executed based on the selected one of the candidate topologies and the determined replication partners to form an embedded linked mode architecture.
US11038925B2
A data transfer analysis system is disclosed that analyzes data transfer log entries to determine whether a data transfer is authorized. The system determines information about the data assets involved in the data transfer (e.g., network address, geographical location, etc.) and uses a data map to determine if data transfers are authorized between the two data assets. If not, the system may take one or more actions, such as generating a notification, terminating the data transfer, restricting the access of the user that initiated the transfer, modifying network communications capabilities between the assets to prevent future transfers, and storing metadata that can be used to prevent future such transfers.
US11038923B2
In a communication system comprising a first network operatively coupled to a second network, wherein the first network comprises a first security edge protection proxy element operatively coupled to a second security edge protection proxy element of the second network; the method comprises configuring at least a given one of the first and second security edge protection proxy elements to apply application layer security to one or more information elements in a received message from a network function before sending the message to the other one of the first and second security edge protection proxy elements.
US11038921B1
Methods and systems for detecting a malicious actor on a network. In some embodiments the system may gather data regarding one or more authentic hostnames on a network, and generate a pseudo hostname based on the gathered data. The system may then issue a network discovery request for the pseudo hostname. Based on a response to the network discovery request, the system may execute one or more remedial actions.
US11038920B1
Disclosed herein are methods, systems, and processes for managing and controlling the collective behavior of deception computing system fleets. A malicious attack initiated by a malicious attacker received by a honeypot that is part of a network along with other honeypots is detected. Information associated with the malicious attack is received from the honeypot. Based on the received information, a subset of honeypots other than the honeypot are configured to entice the attacker to engage with the subset of honeypots or avoid the subset of honeypots.
US11038917B2
Disclosed are system and method for building statistical models of malicious elements of web pages. One exemplary method comprises: obtaining, by a control server, data about malicious elements of web pages; transforming, by the control server, the obtained data into at least one N-dimensional vector; creating, by the control server, at least one cluster based on elements of the at least one N-dimensional vector; and building, by the control server, the statistical model of the malicious elements of the web page based on the created at least one cluster.
US11038911B2
A method at a computing device for determining processing characteristics of nodes within a system, the method including receiving at the computing device a plurality of messages being passed within the system; analyzing a payload for each message of the plurality of messages to determine one or more message identifiers; performing an analysis of a binary image for each node within the system to find nodes filtering for the one or more message identifiers; and determining a relative amount of processing done by each of the nodes based on the plurality of messages.
US11038900B2
In one embodiment, a service receives a plurality of process hashes for processes executed by a plurality of devices. The service receives traffic data indicative of traffic between the plurality of devices and a plurality of remote server domains. The service forms a bipartite graph based on the processes hashes and the traffic data. A node of the graph represents a particular process hash or server domain and an edge between nodes in the graph represents network traffic between a process and a server domain. The service identifies, based on the bipartite graph, a subset of the plurality of processes as exhibiting polymorphic malware behavior. The service causes performance of a mitigation action in the network based on the identified subset of processes identified as exhibiting polymorphic malware behavior.
US11038895B2
Systems, methods, and computer-readable media are provided for managing mutual and transitive trust relationships between resources, such as Fog/Edge nodes, autonomous devices (e.g., IoT devices), and/or analog/biological resources to provide collaborative, trusted communication over a network for service delivery. Disclosed embodiments include a subject resource configured to assign an observed resource to a trust zone based on situational and contextual information. The situational information may indicate a vector of the observed resource with respect to the subject resource. The contextual information may be based in part on whether a relationship exists between the subject resource and the observed resource. The subject resource is configured to determine a trust level of the observed resource based on the determined trust zone. Other embodiments are disclosed and/or claimed.
US11038890B2
A method, non-transitory computer readable medium and apparatus for controlling access of a custom browser function are disclosed. For example, the method includes a processor that sends a request to a third party website, receives a hypertext markup language code and a browser script, renders the hypertext markup language code, detects that the browser script is trying to access a custom browser function, compares one or more parameters associated with the custom browser function to an access control list to control an access of the custom browser function, and executes the custom browser function when a match of the one or more parameters is found in the access control list.
US11038884B2
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for a blockchain-based right protection. One of the methods includes: sending, to a blockchain network, a request for verifying a right to access a digital product, the request comprising identity information associated with a target user; receiving, from the blockchain network, a response comprising a result of verifying the right to access the digital product based on the identity information associated with the target user; in response to the result being that the verifying the right to access the digital product is successful, determining identification information for tracing the target user; and embedding the identification information for tracing the target user in content associated with the digital product.
US11038883B2
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for blockchain-based decentralized-identifier creation, are provided. One of the methods includes: obtaining a request for creating a decentralized identifier (DID), wherein the request comprises a public key of a cryptographic key pair; creating, based on the public key, a blockchain account associated with a blockchain; creating the DID based on information associated with the blockchain account; and returning a confirmation message comprising the created DID.
US11038880B2
In an embodiment of the present disclosure, an embodiment includes a user device comprises a conversion engine configured to receive a biometric file comprising biometric identification information of a user and convert the biometric file into a first numeric representation. The user device further comprises a hashing engine configured to create a superimposed numeric representation by performing a convolution operation on the first numeric representation and a second numeric representation, wherein the second numeric representation is based on a key file that is different from the biometric file. The hashing engine is further configured to convert the superimposed numeric representation into a hash value, send, over a network connection, the hash value for authentication, and receive a message indicating whether authentication was successful.
US11038867B2
A flexible and extensible architecture allows for secure searching across an enterprise. Such an architecture can provide a simple Internet-like search experience to users searching secure content inside (and outside) the enterprise. The architecture allows for the crawling and searching of a variety of sources across an enterprise, regardless of whether any of these sources conform to a conventional user role model. The architecture further allows for security attributes to be received at query time, for example, in order to provide real-time secure access to enterprise resources. The user query also can be transformed to provide for dynamic querying that provides for a more current result list than can be obtained for static queries.
US11038848B2
An automated system comprising a processor and a database are described. The processor executes communication software reading: at least one image corresponding to an identifier of a blood product from a donor; and at least one database storing at least one communication from a receiver of the blood product. The communication software executed by the processor determines an intermediary from the identifier and contacts the intermediary to obtain contact information of the donor.
US11038847B1
This disclosure is directed to one or more computing services that provide users with secure access to a computing instance, which is auditable and accessible via a cross-platform browser-based shell or command-line interface (CLI). The computing service(s) forego any need to open up inbound ports, thereby improving security. The computing service(s) employ centralized authentication and auditing to ensure compliance with policies and to log activities for auditing, forensics, or other purposes. A message gateway service creates secure channels with a client device and the computing instance to establish a secure communication tunnel between the client device and computing instance. Once the tunnel is established, a user can send a command via the client device to the computing instance, via the message gateway service. The command output is uploaded to this tunnel and is sent back to the client device, via the message gateway service.
US11038845B2
Example methods are provided for a destination host to implement a firewall in a virtualized computing environment that includes the destination host and a source host. The method may comprise receiving, via a physical network interface controller (PNIC) of the destination host, an ingress packet sent by the source host. The ingress packet may be destined for a destination virtualized computing instance that is supported by the destination host and associated with a destination virtual network interface controller (VNIC). The method may further comprise retrieving a PNIC-level firewall rule associated with the destination virtualized computing instance, the PNIC-level firewall rule being applicable at the PNIC and generated by based on a VNIC-level firewall rule applicable at the destination VNIC. In response to determination that the PNIC-level firewall rule blocks the ingress packet from passing through, the ingress packet may be dropped such that the ingress packet is not sent to the destination VNIC.
US11038838B2
An integrated GW (I-GW) can be utilized to facilitate communications with Internet of things (IoT) devices that operate without Internet protocol (IP) addresses, based on assigned preferences and/or priority. In one aspect, the I-GW can efficiently deliver existing services for various types of IoT devices (e.g., that support different non-IP protocols) and can create emerging applications across different vertical applications. Further, the I-GW can leverage mobility network elements to authenticate, prioritize connections, and/or enable data orchestration via underlying software defined network (SDN)-enabled capabilities and/or infrastructure services. By utilizing IoT devices that do not have IP stacks, a cost and/or size of the IoT devices can be decreased and battery life can be significantly extended.
US11038833B2
A computer-implemented method of posting content to a social medium comprises receiving content posted by a user along with an associated posting time which indicates when the user selected an option to post the content to the social medium; determining that publication of the content posted by the user is dependent on a trigger; and in response to determining that publication of the content is dependent on the trigger, storing the content with the associated posting time and suspending publication of the content until the trigger is satisfied such that the posting time published with the content indicates a time prior to transmission of the content from an electronic device to a server for publishing.
US11038832B2
Disclosed aspects relate to response status management in a social networking environment. A message from a source user to a recipient user may be detected in the social networking environment in response to a triggering event, wherein the triggering event is the recipient user being added to a guest list, and wherein the message is a party invitation. A set of message response actions related to the recipient user may be identified. A response status may be determined based on the set of message response actions, wherein the response status relates to the recipient user. An indication of the response status may be provided to the source user, wherein the indication includes a gif video indicator.
US11038831B2
Disclosed is a notification method of a mobile terminal using a plurality of notification modes. A mobile terminal according to one aspect of the present invention determines a first configuration type relating to the notification mode of the mobile terminal in response to the receipt of a new push message. The mobile terminal determines a second configuration type relating to the notification mode of a push message application based on the first configuration type. The mobile terminal notifies the arrival of a new push message according to the second configuration type. That is, embodiments may provide a technology that uses at least two configurations relating to the notification mode of the mobile terminal so as to notify the user about receipt of a new message.
US11038829B1
A server has a processor and a memory storing instructions executed by the processor to maintain an ephemeral gallery of ephemeral messages, where each ephemeral message is a photograph or a video. An ephemeral message is posted to the ephemeral gallery. The ephemeral message has an associated message duration parameter and a gallery participation parameter. An ephemeral message is removed from the ephemeral gallery in response to the identification of an expired gallery participation parameter. The ephemeral gallery is eliminated upon expiration of either a gallery timer or upon expiration of the gallery participation parameter of a last message posted to the ephemeral gallery. The ephemeral gallery is preserved in response to a gesture applied to an indicium to save the ephemeral gallery to produce a preserved gallery.
US11038828B2
Communication methods and apparatuses are provided in the present disclosure. A method may include detecting neighboring devices within a preset range in a vicinity of an electronic device, the electronic device having a first client of a preset communication application running thereon; determining a communication object corresponding to a second client of the preset communication application running on a neighboring device in response to detecting that the neighboring device exists in the vicinity of the electronic device; and displaying a communication session interface associated with the preset communication application on the electronic device, the communication session interface being used for implementing a communication session for the communication object. Using technical solutions of the present disclosure, communication session interface(s) can be automatically started for neighboring device(s) in a vicinity of an electronic device, thereby improving the efficiency of communication and simplifying user operations.
US11038825B2
Described embodiments provide systems and method for filtering notifications across multiple end points associated with a user. A server can establish, for a user of an end point, a session with the end point. The server can identify properties of a plurality of applications and properties of the plurality of end points. A filter can be generated for the user and the filter can include one or more polices to selectively permit or prevent notifications received from one or more applications through the client application. The server can apply the filter to the applications and use the filter to filter one or more notifications received from the applications to selectively permit or prevent the one or more notifications from being received at each end point of the plurality of end points that the user accesses during the session to the server through the client application.
US11038821B1
A system and method simulate a chat-based conversation with a human user. The system and method receive a text message through the chat system that enables a receiver to transmit an automatically generated response in real time during a chat session. The system and method recognize characters in a text message and generates an automatic prediction or classification using a conversational assistant pod that resides in a container. The system and method generate an automatic response and modify computing resources by replacing the conversational assistant pod and the container with a second conversational assistant pod and a second container without interrupting the chat session.
US11038818B2
A method, non-transitory storage medium, and apparatus are presented for configuration management of a distributed virtual switch including components distributed on different entities in a computing system is provided. In an exemplary embodiment, a snapshot of a configuration of the distributed virtual switch is received from a management plane configured to manage the distributed virtual switch. The snapshot may include settings for the configuration at a time of taking the snapshot. A persistent storage location independent from the management plane is designated for storing the received snapshot of the configuration. After the snapshot is taken, the configuration may be retrieved from the persistent storage location and the settings of the configuration may be applied to the distributed virtual switch, a new distributed virtual switch, or an existing distributed virtual switch.
US11038816B2
A network fabric application coupled to a data link layer is provided with access to network elements in an optical fiber network. The network fabric application defines a network fabric configuration comprising at least a subset of the network elements, wherein the network fabric forms a multi-path communication network among the subset. The network fabric is configured to transmit data among networked devices in the network fabric along the multi-path communication network.
US11038813B2
A bi-directional RF signal amplifier includes a housing with an RF input port. A power divider network within the housing terminates to a plurality of active RF output ports. An active communications path connects the RF input port to the power divider network. A passive communications path connects the RF input port to a passive RF output port. A MoCA input/output port is provided on the housing. A MoCA signal path connects the power divider network to the MoCA input/output port, and a MoCA pass filter is located along the MoCA signal path. In another embodiment, a passive splitter includes a housing with an RF input port, a power divider network, and a plurality of CATV/MoCA RF output ports. A CATV communications path connects the RF input port to the power divider network. A MoCA input/output port is provided on the housing. A MoCA signal path connects the power divider network to the MoCA input/output port, and a MoCA pass filter is located along the MoCA signal path.
US11038811B2
Waterfall granting may be provided. First, a plurality of grants may be received for a service flow. Then a first plurality of packets may be placed in a first queue associated with the service flow in response to determining that the first plurality of packets corresponding to the service flow are associated with a first quality of service level. Next, a second plurality of packets may be placed in a second queue associated with the service flow in response to determining that the second plurality of packets corresponding to the service flow are associated with a second quality of service level. The first plurality of packets in the first queue may then be serviced from the plurality of grants until all the first plurality of packets in the first queue are serviced before servicing any of the second plurality of packets in the second queue with remaining ones of the plurality of grants.
US11038808B1
A system and method for capacity management based on location and status of flexible (e.g., non-scheduled) service resources. Features are included to determine if the system can accept a request for a pick-up point (e.g., a restaurant, a quick order fulfillment center, grocery store, network location) based on the density, type and characteristics of the delivery resources in proximity (e.g., time and/or distance) to the pick-up point. The system also leverages historic delivery performance of the resources to assess whether to offer service or a service level for a given request.
US11038798B2
Computer-implemented methods and systems are provided for storing data in association with a key within a hash table and for retrieving the data from the hah table using the key. The hash table comprises a plurality of storage tables. Each of the storage tables is associated with a respective primary hashing function for determining which of a plurality of buckets of the storage table should be used for storing data associated with a particular key. Each of the buckets is configured to store a limited number of elements. Each element comprises respective stored data and a representation of the respective key associated with the stored data. Each of the storage tables is further associated with a respective secondary hashing function with which the representations of the keys of the elements of that storage table are generated. The secondary hashing function for each of the storage tables is the primary hashing function for at least one of the other storage tables.
US11038795B2
The present disclosure generally discloses capabilities for supporting new network zones and associated services. The network zones and associated services may include a near-real-time (NRT) zone and associated NRT services, a real-time (RT) zone and associated RT services, or the like. The resilient network zones and associated resilient and non-resilient services may be configured to provide bounded latency guarantees for reliably supporting various types of applications (e.g., mobile fronthaul, cloud computing, Internet-of-Things (IoT), or the like). The network zones and associated services may be provided using a distance-constrained fiber and wavelength switching fabric design comprised of various network devices and using associated controllers, which may be configured to support service provisioning functions, service testing functions, wavelength switching functions, and so forth.
US11038780B2
A route viewing system includes a computing system that receives information associated with one or more routes through a network, and identifies the routes that are associated with at least one illicit user computer used by an illicit user. The computing system then obtains a source location of a source address of the routes and a destination location of a destination address of the routes, and displays the routes on a geographical display at the source location of the source address and the destination location of the destination address of each of the routes.
US11038764B2
Technologies for initiating communication with an unreachable node are disclosed. In an embodiment, a connector sub-network is interposed between a connection network and a member sub-network. A connector node of the connector sub-network is identified and used to initiate communication between a member node and a target node in the connection network.
US11038763B1
An intelligent network policy engine can be utilized to apply dynamic policy changes for microservices. For example, based on outlined service provider policies, user equipment state data, and/or network state data, the intelligent network policy engine can determine which microservices to use and/or what order to use the microservices to increase a performance of the network. The intelligent network policy engine can perform conflict resolution based on how network traffic should be treated in certain scenarios.
US11038743B2
Systems, methods, and computer-readable media for clustering events occurring in a network environment for providing network assurance. In one embodiment, a system can identify event states of network events defined by values of parameters of a network environment. The system can determine a confidence score that at least one of the values of parameters is associated with a specific event state using the network events and the identified event states of the network events. The confidence score can be presented to a user for purposes of providing network assurance for the network environment.
US11038739B1
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a wireless communication device may receive a wireless communication signal. The wireless communication device may process the wireless communication signal using a digital post distortion receiver based at least in part on performing a multi-level coding (MLC) set partitioning operation, wherein performing the MLC set partitioning operation comprises partitioning a quadrature amplitude modulation constellation set by bounding a maximum Euclidean distance of an error associated with decoding one or more least significant bits. Numerous other aspects are provided.
US11038732B2
A method configured to clip an I signal and a Q signal according to a clipping boundary, includes receiving an I value and a Q value, wherein the I value and Q value define Cartesian coordinates of a data point being transmitted on the real and imaginary axes of the complex plane, respectively; determining a clipping error between the I value and the Q value and the clipping boundary; combining the clipping error with the I value to generate a clipped I value; combining the same clipping error with the Q value to generate a clipped Q value; and providing the clipped I value and the clipped Q value to a radio frequency digital-to-analog converter (RFDAC) in a transmit chain.
US11038724B2
A memory interface may include a transmitter that generates multi-level signals. The transmitter may employ channel equalization to improve the quality and robustness of the multi-level signals. The channel equalization may be controlled independently from the drive strength of the multi-level signals. For example, a first control signal may control the de-emphasis or pre-emphasis applied to a multi-level signal and a second control signal may control the drive strength of the multi-level signal. The first control signal may control a channel equalization driver circuit and the second control signal may control a driver circuit.
US11038722B2
One example includes an equalizer system. The system includes a filter system configured to receive digital sample blocks associated with an input signal and to provide equalized digital sample blocks associated with the respective digital sample blocks based on adaptive tap weights. Each of the digital sample blocks includes samples and each of the equalized digital sample blocks includes equalized samples. The system also includes a sample set selector to select a subset of equalized samples from each of the equalized digital sample blocks at the output of the filter and an error estimator configured to implement an error estimation algorithm on the subset of the equalized samples to determine a residual error associated with the equalized samples. The system further includes a tap weight generator configured to generate the adaptive tap weights in response to the residual error and to provide the adaptive tap weights to the filter.
US11038715B2
According to some embodiments, a system and method for determining a best path in a mesh network is disclosed. The method comprises collecting path information from a plurality of nodes in a mesh network during normal network operation of the mesh network. A first of the plurality of nodes is associated with an application that transmits high-density data packets and a second of the plurality of nodes in the mesh network is to function as a target station for receiving the high-density data packets. A best path to transmit the high-density data packets to the target station based on the collected path information is determined and the best path is transmitted to the plurality of nodes in the mesh network for initiating transmission of the high-density data packets to the target station via the best path.
US11038708B2
A controller handles control events in a system of networked home devices by: receiving a signal indicative of a control event, which is an actuation of a user input device; and in response, determining whether to perform a control function associated with a networked home device, that determination being made in dependence on a state of interaction between that device and a physical environment in which it is located at a time of the control event. If the control function is performed in response to the control event, it causes the networked home device to perform an action that changes the state of interaction between that device and the physical environment in which it is located. Otherwise, the controller causes another control function associated with a different networked home device of the system to be performed in response to the control event instead.
US11038707B2
Systems, methods, and computer program products for remote configuration of one or more power supplies, particularly lighting power supplies, are disclosed. A configuration signal that includes a setting for a parameter is generated and then transmitted to a power supply. The power supply decodes the configuration signal and, if one or more certain conditions are met, configures the power supply according to information provided in the configuration signal.
US11038696B2
A signing device and/or method for signing documents. The signing device is used for applying a unique code on the document, and the unique code is logically associated to data/information located in a URL associated to the unique code.
US11038675B2
Electronic voting including a registration authority server, an election authority server, and a voter-host computer connected to an electronic identity card associated with a voter casting a vote. The registration authority server computer and the secure electronic identity card establish a first cross-domain unlinkable pseudonym for the secure electronic identification token, the first cross-domain unlinkable pseudonym being unique to the electronic identity card and the registration authority. The registration authority writes a vote-eligibility attribute on the electronic identity card. The election authority server computer retrieves a second cross-domain unlinkable pseudonym and the vote-eligibility attribute from the electronic identity card, the second cross-domain unlinkable pseudonym being associated with the election authority, and writes an attribute on the electronic identity card indicative of receipt of a vote cast by the voter.
US11038671B2
Authentication is performed on a plurality of links to be used to couple one node of the computing environment and another node of the computing environment. The performing authentication includes obtaining, by the other node from the one node via one link of the plurality of links, an identifier of a shared key maintained by a key server. The other node uses the identifier to obtain the shared key from the key server. An indication that the other node decrypted a message received from the one node using the shared key is sent from the other node via the one link. The sending the indication on one or more other links of the plurality of links is repeated for subsequent messages decrypted by the other node using the shared key previously obtained.
US11038670B2
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for blockchain-based cross-entity authentication are provided. One of the methods includes: obtaining an authentication request by a first entity for authenticating a user, wherein the authentication request comprises a decentralized identifier (DID) of the user; in response to determining that the first entity is permitted to access authentication information of the user endorsed by a second entity, generating a blockchain transaction for obtaining an authentication result of the user by the second entity, wherein the authentication result is associated with the DID; and transmitting the blockchain transaction to a blockchain node for adding to a blockchain.
US11038665B2
There is provided a transmission apparatus including a clock signal generator that generates a clock signal and a transmitter that operates on the basis of the clock signal and transmits data in which the clock signal is embedded or a synchronization signal for maintaining CDR synchronization, in which during a period of data transmission, the clock signal generator generates a first clock signal for data transmission and the transmitter transmits data in which the first clock signal is embedded on the basis of the first clock signal, and during a pause period of data transmission, the clock signal generator generates a second clock signal having a frequency lower than that of the first clock signal and the transmitter transmits the synchronization signal on the basis of the second clock signal.
US11038653B2
Disclosed are a method for transmitting and receiving a physical uplink control channel between a terminal and a base station in a wireless communication system, and an apparatus for supporting the same. More particularly, disclosed are a method for transmitting and receiving a physical uplink control channel through a plurality of channels between a terminal and a base station in a wireless communication system supporting transmission and reception of a physical uplink control channel through a single symbol, and an apparatus for supporting the same.
US11038644B2
Embodiments of this application provide a data transmission method, a network device, and a terminal device. The method includes: determining, by a network device, demodulation reference signal DMRS port groups, where a quantity of the DMRS port groups is greater than or equal to 2; and further, communicating, by the network device, data with a terminal device, where the data is corresponding to a transport block, the transport block is divided into at least one code block group CBG, and each of the at least one CBG is corresponding to one DMRS port group and is mapped to a transport layer corresponding to the one DMRS port group.
US11038630B2
A method performed by a wireless device (120) for handling a first transport block received from a transmitting device (101) is provided herein. The first transport block comprises a first set of code blocks. At least a first subset of code blocks has been unsuccessfully decoded by the wireless device (120). The wireless device (120) and the transmitting device (101) operate in a wireless communications network (100). The wireless device (120) determines (802), based on a first number of unsuccessfully decoded code blocks, a second number of code blocks to be allocated in a first memory (1111) of the wireless device (120), to store the unsuccessfully decoded code blocks. The wireless device (120) also allocates (803) the determined second number of code blocks. The wireless device (120) then initiates (805) storage of the unsuccessfully decoded code blocks in the first set, in the allocated determined second number of code blocks.
US11038618B2
A de-multiplexer (1) for separating two co-propagating modes of electromagnetic radiation includes a volume (2) having a path therethrough for receiving electromagnetic radiation, an input (8) for directing two co-propagating modes of electromagnetic radiation to be incident upon the volume, a control source (12) of electromagnetic radiation arranged to generate a time-dependent control field. The volume is arranged and the time-dependent control field is shaped such that, when the two co-propagating modes of electromagnetic radiation and the time-dependent control field are incident upon the volume contemporaneously, the time-dependent control field causes the volume to accept one of the two modes of electromagnetic radiation onto a mode of the volume without any parametric non-linear optical interaction taking place and to reflect or transmit the other of the two modes of electromagnetic radiation, so to spatially and/or temporally separate the two modes of electromagnetic radiation from each other.
US11038606B1
A method for automatically identifying the source of fluctuations in a trans-ionospheric radio signal, by acquiring a portion of the radio signal and computing statistics on it, including mean, standard deviation, scintillation index, skew, kurtosis, decorrelation time, and spectral slope. The scintillation index, skew, kurtosis, decorrelation time, and spectral slope are compared to thresholds, and based at least in part upon the comparisons, at least one condition present in the portion of the radio signal is selectively indicated to an operator, where the condition is selected from the group of no signal fluctuations, RF interference, multipath interference, noise, and ionospheric scintillation.
US11038604B2
A fading assessment unit 34 assesses the degree of fading of a received radio wave. An SNR calculation unit 33 calculates an SNR value of a signal based on the radio wave. A communication mode determination unit 35 determines the communication mode of communication from a transmission side of the radio wave on the basis of the result of the assessment by the fading assessment unit 34 and the SNR value calculated by the SNR calculation unit 33.
US11038599B1
A receiver applies first processing to a digital representation of a received signal to generate a first processed signal having first additive noise and first linear inter-symbol interference (ISI), the first processing comprising a substantially linear operation designed to substantially minimize a sum of variances of the first additive noise and the first linear ISI. The receiver applies second processing to the first processed signal to generate a second processed signal having second additive noise and second linear ISI, the second processing comprising a substantially nonlinear operation designed (i) to make a variance of the second additive noise substantially lower than the variance of the first additive noise, and (ii) to make a sum of the variance of the second additive noise and a variance of the second linear ISI substantially lower than the sum of the variances of the first additive noise and first linear ISI.
US11038597B2
An optical communication system includes a first communication device configured to transmit optical signals, and a second communication device configured to receive the optical signals. The first transmission device includes encoding circuit that configured to assign, to a plurality of bit strings, symbols each corresponding to a value of every one of the plurality of bit strings, the symbols being among a plurality of symbols in a constellation of a multi-level modulation scheme, convert values of bit strings, generate the second error correction code from a second bit string among the plurality of bit strings in every one of a plurality of periods, delay the first error correction code, and delay the second error correction code, wherein the encoding circuit uses the delayed first error correction code and the delayed second error correction code to convert a value of the second bit string.
US11038595B2
An optoelectronic device includes a substrate and a first optoelectronic chip flush with a surface of the substrate. The device includes a cover that covers the substrate and the first optoelectronic chip. The cover comprises a cavity above a first optical transduction region of the first optoelectronic chip. The device also includes a second optoelectronic chip having a second optical transduction region spaced apart from the first optical transduction region and the cavity continues above the second optical transduction region.
US11038590B2
An optical transmission device includes: a controlled oscillator for outputting a calibration signal having an output frequency that corresponds to an input oscillation control signal; an electrical-to-optical conversion circuit for generating an optical transmission signal by superimposing a transmission signal in a radio frequency band and the calibration signal on an optical wave; an optical input and output unit for sending the optical transmission signal to an optical transmission path and receiving a reflection signal that is a part of the optical transmission signal from an optical reception device; an optical-to-electrical converter for converting the reflection signal into a radio frequency signal; a phase locked loop for generating the oscillation control signal so that radio frequency output of the optical-to-electrical converter is phase-locked with a reference signal input from a reference signal source; and a signal generation circuit for generating, as the transmission signal, the radio frequency signal phase-locked with the calibration signal.
US11038587B2
A method and an apparatus for locating a fault cause are provided. The method includes: obtaining parameter values of a plurality of running parameters and a parameter value of a fault parameter in preset duration before a wavelength division multiplexing board device is faulty; determining a correlation between each of the plurality of running parameters and the fault parameter; and determining at least one target parameter from the plurality of running parameters based on a value of the correlation, where a correlation between each of the at least one target parameter and the fault parameter is greater than a correlation between the fault parameter and a running parameter other than the at least one target parameter in the plurality of running parameters. Accuracy of locating a fault cause can be improved in the embodiments of the present disclosure.
US11038585B1
In some implementations, a satellite communication system is a capable of utilizing converged data transmissions over a satellite network to improve various aspects of services provisioned through the satellite network. For example, the system includes multiple electronic components that operate within a common software application framework to enable the ability to perform monitored operations in real-time. The system uses the monitored data to dynamically and intelligently adjust network configurations of the satellite network configuration to dynamically and intelligently improve to the provisioning of network-based services under varying network conditions.
US11038581B2
An integrated repeater system that includes a repeater device having phased array antenna receivers that receives a mmWave radio frequency signal from a base station, and one or more phased array antenna transmitters that transmits the received mmWave radio frequency signal through a glass structure to a user equipment with a first level of transmission loss. Based on an impedance matching component provided in the integrated repeater system, the repeater device tunes an impedance of the one or more phased array antenna transmitters in accordance with the glass structure, and a filter response of the glass structure is changed such that transmitted mmWave radio frequency signal after propagation through impedance matching component and glass structure has either no transmission loss at a frequency of the transmitted mmWave radio frequency signal or a second level of transmission loss that is less than the first level of transmission loss.
US11038580B2
Various embodiments provide a method for determining polarization information and a device thereof. In those embodiments, a first polarization information set sent by a transmitting device can be received by the receiving device. The first polarization information set includes at least one piece of first polarization information. A quality set comprising at least one quality of a received signal can be determined by the receiving device. The first polarization information corresponds to a quality of the received signal in the quality set, and the received signal is sent by the transmitting device to the receiving device through a non-line-of-sight channel. An optimal quality in the quality set can be determined by the receiving device. The optimal quality has a minimum degradation degree of the received signal in the quality set. The receiving device can then send the first polarization information corresponding to the optimal quality to the transmitting device.
US11038578B2
The disclosure relates to devices, methods, and computer programs in mobile communications in order to enhance signal transmission. Specifically, it relates to methods in a network node. The method comprises receiving S1 a signal with at least a partly known content and applying S2 to the received signal at least one set of reception weights out of a plurality predefined sets of reception weights, wherein each set of reception weights is associated with at least one reception beam parameter describing a reception beam configuration. The method further comprises determining S3, based on one or more predetermined criteria, at least one set of reception weights out of the applied predefined sets of reception weights and generating S4 at least one set of transmission weights. Said at least one set of transmission weights is based on the at least one reception beam parameter The method further comprise transmitting S5 a signal using the generated at least one set of transmission weights.
US11038576B2
This application provides a phase tracking reference signal (PTRS) sending method and apparatus. The method includes: implicitly determining, by a terminal device based on obtained uplink grant information and a preset rule, a to-be-sent PTRS and an antenna port for carrying the to-be-sent PTRS, where the antenna port is selected from an antenna port set, and the to-be-sent PTRS is one or more of all available PTRSs; and putting the to-be-sent PTRS on the antenna port, and sending the to-be-sent PTRS on the antenna port. This implicit indication method can effectively reduce air interface signaling overheads and improve air interface efficiency.
US11038573B1
A distributed beamforming system including a platform terminal and a plurality of user terminals is disclosed. An individual user terminal includes a receiver configured to receive a plurality of individual wireless signals, where the plurality of individual wireless signals are transmitted by the platform terminal and are orthogonal with respect to one another. The individual user terminal also includes one or more frequency converters configured to transform each of the plurality of individual wireless signals to an intermediate frequency. The individual user terminal is configured to coherently combine the plurality of individual wireless signals together to form a beamformed signal.
US11038571B2
A wireless communication node and method therein for generating beamformed signals by means of backscattering in a wireless communication network are disclosed. The wireless communication node receives a radio frequency signal at a plurality A of antennas. Each antenna is coupled to one of a number of impedance matrices by one of a plurality A of switches. The wireless communication node generates a first baseband signal based on data symbols to be transmitted in a baseband signal generator. The states of each switch are controlled based on its specific switch control signal such that each antenna impedance is selected among a number M of impedances, and thereby the received RF signal at each antenna is modulated by the first baseband signal with its specific phase and reflected. The beamformed signals are generated by the plurality A of antennas by reflecting the modulated RF signals from each antenna.
US11038570B2
In a multi-BPL scenario, some form of beam-related indication is desirable to provide assistance to the UE in setting its Rx spatial filtering configuration to receive PDSCH. The assistance to the UE is in the form of a certain indicator indicating a spatial QCL assumption between PDSCH DMRS antenna port(s) and DL RS (e.g., CSI-RS) antenna port(s), such as a preferred CSI-RS resource that was measured and reported previously.
US11038553B2
A near field communication (NFC) device capable of operating by being powered by the field includes an NFC module for generating an electromagnetic carrier signal and modulating the carrier signal according to data to be transmitted, and an antenna circuit coupled to and driven by said NFC module with the modulated carrier signal. The device includes an RF front end coupled between said NFC module and said antenna circuit. The RF front end includes a balanced to unbalanced (Balun) transformer and a tuning capacitor to provide a function of an electromagnetic compatibility (EMC) filter. A powered by the field circuit of the NFC device is adapted to harvest energy from an external field to power said NFC device. The power by the field circuit is coupled to said Balun transformer via one or more impedance elements.
US11038548B2
A wireless communication module includes a first conductor and a second conductor that function as an electrode for wireless communication of a differential signal using electric field coupling, a third conductor and a fourth conductor that function as an electrode for wireless communication using electric field coupling. A straight line that connects the centroid of the first conductor and the centroid of the second conductor is not parallel to a straight line that connects the centroid of the third conductor and the centroid of the fourth conductor.
US11038540B2
A method includes receiving a time domain resource allocation (TDRA) list configuration including entries, each including a resource allocation that includes a slot offset value. L1 signaling is received indicating a minimum slot offset value. Downlink control information (DCI) is decoded on a physical downlink control channel in a slot. An index is obtained from the decoded DCI, identifying an entry in the TDRA list. A particular slot offset value identified by the index is retrieved from the TDRA list and compared with the minimum slot offset value. If the particular slot offset value is less than the minimum slot offset value, the entry is invalid. If the particular slot offset value is greater than or equal to the minimum slot offset value, a physical downlink shared channel is received.
US11038539B1
A communications apparatus to receive a composite signal including a desired signal and interferer signals, where the desired signal may include desired symbols and the interferer signals may include interferer symbols. The system may include N frameworks, each framework may include a detector to partition the desired symbols and the interferer symbols based on an interference severity into a dominant group and a non-dominant group, and to generate A Posteriori Probabilities (APP) of the desired symbols and the interferer symbols. The detector of each of the N frameworks generates the APP based on a feedback of a priori probabilities from each of the N frameworks.
US11038537B2
Disclosed herein are example embodiments of protocols to distill magic states for T-gates. Particular examples have low space overhead and use an asymptotically optimal number of input magic states to achieve a given target error. The space overhead, defined as the ratio between the physical qubits to the number of output magic states, is asymptotically constant, while both the number of input magic states used per output state and the T-gate depth of the circuit scale linearly in the logarithm of the target error. Unlike other distillation protocols, examples of the disclosed protocol achieve this performance without concatenation and the input magic states are injected at various steps in the circuit rather than all at the start of the circuit. Embodiments of the protocol can be modified to distill magic states for other gates at the third level of the Clifford hierarchy, with the same asymptotic performance. Embodiments of the protocol rely on the construction of weakly self-dual Calderbank-Shor-Steane codes (“CSS codes”) with many logical qubits and large distance, allowing one to implement control-Swaps on multiple qubits. This code is referred to herein as the “inner code”. The control-Swaps are then used to measure properties of the magic state and detect errors, using another code that is referred to as the “outer code”. Alternatively, one can use weakly-self dual CSS codes which implement controlled Hadamards for the inner code, reducing circuit depth. Several specific small examples of this protocol are disclosed herein.
US11038534B2
A bit interleaver, a bit-interleaved coded modulation (BICM) device and a bit interleaving method are disclosed herein. The bit interleaver includes a first memory, a processor, and a second memory. The first memory stores a low-density parity check (LDPC) codeword having a length of 64800 and a code rate of 7/15. The processor generates an interleaved codeword by interleaving the LDPC codeword on a bit group basis. The size of the bit group corresponds to a parallel factor of the LDPC codeword. The second memory provides the interleaved codeword to a modulator for quadrature phase shift keying (QPSK) modulation.
US11038529B2
In some aspects, methods and apparatus for wireless communications are configured to generate a packet for wireless communication where the packet includes a mark symbol in a preamble of the packet where the mark symbol includes a signature or stamp field in the mark to provide protocol information that indicates the protocol of the packet, such as an 802.11 EHT packet. In some other aspects, a cyclic redundancy check field in the mark symbol may be manipulated in various ways to indicate the protocol of the packet in lieu of providing the signature or stamp field.
US11038528B1
Techniques for genetic programming based compression determination are described herein. An aspect includes adding a first plurality of randomly generated compression algorithms to a first set of compression algorithms. Another aspect includes determining a respective mutated version of each of the first plurality of randomly generated compression algorithms. Another aspect includes adding the determined mutated versions to the first set of compression algorithms. Another aspect includes evaluating and ranking the first set of compression algorithms based on respective achieved degrees of compression.
US11038523B2
A ring oscillator-based analog-to-digital converter (ADC). The ring oscillator-based ADC includes a ring oscillator and a transition detector. The ring oscillator may include a set of inverters coupled in a ring wherein an output of an inverter is coupled to an input of a successive inverter in the ring. The transition detector is configured to detect transitions of outputs of the inverters by comparing outputs of two separate inverters at two consecutive time instances. The transition detector may include two sets of registers configured to store outputs of the set of inverters at two consecutive time instances, respectively, and a set of comparators configured to compare the outputs stored in the two sets of registers. Each comparator may be configured to compare an output of one inverter at a first time instance and an output of another inverter at a second time instance.
US11038519B2
Circuits and methods for minimizing charge losses due to negative transient voltage at summing terminals of an analog to digital converter (ADC) are disclosed. The ADC is coupled to a multi-bit digital to analog converter (DAC) at the summing terminals. The ADC and the DAC include PMOS and NMOS transistors whose timing are controlled to reduce charge losses. The PMOS transistors are turned ON before the NMOS transistors. Also, the PMOS transistor of the ADC is turned ON at a slower rate than the PMOS transistors of the DAC.
US11038513B1
A phased locked loop (PLL) having a filter output voltage that is limited to a fraction of the voltage range accepted by the tuning port of a voltage-controlled oscillator (VCO) under control and a control system responsive to the filter output voltage and for summing the filter output voltage with an elevator voltage and applying the summed voltage to the VCO tuning port.
US11038503B2
An enhancement mode GaN FET based gate driver circuit including an active pre-driver to drive a high-slew rate, high current output stage GaN FET. Due to the active driver current from the pre-driver, the output stage pull-up FET can turn on faster as compared to a pre-driver that utilizes a passive pull-up load. The active pre-driver must provide a voltage to drive the gate of the output stage pull-up FET which is higher than the normal supply voltage to enable the maximum output level of the driver FET to approach the normal supply voltage. A feedback circuit is included in the active pre-driver to avoid the need for two supply voltages.
US11038499B2
A drive apparatus that drives a control terminal of a main switching element establishing/cutting off an electrical connection between a first main terminal and a second main terminal is provided, including first to fourth switching elements establishing/cutting off electrical connections between a positive terminal of a power source and the control terminal, the positive terminal and the second main terminal, the control terminal and a negative terminal of the power source, and the second main terminal and the negative terminal, respectively, and a resistance of at least one among a path between the control terminal and the second main terminal via the first to second switching elements, a path via the first and fourth switching elements, a path via the second to third switching elements, and a path via the third to fourth switching element is different from a resistance of at least one of the others.
US11038498B2
The present invention concerns a device and a method for controlling the switching from a conducting state to a non conducting state or from a non conducting state to a conducting state of a semiconductor power switch providing current to a load, the device receiving an input signal that is intended to drive the semiconductor power switch. The invention: —senses the derivative of the drain to source current going through the semiconductor power switch in order to obtain a voltage representative of the sensed derivative of drain to source current, —amplifies the voltage representative of the sensed derivative of drain to source current, —adds the amplified voltage representative of the derivative of the sensed drain to source current to the input signal during a given time period.
US11038497B2
A clock generation circuit includes: a frequency detector suitable for generating an internal clock, and generating a counting signal indicating a toggling number of the internal clock during an activation period of an input clock; a control signal generator suitable for generating a plurality of period control signals based on a target signal and the counting signal, the target signal indicating a target frequency of an output clock; and a period controller suitable for generating the output clock based on the period control signals.
US11038490B2
A PoDL system uses a gyrator for DC coupling of DC power from a PSE to a wire pair, and/or decoupling DC power from a wire pair for a PD. The gyrators obviate the use of discrete inductors for DC-coupling/decoupling and can be formed as an integrated circuit. The gyrators use a small integrated capacitor and invert and multiply the capacitor effect to emulate an inductor. The gyrators present a high impedance to AC current and a low impedance to DC current. Various gyrator designs, such as positive and negative polarity gyrators, and configurations are disclosed. Gyrators are described with analog current limit and power switch control, so multiple functions are integrated on the same IC chip.
US11038487B2
An acoustic wave device includes an acoustic wave filter configured to filter a radio frequency signal and a loop circuit coupled to the acoustic wave filter. The loop circuit is configured to generate an anti-phase signal to a target signal at a particular frequency. The loop circuit includes a Lamb wave resonator having a piezoelectric layer and an interdigital transducer electrode disposed on the piezoelectric layer. The piezoelectric layer includes free edges. An edge of the piezoelectric layer is configured to one of suppress or scatter reflections of acoustic waves generated by the interdigital transducer electrode from the edge of the piezoelectric layer.
US11038480B2
An amplifier includes: a first input transistor connected to a first input, a first output, and a power source or a ground, a second input transistor connected to a second input, a second output, and the power source or the ground; a first replica transistor connected to the first input, a detection node, and the power source or the ground; a second replica transistor connected to the second input, the detection node, and the power source or the ground; and a bias transistor connected to a bias voltage, the detection node, and the power source or the ground.
US11038476B2
The method and system for converging a 5th-generation (5G) communication system for supporting higher data rates beyond a 4th-generation (4G) system with a technology for internet of things (IoT) are provided. The method includes intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The system includes a power amplification device capable of minimizing the effect of envelope impedance. The power amplification device may be incorporated in a terminal and a base station.
US11038475B2
A low-power, low-noise amplifier with a negative feedback loop is provided. A low noise amplifier (LNA) includes a common gate (CG) amplifier, a common source (CS) amplifier having a gate connected to a source of the CG amplifier, a differential current balancer (DCB) connected to an output end of the CG amplifier and an output end of the CS amplifier, a symmetric load connected to the DCB, and a current bleeding circuit with one end connected to the output end of the CS amplifier and another end connected to the symmetric load, the current bleeding circuit including an active element and a load corresponding to the symmetric load, and an output end of the active element is connected to a gate of the CG amplifier.
US11038474B2
Apparatus and methods provide predistortion for a phased array. Radio frequency (RF) sample signals from phased array elements are provided along return paths and are combined by a hardware RF combiner. Phase shifters are adjusted such that the RF sample signals are phase-aligned when combined. Adaptive adjustment of predistortion for the amplifiers of the phased array can be based on a signal derived from the combined RF sample signals.
US11038467B2
A power detector has a signal input terminal, N limiting amplifiers, N rectifiers and a signal output terminal. N is an integer greater than 1. The signal input terminal receives an input signal, and the signal output terminal outputs a detection signal. The N limiting amplifiers generate N amplified signals according to N attenuated signals having different attenuation. Each limiting amplifier receives one of the N attenuated signals and outputs one of the N amplified signals. Each rectifier receives a corresponding amplified signal and outputs a rectified signal. The detection signal is associated with the sum of N rectified signals outputted from the N rectifiers, and all transistors of the power detector are bipolar junction transistors.
US11038465B2
An amplifier circuit is provided that includes an amplifier having a signal input and a signal output, the amplifier being configured to produce an amplified signal at the signal output, a feedback path coupled between the signal output and the signal input, and an amplifier linearity boost circuit positioned in the feedback path. The amplifier linearity boost circuit includes a non-linear current generator and a phase-shifting circuit, the non-linear current generator being configured to provide a non-linear current based on the amplified signal, and the phase-shifting circuit being configured to adjust a phase of the non-linear current to reduce an intermodulation distortion of the amplified signal.
US11038462B2
There is provided a semiconductor device including an oscillation circuit that includes a plurality of capacitors provided on a semiconductor substrate, a conversion circuit that converts an analog signal into a digital signal, and a switch circuit that switches the capacitors on the basis of the digital signal. Further, an oscillation frequency linearly varies with respect to a variation in the analog signal.
US11038460B2
A circuit apparatus includes an oscillation circuit that causes a resonator to oscillate to produce an oscillation signal, an oven control circuit that controls a heater provided in correspondence with the resonator, a non-volatile memory that stores control data, a holding circuit that holds the control data transferred from the non-volatile memory, and a processing circuit that carries out a process based on the control data held in the holding circuit. After a power source voltage is supplied, the processing circuit carries out the process of transferring the control data from the non-volatile memory to the holding circuit, and after the transfer of the control data is completed, the processing circuit causes based on a data transfer end signal the oven control circuit to start operating.
US11038459B2
Temperature compensated oscillators are provided. The oscillator comprises an oscillator circuit and a temperature compensation module. The temperature compensation module reduces temperature induced errors in the frequency of oscillation of the oscillator by providing a temperature compensation signal to the oscillator circuit based on a temperature sensor output. The temperature compensation module comprises a low pass filter configured to reduce noise in the temperature compensation signal. The low pass filter is such that, using Laplace representations of transfer functions, the transfer function H(s) of the filter is equivalent to the transfer function of a closed loop configuration in which a module having an open loop transfer function G(s) is configured to generate an output from the closed loop configuration by applying the open loop transfer function G(s) to an error between an input to the closed loop configuration and the output from the closed loop configuration.
US11038455B2
A method of performing scalar-based control of a motor connected to a power converter via at least one passive electrical reactance component, wherein the method includes: estimating a motor current at terminals of the motor to thereby obtain an estimated motor current, and controlling the power converter based on the estimated motor current.
US11038451B2
A method and device for driving a motor by synchronous calculation of sampled phase current and phase voltage, including: sampling three-phase current of a motor to obtain a current sampling value, and obtaining an instruction voltage or a sample voltage as a voltage sampling value; and performing synchronous conversion on the current sampling value and the voltage sampling value to obtain a fundamental wave voltage at a current sampling time to keep a current vector and a voltage vector input into a flux observer synchronous.
US11038450B2
A method of predicting a health status of an integrated drive generator (IDG) includes determining an effective deviation across a plurality of IDG output frequencies for a given IDG operation period. The method includes correlating the effective deviation to an IDG capability to determine a health of the IDG. A system for predicting a health status of an integrated drive generator (IDG) includes an IDG and a generator control unit (GCU) operatively connected to the IDG to determine a plurality of IDG output frequencies for a given IDG operation period. The system includes a central processing unit (CPU) operatively connected to the GCU to receive the IDG output frequencies therefrom. The CPU is configured and adapted to determine an effective deviation across at least some of the plurality of IDG output frequencies for the given IDG operation period, and correlate the effective deviation to an IDG capability to determine a health of the IDG.
US11038448B2
A motor driving circuit includes a rotation speed request generator, a motor driving signal generating unit, an inverter circuit, a position detecting circuit, a current detecting module, a rotation speed signal lookup module, an automatic leading angle controller, and a modulation signal generating circuit. When the rotation speed request signal indicates that a rotation speed of a motor is adjusted to a current rotation speed, the rotation speed signal lookup module queries a lookup table and generates a leading angle indication signal for indicating a current leading angle as a adjusting angle, and the automatic leading angle controller generates a phase adjusting signal, and the modulation signal generation circuit roughly adjusts a modulation waveform with the adjusting phase. The modulation signal generating circuit performs a fine adjustment on the modulation waveforms according to a phase difference, thereby making the current zero-crossing point near the BEMF zero point.
US11038447B2
A system and a method for driving a motor with a frequency conversion mechanism are provided. The system includes a look-up table module, an oscillator circuit, a multi-frequency signal generator circuit, and a motor driver circuit. The look-up table module stores a preset driving signal. The oscillator circuit generates oscillating signals having different frequencies. The multi-frequency signal generator circuit outputs a multi-frequency signal according to the oscillating signals. One waveform segment of the multi-frequency signal in a modulation region has a first oscillating frequency. Another waveform segment of the multi-frequency signal outside the modulation region has a second oscillating frequency lower than the first oscillating frequency. When a back electromotive force or a phase current of the motor reaches zero within a time interval of the modulation region, the motor driver circuit drives the motor according to the preset driving signal and the multi-frequency signal.
US11038442B2
A device that includes a memory and a processor is disclosed. The processor may be configured to receive a control signal for operating a plurality of traction motors of a work machine. The control signal may include information relating to an actual speed of the work machine, a target speed of the work machine, and a generator speed of a generator operatively coupled to the traction motors. The processor may be configured to determine respective torque commands associated with the traction motors based on the actual speed and the target speed, and determine a generator power limit based on the generator speed. The processor may be configured to determine a threshold based on the respective torque commands and the generator power limit, adjust the respective torque commands based on the threshold, and cause the traction motors to be operated based on the adjusted respective torque commands.
US11038436B2
A unit power cell of an inverter system, according to one embodiment of the present invention, comprises: a first leg including first and fourth switching elements, which are connected in series to each other, second and third switching elements, which are connected in series with each other between a connection point of the first and second switching elements and a smoothing unit, and first, second, third and fourth diodes, which are inversely and respectively connected in parallel with the first, second, third and fourth switching elements; and a second leg connected in parallel with the first leg and including fifth and sixth switching elements, which are connected in series to each other, and fifth and sixth diodes, which are inversely and respectively connected in parallel with the fifth and sixth switching elements.
US11038431B2
A power converter system provides adjustable power to a heater and includes an input rectifier and a full-bridge isolating converter. The input rectifier is configured to rectify a line power having a line energy. The full-bridge isolating converter configured to generate an isolated output voltage based on the rectified line power. The isolated output voltage is electrically isolated from the line energy.
US11038427B1
A DC-DC converter operates in a burst mode having at least one charge cycle with a charging phase followed by a discharging phase. A charging phase is terminated when an inductor current flowing through an inductance connected to the DC-DC converter reaches a compensated peak-current threshold, wherein the compensated peak-current threshold compensates for charging-phase loop delay. A discharging phase is terminated when the inductor current reaches a compensated valley-current threshold, wherein the compensated valley-current threshold compensates for discharging-phase loop delay.
US11038424B2
A DC-DC converter can include: a switched capacitor converter including at least one switch group and at least one capacitor, where each switch group includes two switches coupled in series, and at least one capacitor is respectively coupled in parallel with a corresponding one of the switch groups; and a switch converter including a first magnetic component, where the switch converter is configured to share one of the switch groups, the first magnetic component is coupled to an intermediate node of the shared switch group, and the intermediate node is a common coupling point of two switches of the shared switch group.
US11038421B2
Timing circuitry causes: a first closed signal on a first switch control output before a signal on a second switch control output changes from a second closed signal to a first open signal; the first switch control output to provide a second open signal after a first selected time after the second switch control output changes from the second closed signal to the first open signal; and a third switch control output to provide a third closed signal a second selected time after the first switch control output changes from the first closed signal to a third open signal. A beginning of the first closed signal to a beginning of the first open signal is based on a later of: a current through a switch connected to the second switch control output exceeding a threshold current; and a clocked time after the beginning of the first closed signal.
US11038420B2
Circuits and methods to enable wireless power transmission and reception are presented. A two-stage power converter has a boost regulator to boost an input voltage to an intermediate voltage. Moreover, the two-stage power converter may also comprise a charge pump coupled to the boost regulator to generate an output voltage based on the intermediated voltage. More particularly, the charge pump may comprise a plurality of transistor devices and a flying capacitor and the charge pump may be bypassed during a bypass mode of operation. Finally, the two-stage power converter may have control circuitry coupled to the charge pump. In particular, the control circuitry may generate a control voltage of a first transistor device of the plurality of transistor devices in order to regulate a discharge rate of the flying capacitor, during a transition phase from the bypass mode of operation to a normal mode of operation.
US11038417B2
A charge pump having only NMOS devices charges a plurality of capacitors to a parallel charged voltage level by electrically connecting the capacitors in parallel between an input voltage node and a ground by activating a plurality of first NMOS transistor switches and a plurality of second NMOS transistor switches and deactivating a plurality of third NMOS transistor switches. The charge pump then generates a series capacitor output voltage level at a capacitor series output node by electrically connecting and discharging the capacitors in series between the input voltage node and the capacitor series output node by activating the third NMOS transistor switches and deactivating the first NMOS transistor switches and the second NMOS transistor switches.
US11038412B2
An active clamp circuit includes an active clamp switch having a drain node and a source node, an active clamp capacitor coupled in a series combination with the active clamp switch, a delay circuit, and an active clamp controller circuit coupled to the active clamp switch and to the delay circuit. The active clamp controller circuit is configured to i) receive an active clamp switch voltage based on a voltage developed across the drain node and the source node of the active clamp switch, ii) enable the active clamp switch based on a voltage amplitude of the active clamp switch voltage, and iii) disable the active clamp switch based on a delay signal generated by the delay circuit.
US11038398B2
An energy storage system includes a power source configured to generate power. The energy storage system also includes an induction machine coupled to an inertial flywheel, the induction machine configured to receive electrical energy from the power source, store the energy in the flywheel, and deliver a first portion of the energy to a first pulsed load. The energy storage system further includes a damping network configured to receive and absorb a second portion of the energy at a controlled rate to regulate torsional oscillations in a rotary motion of the flywheel caused by load swings or pulsations of the first pulsed load.
US11038391B2
A stator includes a cylindrical core with a plurality of longitudinally extending slots, a first winding set formed as a first cascaded wire in two radial layers of the slots, a second winding set formed as a second cascaded wire in two other radial layers of the slots, and a jumper connecting the first and second wires. A first winding set may have three cascaded phase wires in first and second layers of the slots, and a second winding set may have three cascaded phase wires in third and fourth layers of the slots. A winding set of a first phase may have a first cascaded wire in two radial layers of a first one of the slots, and a winding set of a second phase may have a second cascaded wire in two other radial layers of the first one of the slots.
US11038377B2
A wireless power reception device and a wireless communication method thereby are provided. The wireless communication method by the wireless power reception device may comprise the steps of: receiving a wireless power signal from a wireless power transmission device; measuring the strength of the wireless power signal; modulating the amplitude of the wireless power signal according to the measured strength of the wireless power signal; and performing communication with the wireless power transmission device by using the signal having the amplitude modulated.
US11038374B2
A wireless power transfer (WPT) system that efficiently transfers power to portable devices over a wide range of load conditions and power output demands. The WPT system of this disclosure includes a full bridge topology. Changing the number of devices or the position and orientation of a device on the transmitter charge area may change the impedance and/or the load on the power transmitting unit (PTU). The WPT system of this disclosure may detect load impedance and/or power requested from the PTU. When the load exceeds a threshold, the WPT system will activate a second half bridge to operate in full-bridge mode. Similarly, the WPT system may detect the power requested and received and when the power drops to a certain threshold of power transmitted the WPT may turn off the second leg and operate in half-bridge mode.
US11038358B2
A charger circuit for use in controlling charge of a battery pack, which includes a charge control switch and a control unit. The charger circuit has at least one power output terminal and one connection terminal for coupling the battery pack. The charge control switch is arranged to selectively provide a power from a power source to the battery pack through the power output terminal. The control unit is coupled to the charge control switch and the connection terminal, and determines whether to turn off the charge control switch according to a signal based on the connection terminal, wherein the signal based on the connection terminal indicates at least one of an over-voltage condition and an over-temperature condition.
US11038357B2
An electricity storage system includes a main body and a portable unit. The main body includes a casing, a first storage battery module that stores power, and a first terminal unit to supply the power. The portable unit includes a second terminal unit and a second storage battery module, and is attachable to and detachable from the first terminal unit. The second terminal unit is electrically connectable to the first terminal unit and receives the power supplied from the main body. The second storage battery module has a storage capacity less than the first storage battery module. The portable unit further includes a charging controller, upon determination of power supply from the system power supply has been stopped, the charging controller controls a charging rate for the second storage battery module to be charged at least one of a normal mode and a high-speed mode.
US11038354B2
A rapid shutdown (RSD) control circuit includes: a RSD controller having first and second terminals coupled to first and second terminals of a photovoltaic cell module, respectively; a transistor having a gate coupled to the RSD controller, a source coupled to the second terminal of the photovoltaic cell module, and a drain; and a diode coupled between the drain of the transistor and the first terminal of the photovoltaic cell module. In a normal state, controlled by the RSD controller, the transistor is controlled to have a first impedance state and the photovoltaic cell module outputs an output power to an inverter. In a shutdown state, controlled by the RSD controller, the transistor and the diode are controlled as a variable impedance, and thus a voltage between the first terminal and the second terminal of the photovoltaic cell module is regulated to a desired voltage.
US11038345B2
An over-voltage tolerant test bus for an integrated circuit (IC) is disclosed. The over-voltage tolerant test bus includes a first switch to be coupled to a test pin of the IC and a second switch to be coupled to an internal module of the IC. The second switch is coupled to the first switch in series. The over-voltage tolerant test bus also includes a protection circuit coupled between the first switch and the second switch and a supply voltage to keep a voltage between a source and a drain of the first switch substantially equal to a difference between a voltage at the test pin and the supply voltage.
US11038344B2
A cell circuit includes a first power rail, having a first line length, in a first layer. The first power rail is configured to receive a first voltage for the cell circuit. The cell circuit includes multiple lines in a second layer and a shunt in a third layer. The shunt is electrically coupled to the first power rail and a first set of lines of the multiple lines. The shunt has a second line length shorter than the first line length. The cell circuit includes another shunt in t the third layer. The other shunt is also parallel to the first power rail. The other shunt is electrically coupled to the first power rail and a second set of lines of the multiple lines. The other shunt has a third line length shorter than the first line length.
US11038342B2
The present disclosure pertains to systems and methods for analyzing traveling waves in an electric power delivery system. In one embodiment, a system may comprise a traveling wave identification subsystem to receive electric power system signals and identify a plurality of incident, reflected, and transmitted traveling waves. A first traveling wave may be selected from the incident and transmitted traveling waves, and a first distortion may be determined. A second traveling wave subsequent to the first traveling wave, may selected from the incident traveling waves and a second distortion may be determined. A traveling wave analysis subsystem may compare the first distortion and the second distortion and determine whether the first distortion is consistent with the second distortion. A protective action subsystem may implement a protective action based on a first determination that the first distortion is consistent with the second distortion.
US11038335B2
Systems and techniques are disclosed that monitor an area adjacent to power system components and detect objects that may pose a probable risk of causing a fault, for example, making contact with the power system component. Various embodiments initiate a preventative, a corrective, and/or a mitigative action in advance of the fault. Examples of possible actions include, but are not limited to, an audible alert, a visual alert, a tactile alert, a remote notification, a limiting of machinery motion, a stopping of machinery motion, a reversing of machinery motion, de-energization of the power system component, or combinations thereof.
US11038329B1
An electrical box brace including a rod, a sleeve, at least one mounting plate, an adjustment mechanism having a body, a spring and connecting the rod and sleeve, and at least one engagement device positioned within the adjustment mechanism body, wherein the at least one engagement device includes at least one threaded portion opposite a ramp, and wherein the ramp selectively engages the adjustment mechanism body to permit engagement or disengagement of the at least one threaded portion with the rod.
US11038327B2
An inverter box structure includes an inverter accommodating box of an inverter circuit and a junction box. A first quick connector, disposed on the inverter accommodating box, includes a first connection end and a second connection end. The first connection end of the first quick connector is electrically with the inverter circuit. A second quick connector, disposed on the junction box or in the junction box, includes a third connection end and a fourth connection end. The third connection end of the second quick connector is connected to an inner wire of the junction box. A casing of the inverter accommodating box equipped with the first quick connector is opposite to a casing of the junction box equipped with the second quick connector, and the second connection end of the first quick connector matches with and is electrically connected to the fourth connection end of the second quick connector.
US11038326B2
A temporary protective cover for a junction box has a sheet-like rectangular body with cleats at top and bottom ends. The cleats are flange-like formations bent at preferably non-right angles designed to press against embossments inside the cavity of a junction box. One or both cleats may be fitted with a notch to facilitate overlapping placement to accommodate large-size junction boxes. A stop tab extends laterally outwardly from each cleat and serves to limit penetration of the covering into the cavity of a junction box. One or two small removal holes are located in the body of the cover, near to the cleats, to facilitate removal from a junction box.
US11038322B2
There is provided a method of installing spiral hangers about a messenger line installed between first and second utility poles with a cable being lashed to the messenger line with a lashing wire. The method includes attaching a first and second spiral hangers to the messenger line between first and second utility poles with the first spiral hanger disposed about the messenger line and the cable. The method includes removing the lashing wire from being around the messenger line and the cable adjacent the second spiral hanger. The method includes moving the second spiral hanger towards the second utility pole. The method includes attaching a successive spiral hanger to the messenger line between the spiral hangers, and repeating the moving of the second spiral hanger and attaching another successive spiral hanger.
US11038321B2
Vertical-cavity surface-emitting lasers (VCSELs) and methods for making such are provided. The VCSELs include stepped upper reflectors having respective differently-sized apertures. This allows the lower portion of the reflector to have formed therein a wider-diameter aperture to allow for increased current injection. The upper portion of the reflector has formed therein a narrower-diameter, mode-selecting aperture to allow higher-order modes to be reduced, leading to single-mode operation. The VCSELs are thus capable of higher-power emission in a single mode, allowing for longer-distance signaling over optical fiber, despite modal dispersion within the fiber and/or at the coupling between the VCSEL and the fiber. The two differently-sized apertures can be formed via respective lateral oxidation processes following etch-down to form the respective steps of the upper reflector. Differences in composition across the upper reflector results in temperature-dependence of the oxidation process, allowing the apertures to be formed with different sizes.
US11038314B2
An electronic device assembling apparatus has a cable holder and a lock member operator. The cable holder holds a cable and inserts the cable into a connector. After the cable is inserted into the connector by the cable holder, the lock member operator operates a lock member to lock the cable to the connector. The lock member operator starts an operation with respect to the lock member in a state where the cable inserted into the connector is held by the cable holder.
US11038309B1
An electrical receptacle assembly for use in a modular wall system, the electrical receptacle assembly including an electrical receptacle receiving assembly, at least one electrical receptacle electrically coupled to the electrical receptacle receiving assembly and first and second plates. The first plate is coupled to the electrical receptacle receiving assembly. The first plate has an opening through which the at least one electrical receptacle is accessible. The second plate is installed substantially parallel to the first plate. The second plate having an opening that only accommodates access to the at least one electrical receptacle.
US11038303B2
A cable cover for attached to a side of a rear surface of a housing of a connector and for covering a cable pulled out from the rear surface of the housing includes: a main body cover mounted on the side of the rear surface of the housing; a lid cover that is combined with the main body cover into a tubular shape and that covers the cable; and a hinge which couples the main body cover and the lid cover and in which a central portion is formed thinner than a root portion of the main body cover and a root portion of the lid cover.
US11038297B2
A bracket is mechanically fastened on the bottom of an octagonal junction box or a rectangular electrical box such as those used for installing outlets or switches. Onto that bracket is snapped a cube module which itself consists of at least two square modules but generally three or more square modules. Each module connects to the next in a specific sequence and orientation so that a plug-in member can be inserted through the various holes present in the modules. The holes co-operate with prongs extending integrally from the plug-in member wherein each prong has a specific position and length so that the conductive part of the prong connects with a specific place on a specific module. With the prongs connecting at specific locations into the various squares, the proper set of matching wires are electrically connected.
US11038296B2
The electrical connector includes a main body comprising an insertion opening into which a connection target is inserted and an accommodation space to accommodate the connection target inserted into the insertion opening, a conductive contact held in the main body so as to be connected to the connection target in the accommodation space, and a cover member rotatably mounted on the main body to be rotatable around a rotation axis passing through the main body. An insertion opening which extends along the rotation shaft and into which the connection target is inserted is provided in the housing. The cover member includes a release operation portion configured to receive an external force to rotate the cover member around the rotation axis, and a restricting member to switch, in response to the rotation of the cover member, between a first state in which removal of the connection target from the accommodation space is restricted and a second state in which the connection target is released. The insertion opening is spaced apart from, and opens away from, the rotation axis. A distance between the release operation portion and the insertion opening is less than a distance between the rotation axis and the insertion opening.
US11038287B2
A connector is attachable with a composite cable and is connectable with a mating connector having a mating contact portion. The composite cable has at least one cable set which comprises a first cable and two second cables. The connector has a first member, a plurality of terminals and a second member. The first member is attachable with the composite cable. The plurality of terminals include at least one terminal set which comprises a first terminal and two second terminals. Each of the terminals has a contact portion, a held portion and a connecting portion. The connecting portion is connected with the composite cable when the connector is attached with the composite cable. In the at least one terminal set, the connecting portion of the first terminal is positioned between the connecting portions of the second terminals in a horizontal direction. The second member is combined with the first member.
US11038284B2
An electronic device may be provided with a dielectric cover layer, a dielectric substrate, and a phased antenna array on the dielectric substrate for conveying millimeter wave signals through the dielectric cover layer. The array may include conductive traces mounted against the dielectric layer. The conductive traces may form patch elements or parasitic elements for the phased antenna array. The dielectric layer may have a dielectric constant and a thickness selected to form a quarter wave impedance transformer for the array at a wavelength of operation of the array. The substrate may include fences of conductive vias that laterally surround each of the antennas within the array. When configured in this way, signal attenuation, destructive interference, and surface wave generation associated with the presence of the dielectric layer over the phased antenna array may be minimized.
US11038279B2
An antenna module includes a connection member including at least one wiring layer and at least one insulating layer; an integrated circuit (IC) package disposed on a first surface of the connection member; and an antenna package including a plurality of antenna members and a plurality of feed vias, and disposed on a second surface of the connection member, wherein the IC package includes: an IC having an active surface electrically connected to at least one wiring layer and an inactive surface opposing the active surface, and generating the RF signal; a heat sink member disposed on the inactive surface of the IC; and an encapsulant encapsulating at least portions of the IC and the heat sink member.
US11038276B2
Disclosed is a substrate-integrated waveguide slot antenna including a lower substrate having a substrate-integrated waveguide structure, the lower substrate being provided in the upper surface thereof with at least one slot, whereby an electromagnetic wave is guided by the substrate-integrated waveguide structure and is emitted through the slot, and an upper substrate formed on the lower substrate, the upper substrate having a metasurface configured such that a plurality of unit cells is arranged at predetermined intervals, whereby the electromagnetic wave dispatched through the slot is reemitted by the metasurface.
US11038267B2
A packaged radio frequency module includes a package substrate. A semiconductor die is attached to the package substrate and includes one or more radio frequency circuits fabricated therein. A molding compound encapsulates the semiconductor die. An electromagnetic shielding structure at least partially covers the molding compound, the electromagnetic shielding structure having an outer layer including cobalt. A phone board assembly can include the packaged radio frequency module attached to a printed circuit board. The packaged radio frequency module can be incorporated into a mobile device.
US11038266B2
Aspects of this disclosure relate to a shielded radio frequency component with an integrated antenna. An antenna can be on a first side of a multi-layer substrate and a radio frequency component can be disposed on a second side of the multi-layer substrate such that a ground plane of the multi-layer substrate is positioned between the antenna and the radio frequency component. Conductive features can be disposed around the radio frequency component and electrically connected to the ground plane. The conductive features and the ground plane can provide shielding for the radio frequency component. In certain embodiments, the conductive features can include bumps, such as solder bumps and/or copper pillars.
US11038265B2
A semiconductor-based beamforming antenna is provided. The beamforming antenna includes: a waveguide having a silicon medium formed between metal and forming a waveguide path; at least one diode array disposed in the waveguide, the at least one diode array being driven according to an applied electrical signal to reflect an incident signal by acting as a conductive reflecting wall; a radiator connected to the waveguide and radiating a beam corresponding to a signal reflected by the at least one diode array or an incident signal; and a feeder for supplying an electrical signal into the waveguide.
US11038263B2
Systems and methods are disclosed herein for printed cavities for computational microwave imaging and methods or use. According to an aspect, an imaging system includes a printed cavity having a layer having a first surface and a second surface. The printed cavity defines multiple apertures that extend between the first surface and the second surface. The printed cavity also includes a substrate being attached to the first surface of the layer. The substrate is also configured to be fed a guided wave that excites the apertures to produce a radiation pattern for illuminating a scene. The imaging system also include one or more antennas configured to generate a signal for imaging based on the illuminated scene.
US11038262B2
A multi-band energy harvesting system is provided. The system includes a plurality of harvesting antennas, wherein each of the plurality of harvesting antennas, operates a specific frequency band; and a plurality of harvesting units, wherein each of the plurality of harvesting units is coupled to a respective harvesting antenna and adapted to harvest energy at the specific frequency band of the respective harvesting antenna.
US11038255B2
A mobile terminal is provided including a display unit; a middle frame including a supporting unit that supports a rear surface of the display unit with a side portion around the supporting portion; a main board at a rear surface of the middle frame including a ground; a first wireless communication unit in the main board to transceive a first signal; a second wireless communication unit in the main board to transceive a second signal; and a rear case covering a rear surface of the main board, where the side portion includes a plurality of conductive members with ends divided into slits and the plurality of the conductive members includes a common antenna electrically connectable with the first and second wireless communication units to receive the first and second signals such that the mobile terminal receives different signals with antennas for LTE and 5G communication arranged in a limited space.
US11038247B2
The present invention relates to a method of manufacturing an electrode lead including: arranging a plurality of lead pieces between a first lead film and a second lead film in a length direction of a lead film including the first lead film and the second lead film; first sealing the first lead film and the second lead film; bending the lead film to form a lead piece laminate in which the plurality of lead pieces are stacked in a height direction with respect to a plane of the lead film; and second sealing the bent lead film overlapping the plurality of lead pieces.
US11038242B2
The present invention relates to an electrode assembly. The electrode assembly comprises: a first separator sheet; and first and second electrode sheets respectively adhering to both sides of the first separator sheet, wherein both the surfaces of the first separator sheet have adhesion different from each other, the first electrode sheet adheres to a first surface, which has relatively high adhesion, of both the surfaces, and the second electrode sheet adheres to a second surface, which has relatively low adhesion, of both the surfaces.
US11038239B2
An interlayer for a lithium-sulfur (Li—S) battery may include a separator coated with an intercalation compound. The intercalation compound may intrinsically exhibit and/or be modified to have a higher affinity for lithium polysulfides (LiPS), thus reducing the global sulfur mobility and the shuttling effect. Additionally, the intercalation compound may also reduce the formation of a Li2S clogging layer, which thus increases the battery lifetime by reducing active material loss and maintaining the rate performance of the Li—S battery. Unlike conventional inactive interlayer materials, the intercalation compound may also contribute to the capacity of the battery, thereby increasing the volumetric and gravimetric energy densities. In one example, an interlayer for the Li—S battery may be disposed between a cathode and an anode and may include a separator and a coating disposed on the separator. The coating may include an intercalation compound, such as Chevrel-phase Mo6S8, to reduce the global sulfur mobility.
US11038230B2
The present invention relates to a composition, a laminate, a packaging material, a battery case packaging material, and a battery, and the composition includes: a modified olefin polymer (A) that is a modified olefin polymer, the modified olefin polymer being a polymer (a) of a C2 to C20 α-olefin modified by a monomer (b) having a functional group reactive with an epoxy group or an oxazoline group; a crosslinking agent (B) including at least one of an epoxy compound and an oxazoline compound; and a catalyst (C) having a pKa of 11 or more, the modified olefin polymer (A) satisfying the following requirements (i) and (ii): Requirement (i): the polymer (a) contains a structural unit derived from a C4 to C20 α-olefin, and Requirement (ii): a heat of fusion of the polymer (A), as measured according to JIS K7122, is 0 to 50 J/g.
US11038226B2
A secondary battery module includes a plurality of battery cells aligned in one direction, a plurality of insulation sheets between the plurality of battery cells, the insulations sheets including aerogel for blocking heat transfer between the plurality of battery cells, and a housing fixing the battery cells and the insulation sheets. The secondary battery module may prevent or retard generation of heat or ignition from a cell within the module from propagating to adjoining cells.
US11038218B2
This disclosure describes various embodiments of a battery assembly for an electrified vehicle battery pack. The battery assemblies include one or more battery cells (e.g., cylindrical, prismatic, or pouch cells) and a cooling device extending at least partially through the battery cells. The cooling device is configured to either conductively or convectively cool the battery cells. In some embodiments, the cooling device is a solid rod, a hollow tube, a slab, or some combination of these features. In other embodiments, the cooling device connects to a coolant manifold configured to communicate coolant for convectively cooling the battery cells of the battery assembly.
US11038216B2
Disclosed herein are a wireless battery management system (BMS) and a battery pack including the same. The wireless BMS includes a plurality of slave BMSs installed and coupled to a plurality of battery modules of the battery pack in one-to-one correspondence, and a master BMS configured to wirelessly transmit a trigger signal to the plurality of slave BMSs for identification (ID) allocation to each of the plurality of slave BMSs. Each slave BMS is configured to generate a response signal including a respective allocated temporary ID in response to the trigger signal, and wirelessly transmit the response signal to the master BMS. For each given slave BMS, the master BMS is configured to receive the response signal from of the given slave BMS, and determine a formal ID to be allocated to the given BMS based on a received signal strength of the response signal.
US11038211B2
The disclosure relates to a battery pack, comprising a casing; a built-in circuit disposed inside the casing; a consumable component disposed inside the casing and connected in series to the built-in circuit, wherein an opening corresponding to the consumable component is provided on the casing; a safety switch disposed inside the casing, wherein an on/off of the safety switch controls a connection/disconnection of the built-in circuit; and a cover body disposed corresponding to the opening, wherein the cover body has a first state in which the cover body is capped at the opening, so that the safety switch is switched on and the built-in circuit is connected, and a second state in which the cover body is detached from the opening, so that the safety switch is switched off and the built-in circuit is disconnected.
US11038201B2
Disclosed is an additive for non-aqueous electrolyte solutions, which include a compound represented by Formula (1). In Formula (1), X represents a sulfonyl group or a carbonyl group, R1 represents an alkyl group having 1 to 4 carbon atoms which may be substituted with a halogen atom, or the like, and R2 represents a divalent hydrocarbon group having 1 to 3 carbon atoms which may be substituted with a halogen atom, or represents a divalent group formed of a divalent hydrocarbon group having 1 to 3 carbon atoms which may be substituted with a halogen atom, and an oxygen atom that constitutes a cyclic structure together with the hydrocarbon group.
US11038193B2
A battery incudes wound positive and negative electrodes, where the wound positive electrode includes a positive electrode current collector, a first positive electrode active material layer provided on an inner surface of the positive electrode current collector, and a second positive electrode active material layer provided on an outer surface of the positive electrode current collector. An inner circumference side end portion and an outer circumference side end portion of the positive electrode current collector are covered with the first active material layer, and the first positive electrode active material layer includes a low area density portion in a portion facing an inner circumference side end portion of the wound positive electrode.
US11038190B2
A membrane electrode assembly for a fuel cell that includes a membrane electrode unit with a membrane and two electrodes which make surface contact with both faces of the membrane. The membrane electrode assembly has a seal support that surrounds the periphery of the membrane and that overlaps the latter. The membrane electrode also has a connecting layer which continuously overlaps the membrane and the seal support, an inner edge section of the connecting layer being bonded to the membrane electrode unit and an outer edge section of the connecting layer being bonded to the seal support on the same flat face of the connecting layer. A seal is connected outside the membrane to the seal support. A fuel cell is provided that includes a plurality of membrane electrode assemblies. A motor vehicle includes the fuel cell and a method is provided for producing the membrane electrode assembly.
US11038189B2
A membrane electrode assembly component for a fuel cell includes a generally planar gas-permeable body having opposed first and second faces defining in-plane and through-plane directions, a side face extending about an outer perimeter of the body and adjoining each of the first and second faces, and an active region bounded by the first and second faces and an active region perimeter defined generally within the outer perimeter. The active region includes a distribution of cerium-zirconium oxide nanofibers dispersed across at least one of the in-plane and through-plane directions, wherein the cerium-zirconium oxide nanofibers have a molecular formula of CexZryO4.
US11038187B2
A proton conductor includes a complex of phosphoric acid and a coordination polymer in which a metal ion and a ligand are continuously connected by a coordinate bond. The phosphoric acid includes a first phosphoric acid that is coordinately bonded to the metal ion, and a second phosphoric acid that is not coordinately bonded to the metal ion.
US11038183B2
An apparatus of manufacturing an elastomeric cell frame for a fuel cell may include, as the apparatus of manufacturing the elastomeric cell frame including an insert in which a membrane electrode assembly and a gas diffusion layer have been bonded, and a sheet-like elastomeric frame made of a thermoplastic elastomer (TPE) integrated into an external area of the insert to form the unit cell of the fuel cell, a lower jig module accommodated so that the overlapping area, in which the insert and the elastomeric frame overlap at a predetermined area, is accommodated, and an upper jig module mounted above the lower jig module to provide heat and pressure to the overlapping area to thermally bond an interface between the insert and the elastomeric frame in the overlapping area.
US11038174B2
A method for preparing Iron Oxide-hydroxide (FeOOH), and a positive electrode for a lithium-sulfur battery including Iron Oxide-hydroxide. In particular, the preparation of crystalline Iron Oxide-hydroxide, particularly, lepidocrocite (γ-FeOOH), by controlling a reaction time and a reaction temperature, and by using the prepared high purity Iron Oxide-hydroxide in a positive electrode of a lithium-sulfur battery, may enhance discharge capacity and lifetime properties of the battery.
US11038166B2
The present application provides a coated anode material and a method of preparing the same. The coated anode material has a core-shell structure, wherein the core-shell structure includes an inert core and a shell coated on the inert core, the shell comprises an anode active material, and the inert core comprises a non-active material. In the coated anode material, the anode active material of the shell is distributed over the non-active material of the inert core, and the coated anode material can overcome the volume change problem of silicon particles during lithium insertion/deinsertion to a certain extent and obtain a better cycle performance and rate performance.
US11038160B2
A lithium battery and method for fabricating the same are provided herein. The battery cathode comprises a carbon structure filled with a catalyst, such as palladium-catalyst-filled carbon nanotubes (CNTs). The carbon structure provides a barrier between the catalyst and the electrolyte providing an increased stability of the electrolyte during both discharging and charging of a battery.
US11038155B2
A film formation apparatus according to an embodiment comprising: a substrate holder for holding a substrate in a standing position relative to the horizontal plane, the substrate having a vapor deposition surface on which a vapor deposition layer is formed; and an evaporation source to supply a vapor deposition material onto the vapor deposition surface while moving relative to the substrate holder upward and/or downward, the evaporation source being disposed in a region which the vapor deposition surface of the substrate held by the substrate holder is to face. The substrate holder is configured to hold the substrate in an inclined orientation relative to the vertical plane such that the upper end of the substrate is located away from the evaporation source. The apparatus further comprises an adjustment means for reducing a variation in the thickness of the vapor deposition layer, which results from the inclination of the substrate.
US11038148B2
An OLED apparatus includes a plurality of blue pixels configured to emit blue light, a plurality of green pixels configured to emit green light, and a plurality of red pixels configured to emit red light. Each of the plurality of blue, green, and red pixels includes a reflection layer; a first electrode arranged on the reflection layer; a light-emitting region arranged on the first electrode; and a second electrode arranged on the light-emitting region. An upper surface of the reflection layer of the blue pixel is continuously flat, and an upper surface of the reflection layer of the green pixel and an upper surface of the reflection layer of the red pixel are level with each other. Each of the green pixel or each of the red pixel includes a plurality of nano-structures protruding from a bottom surface of the reflection layer to the upper surface of the reflection layer.
US11038144B2
An organic light-emitting display apparatus is disclosed. In one embodiment, the display apparatus includes i) a substrate and ii) an organic light-emitting device formed on the substrate, the organic light-emitting device including a stack structure including a first electrode, an organic light-emitting layer, and a second electrode. The apparatus may further include a sealing layer formed on the substrate so as to cover the organic light-emitting device, the sealing layer including an inorganic layer and a porous layer interposed between the sealing layer and the organic light-emitting device. One embodiment can reduce a stress due to a sealing inorganic layer so as to maintain characteristics for a long time in a severe environment and not affect an organic light-emitting device.
US11038138B2
The present specification relates to a hole injection or transfer layer or charge generation layer coating composition of an organic electroluminescent device comprising an organic metal complex comprising at least one of Mo, V, Re, Ni and Pt, and W; and an organic solvent, a method for manufacturing an organic electroluminescent device using the same, and an organic electroluminescent device.
US11038136B2
An electroluminescent device includes a first electrode and a second electrode facing each other; an emission layer disposed between the first electrode and the second electrode and including a plurality of quantum dots and a first hole transporting material having a substituted or unsubstituted C4 to C20 alkyl group attached to a backbone structure; a hole transport layer disposed between the emission layer and the first electrode and including a second hole transporting material; and an electron transport layer disposed between the emission layer and the second electrode.
US11038124B2
The present invention discloses an organic compound and an organic electroluminescence device employing the organic compound as the fluorescent host material in the light emitting layer of the organic electroluminescence device. The organic electroluminescence device employing the organic compound of the present invention can operate under reduced driving voltage, increase current efficiency, and prolong half-life time.
US11038121B2
Novel 9 membered ring carbazole compounds are disclosed, which can be used as host materials etc. in an electroluminescent device. Compared with the existing host materials etc., these novel compounds can effectively modulate the charge transporting properties in the above materials and give OLEDs better performance. Also disclosed are an electroluminescent device and a formulation.
US11038118B2
A compound having a structure represented by the following general formula emits delayed fluorescent light and is useful as a light-emitting material. Three or more of R1, R2, R4, and R5 each represent a 9-carbazolyl group, a 10-phenoxazyl group, or a 10-phenothiazyl group, and the balance thereof and R3 each represent a hydrogen atom or a substituent, but exclude a cyano group. R3 excludes an aryl group, a heteroaryl group, and an alkynyl group.
US11038113B2
An organic light-emitting device including a first electrode; a second electrode facing the first electrode; an emission layer between the first electrode and the second electrode; and an electron transport region between the emission layer and the second electrode; wherein the electron transport region includes a condensed cyclic compound represented by Formula 1 below:
US11038108B2
The present disclosure is directed to a method for the formation of resistive random-access memory (RRAM) structures with a low profile between or within metallization layers. For example, the method includes forming, on a substrate, a first metallization layer with conductive structures and a first dielectric layer abutting sidewall surfaces of the conductive structures; etching a portion of the first dielectric layer to expose a portion of the sidewall surfaces of the conductive structures; depositing a memory stack on the first metallization layer, the exposed portion of the sidewall surfaces, and a top surface of the conductive structures; patterning the memory stack to form a memory structure that covers the exposed portion of the sidewall surfaces and the top surface of the conductive structures; depositing a second dielectric layer to encapsulate the memory stack; and forming a second metallization layer on the second dielectric layer.
US11038104B2
A method is presented for protecting resistive random access memory (RRAM) stacks within a resistive memory crossbar array. The method includes forming conductive lines within an interlayer dielectric (ILD), forming a metal nitride layer over at least one conductive line, forming a bottom electrode, forming a RRAM stack over the metal nitride layer, the RRAM stack including a first top electrode and a second top electrode, undercutting the second top electrode to define recesses, and filling the recesses with inner spacers.
US11038099B2
An apparatus is provided which comprises: a first magnet with perpendicular magnetic anisotropy (PMA); a stack of layers, a portion of which is adjacent to the first magnet, wherein the stack of layers is to provide an inverse Rashba-Bychkov effect; a second magnet with PMA; a magnetoelectric layer adjacent to the second magnet; and a conductor coupled to at least a portion of the stack of layers and the magnetoelectric layer.
US11038091B2
Light-emitting device packages include a package substrate surrounded by a lower molding member, a light-emitting device on the package substrate and surrounded by an upper molding member, a heat conductive pad between a lower surface of the light-emitting device and an upper surface of the package substrate, a first electrode on an upper surface of the light-emitting device, a second electrode on the upper surface of the light-emitting device, a fluorescent material on the upper surface of the light-emitting device, and a plurality of bonding wires electrically connecting the package substrate with separate, respective electrodes of the first electrode and the second electrode.
US11038090B2
A method of manufacturing an optoelectronic component includes providing a carrier with an upper side; arranging an optoelectronic semiconductor chip above the upper side of the carrier; arranging a casting material over the upper side of the carrier, wherein the optoelectronic semiconductor chip is embedded in the casting material, and the casting material forms a cast surface; and removing a portion of the casting material at the cast surface, wherein a topography is generated at the cast surface, and the removal of a portion of the casting material at the cast surface takes place through laser interference structuring.
US11038079B2
A light-emitting device and a manufacturing method thereof are provided. The light-emitting device includes a substrate, an epitaxial blocking layer, and a light-emitting epitaxial structure. The substrate has a surface, in which the surface includes a plurality of protruding parts and a plurality of recess parts relative to the protruding parts. The epitaxial blocking layer disposed on the substrate covers the recess parts and exposes the protruding parts. The light-emitting epitaxial structure disposed on the substrate is connected to the protruding parts and is disposed above the recess parts. The light-emitting epitaxial structure is formed by using the protruding parts as a growth surface thereof so as to have a better crystalline quality.
US11038077B2
A chip package includes a chip, a sidewall structure that has a first light-shielding layer, a second light-shielding layer, and a cover. The chip has a light emitter and a light receiver that are located on a top surface of the chip. The sidewall structure is located on the top surface of the chip and has two aperture areas. The light emitter and the light receiver are respectively located in the two aperture areas. The sidewall structure surrounds the light emitter and the light receiver, and at least one surface of the sidewall structure has the first light-shielding layer. The second light-shielding layer is located between the chip and the sidewall structure. The cover is located on a surface of the sidewall structure facing away from the chip, and at least covers the light receiver and the sidewall structure that surrounds the light receiver.
US11038074B2
Apparatus, methods and systems of wireless power distribution are disclosed. Embodiments involve the redirection of collimated energy to a converter, which stores or converts the energy into a more suitable form of energy for at least one specific point-of-use that is coupled to the converter.
US11038063B2
A semiconductor structure and fabrication method thereof are provided. The fabrication method includes: providing a base substrate including a substrate and a plurality of fins on the substrate; forming gate structures across the fins, to cover a portion of sidewalls of the fins and a portion of top surfaces of the fins; forming stress layers in the fins on sides of each gate structure; forming barrier layers on sidewalls of the gate structure; and forming doped regions by applying first ion implantation processes to the fins under the stress layers using the barrier layers as a mask.
US11038062B2
A semiconductor device includes a substrate including a fin-shaped active region that protrudes from the substrate, a gate insulating film covering a top surface and both side walls of the fin-shaped active region, a gate electrode on the top surface and the both side walls of the fin-shaped active region and covering the gate insulating film, one pair of insulating spacers on both side walls of the gate electrode, one pair of source/drain region on the fin-shaped active region and located on both sides of the gate electrode, and a lower buffer layer between the fin-shaped active region the source/drain region. The source/drain regions include a compound semiconductor material including atoms from different groups. The lower buffer layer includes a compound semiconductor material that is amorphous and includes atoms from different groups.
US11038058B2
A semiconductor device structure is provided. The semiconductor device structure includes a substrate and a dielectric fin structure over the substrate. The semiconductor device structure also includes a semiconductor fin structure adjacent to the dielectric fin structure. The semiconductor device structure also includes a metal gate stack across the dielectric fin structure and the semiconductor fin structure. The semiconductor device structure also includes a source/drain feature over the semiconductor fin structure. The semiconductor device structure also includes a source/drain spacer interposed between the source/drain feature and the dielectric fin structure.
US11038054B2
The present disclosure provides semiconductor devices with asymmetric source/drain structures. In one example, a semiconductor device includes a first group of source/drain structures on a first group of fin structures on a substrate, a second group of source/drain structures on a second group of fin structures on the substrate, and a first gate structure and a second gate structure over the first and the second group of fin structures, respectively, the first and second groups of source/drain structures being proximate the first and second gate structures, respectively, wherein the first group of source/drain structures on the first group of fin structures has a first source/drain structure having a first vertical height different from a second vertical height of a second source/drain structure of the second group of source/drain structures on the second group of fin structures.
US11038053B2
A semiconductor device includes a substrate, and a first source/drain region formed on the substrate. The semiconductor device further includes a channel formed on the first source/drain region, and a second source/drain region formed on the channel. The semiconductor device also includes a gate electrode formed on an external surface of the channel, and a metal pad formed on the substrate. The height of an upper surface of the metal pad is the same as the length of an upper surface of the gate electrode.
US11038047B2
A normally-off HEMT transistor includes a heterostructure including a channel layer and a barrier layer on the channel layer; a 2DEG layer in the heterostructure; an insulation layer in contact with a first region of the barrier layer; and a gate electrode through the whole thickness of the insulation layer, terminating in contact with a second region of the barrier layer. The barrier layer and the insulation layer have a mismatch of the lattice constant (“lattice mismatch”), which generates a mechanical stress solely in the first region of the barrier layer, giving rise to a first concentration of electrons in a first portion of the two-dimensional conduction channel which is under the first region of the barrier layer which is greater than a second concentration of electrons in a second portion of the two-dimensional conduction channel which is under the second region of the barrier layer.
US11038045B2
A semiconductor device includes a back barrier layer formed over a substrate, a first electron transit layer formed over the back barrier layer, an opening formed in the first electron transit layer and the back barrier layer, a second electron transit layer formed over the first electron transit layer, a side surface of the first electron transit layer at a side surface within the opening, a side surface of the back barrier layer at a side surface within the opening, and a surface of the back barrier layer at a bottom surface within the opening, an electron supply layer formed over the second electron transit layer, a drain electrode formed over the electron supply layer within the opening, and a gate electrode formed to cover a side surface of the electron supply layer at a side surface within the opening from an edge part of the opening.
US11038043B2
In a method of manufacturing a semiconductor device, a fin structure, in which first semiconductor layers and second semiconductor layers are alternately stacked, is formed over a bottom fin structure. A sacrificial gate structure having sidewall spacers is formed over the fin structure. A source/drain region of the fin structure, which is not covered by the sacrificial gate structure, is removed. The second semiconductor layers are laterally recessed. Dielectric inner spacers are formed on lateral ends of the recessed second semiconductor layers. The first semiconductor layers are laterally recessed. A source/drain epitaxial layer is formed to contact lateral ends of the recessed first semiconductor layer. The second semiconductor layers are removed thereby releasing the first semiconductor layers in a channel region. A gate structure is formed around the first semiconductor layers.
US11038041B2
A semiconductor device that includes at least one fin structure and a gate structure present on a channel portion of the fin structure. An epitaxial semiconductor material is present on at least one of a source region portion and a drain region portion on the fin structure. The epitaxial semiconductor material includes a first portion having a substantially conformal thickness on a lower portion of the fin structure sidewall and a second portion having a substantially diamond shape that is present on an upper surface of the source portion and drain portion of the fin structure. A spacer present on first portion of the epitaxial semiconductor material.
US11038038B2
Some embodiments include a transistor having a gate, with the gate being over a semiconductor base. The gate has sidewalls. A channel region is under the gate. Spacers are along the sidewalk. The spacers each include a spacer structure and a void between the spacer structure and the gate. The spacer structures each include a vertical segment extending upwardly from a horizontal segment. The vertical segments join to the horizontal segments at corners. Source/drain regions are adjacent the channel region. The voids may be along the entirety of the vertical segments of the spacer structures, and may extend around the corners and to under the horizontal segments of the spacer structures. Additionally, or alternatively, bottoms of the voids may be adjacent fill material which includes silicon, nitrogen, boron and oxygen. Some embodiments include methods of forming transistors.
US11038035B2
A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes a gate stack structure formed over a substrate. The gate stack structure includes a gate electrode structure having a first portion and a second portion and a first conductive layer below the gate electrode structure. In addition, the first portion of the gate electrode structure is located over the second portion of the gate electrode structure, and a width of a top surface of the first portion of the gate electrode structure is greater than a width of a bottom surface of the second portion of the gate electrode structure.
US11038025B2
The present disclosure, in some embodiments, relates to a method of forming a transistor device. The method may be performed by forming an anode and a cathode over an electron supply layer disposed on a semiconductor material. A doped III-N semiconductor material is formed over the electron supply layer, and an insulating material is formed over the electron supply layer and the doped III-N semiconductor material. The insulating material continuously extends from over the anode to over the cathode. The insulating material is patterned to form sidewalls of the insulating material that define an opening over the doped III-N semiconductor material. A gate structure is formed directly between the sidewalls of the insulating material and over the doped III-N semiconductor material.
US11038024B2
An object is to provide a nonpolar or semipolar GaN substrate having improved size and crystal quality. A self-standing GaN substrate has an angle between the normal of the principal surface and an m-axis of 0 degrees or more and 20 degrees or less, wherein: the size of the projected image in a c-axis direction when the principal surface is vertically projected on an M-plane is 10 mm or more; and when an a-axis length is measured on an intersection line between the principal surface and an A-plane, a low distortion section with a section length of 6 mm or more and with an a-axis length variation within the section of 10.0×10−5 Å or less is observed.
US11038016B2
A transistor device includes a first silicon nanowire array-MOSFET and a second silicon nanowire array-MOSFET integrated with a bulk drift region. The first silicon nanowire array-MOSFET is configured as an n-MOSFET by substantially only accommodating an electron current, and the second silicon nanowire array-MOSFET is configured as a p-MOSFET by substantially only accommodating a hole electron current. A current strength of a current through the first silicon nanowire array-MOSFET caused by electrons is at least 10 times larger than a current through the first silicon nanowire array-MOSFET caused by holes in an on-state of the transistor device. Further embodiments of transistor devices are described.
US11038012B2
In the present invention, lower electrodes (101, 102) are disposed at a period d1 in an X direction and at a period d2 in a Y direction. Upper electrodes (102) are disposed so as to be shifted by half the length of the period (d1) in the X direction with respect to the lower electrodes (101), and are disposed so as to be shifted by half the length of the period (d2) in the Y direction with respect to the lower electrodes (101). Each pair of a lower electrode (101) and an upper electrode (102), which face each other and capacitively couple with each other, form a capacitor cell (C). Cell terminals (103, 104) are disposed at the period (d1) in the X direction, disposed at the period (d2) in the Y direction, and respectively electrically connected to the lower electrodes (101) and the upper electrodes (102). The cell terminals (104) are disposed so as to be shifted by half the length of the period (d1) in the X direction with respect to the cell terminals (103), and are disposed so as to be shifted by half the length of the period (d2) in the Y direction with respect to the cell terminals (103).
US11038011B2
Methods of fabricating a structure for a metal-insulator-metal (MIM) capacitor. Conductive nanofibers are formed on a surface of a conductor layer. Each conductive nanofiber is terminated by an enlarged tip portion opposite the surface of the conductor layer. The enlarged tip portion is removed from each conductive nanofiber. The MIM capacitor may include the conductive nanofibers as portions of an electrode.
US11038010B2
A structure includes a semiconductor substrate, a conductor-insulator-conductor capacitor. The conductor-insulator-conductor capacitor is disposed on the semiconductor substrate and includes a first conductor, a nitrogenous dielectric layer and a second conductor. The nitrogenous dielectric layer is disposed on the first conductor and the second conductor is disposed on the nitrogenous dielectric layer.
US11037995B2
The present disclosure provides an organic light-emitting display panel and a display apparatus for improving the touch performance. The display panel includes a driving device film layer, a light-emitting device film layer, an encapsulation film layer and a touch film layer. The touch film layer includes a first touch metal layer, a touch insulation layer and a second touch metal layer that are sequentially stacked. The display panel has a display area and a non-display area. The non-display area includes a touch bonding region and a display bonding region that are located on two opposite sides of the display area. A touch connection pin is provided in the touch bonding region and located in the first touch metal layer or the second touch metal layer, and a display connection pin is provided in the display bonding region and located in the driving device film layer.
US11037990B2
Various embodiments of the present application are directed towards an integrated chip comprising memory cells separated by a void-free dielectric structure. In some embodiments, a pair of memory cell structures is formed on a via dielectric layer, where the memory cell structures are separated by an inter-cell area. An inter-cell filler layer is formed covering the memory cell structures and the via dielectric layer, and further filling the inter-cell area. The inter-cell filler layer is recessed until a top surface of the inter-cell filler layer is below a top surface of the pair of memory cell structures and the inter-cell area is partially cleared. An interconnect dielectric layer is formed covering the memory cell structures and the inter-cell filler layer, and further filling a cleared portion of the inter-cell area.
US11037983B2
The present disclosure provides a semiconductor structure, including a transistor layer, a memory region over the transistor layer, and a logic region adjacent to the memory region. The memory region includes a first Nth metal line, a magnetic tunneling junction (MTJ) over the first Nth metal line, a cap over the MTJ, a first stop layer on the cap; and a first (N+1)th metal via over the MTJ. The first (N+1)th metal via is laterally surrounded by the cap and the first stop layer. The logic region includes a second Nth metal line, a second stop layer being disposed over an (N+1)th metal line, and a second (N+1)th metal via over the (N+1)th metal line. N is an integer greater than or equal to 1. A method of manufacturing the semiconductor structure is also disclosed.
US11037979B2
An imaging element has at least a photoelectric conversion section, a first transistor TR1, and a second transistor TR2, the photoelectric conversion section includes a photoelectric conversion layer, a first electrode, and a second electrode, the imaging element further has a first photoelectric conversion layer extension section, a third electrode, and a fourth electrode, the first transistor TR1 includes the second electrode that functions as one source/drain section, the third electrode that functions as a gate section, and the first photoelectric conversion layer extension section that functions as the other source/drain section, and the first transistor TR1 (TRrst) is provided adjacent to the photoelectric conversion section.
US11037971B2
There are provided a fan-out sensor package and an optical fingerprint sensor module including the same. The fan-out sensor package includes: a connection member having a 5 through-hole; an image sensor disposed in the through-hole of the connection member and having an active surface having connection pads disposed thereon and an inactive surface opposing the active surface; an encapsulant encapsulating at least portions of the connection member, the image sensor, and 10 an optical lens; and a redistribution layer disposed on the connection member, the image sensor, and the optical lens. The connection member includes a wiring layer, and the redistribution layer electrically connects the wiring layer and the connection pads to each other.
US11037970B2
Implementations of semiconductor packages may include: a substrate having a first side and a second side and a die having an active area on a second side of the die. A first side of the die may be coupled to the second side of the substrate. The semiconductor package may also include a glass lid having a first side and a second side. The glass lid may be coupled over a second side of the die. The semiconductor package may include a first and a second molding compound and one or more cushions positioned between a first side of the glass lid and a portion of the first molding compound. The second molding compound may be coupled to the substrate and the around the die and the glass lid.
US11037967B2
An image sensor may include a pixel array including a plurality of pixel blocks operable to convert light into electrical signals. Each of the plurality of pixel blocks may include a first light receiving circuit including a plurality of unit pixels that share a first floating diffusion; a second light receiving circuit arranged adjacent to the first light receiving circuit in a second direction, and including a plurality of unit pixels that share a second floating diffusion; a first driving circuit positioned between the first light receiving circuit and the second light receiving circuit; a second driving circuit positioned adjacent to the other side facing away from one side of the first light receiving circuit or the second light receiving circuit, which is adjacent to the first driving circuit; and a third driving circuit positioned adjacent to the first driving circuit or the second driving circuit.
US11037953B2
Provided herein may be a semiconductor device. The semiconductor device may include a first substrate, a second substrate disposed on the first substrate, a stack which is disposed on the second substrate and includes stacked memory cells, and a discharge contact structure electrically coupling the second substrate with the first substrate such that charges in the second substrate are discharged to the first substrate.
US11037951B2
Electronic apparatus and methods of forming the electronic apparatus may include one or more charge trap structures for use in a variety of electronic systems and devices, where each charge trap structure includes a dielectric barrier between a gate and a blocking dielectric on a charge trap region of the charge trap structure. In various embodiments, a void is located between the charge trap region and a region on which the charge trap structure is disposed. In various embodiments, a tunnel region separating a charge trap region from a semiconductor pillar of a charge trap structure, can be arranged such that the tunnel region and the semiconductor pillar are boundaries of a void. Additional apparatus, systems, and methods are disclosed.
US11037950B2
A semiconductor memory device includes a substrate including a cell region on which memory sells are disposed and a connection region on which conductive patterns are disposed, the conductive patterns electrically connected to the memory cells; a first word line stack including a plurality of first word lines that are stacked on the substrate in the cell region and extend to the connection region; a second word line stack including a plurality of second word lines that are stacked on the substrate in the cell region and extend to the connection region, the second word line stack being adjacent to the first word line stack; vertical channels disposed on the cell region of the substrate, the vertical channels being connected to the substrate and respectively coupled with the plurality of first and second word lines; a bridge connecting one of the plurality of first word lines in the first word line stack to a corresponding word line of the second word line stack.
US11037948B2
A semiconductor storage device according to one embodiment is the semiconductor storage device that includes: a cell array region having a plurality of memory cells; and an outer edge portion arranged at an end portion to surround the cell array region. A stacked body in which a plurality of conductive layers are stacked via a first insulating layer and which has a stair portion in which end portions of the plurality of conductive layers form a stair shape is provided inside the cell array region, the stair portion facing the outer edge portion. A center of at least one step of the stair portion has a recess directed to an inner side of the cell array region.
US11037943B2
An array of memory stack structures extends through an alternating stack of insulating layers and electrically conductive layers. The drain-select-level assemblies may be provided by forming drain-select-level openings through a drain-select-level sacrificial material layer, and by forming a combination of a cylindrical electrode portion and a first gate dielectric mayin each first drain-select-level opening while forming a second gate dielectric directly on a sidewall of each second drain-select-level opening in a second subset of the drain-select-level openings. A strip electrode portion is formed by replacing the drain-select-level sacrificial material layer with a conductive material. Structures filling the second subset of the drain-select-level openings may be used as dummy structures at a periphery of an array. The dummy structures are free of gate electrodes and thus prevents a leakage current therethrough.
US11037941B2
A method for forming an integrated circuit (IC) and an IC are disclosed. The method for forming the IC includes: forming an isolation structure separating a memory semiconductor region from a logic semiconductor region; forming a memory cell structure on the memory semiconductor region; forming a memory capping layer covering the memory cell structure and the logic semiconductor region; performing a first etch into the memory capping layer to remove the memory capping layer from the logic semiconductor region, and to define a slanted, logic-facing sidewall on the isolation structure; forming a logic device structure on the logic semiconductor region; and performing a second etch into the memory capping layer to remove the memory capping layer from the memory semiconductor, while leaving a dummy segment of the memory capping layer that defines the logic-facing sidewall.
US11037936B2
Semiconductor device and fabrication method are provided. The method includes a base substrate including a first region, a second region, and a third region arranged in a first direction; a first doped layer at the first region and a second doped layer at the third region; a first gate structure at the second region; a first dielectric layer on the base substrate; forming first trenches in the first dielectric layer, where the first trenches include second sub-regions arranged in a direction in parallel with a second direction, and a minimum distance between a second sub-region and a contact region of the first gate structure is greater than zero; forming a first conductive layer in the first trenches; forming a second conductive layer on a surface of the first conductive layer at the second sub-regions; and forming a third conductive layer on the contact region of the first gate structure.
US11037930B2
A semiconductor device includes a substrate, a bit line structure on the substrate, a contact plug structure being adjacent to the bit line structure and extending in a vertical direction perpendicular to an upper surface of the substrate, and a capacitor electrically connected to the contact plug structure. The contact plug structure includes a lower contact plug, a metal silicide pattern, and an upper contact plug that are sequentially stacked on the substrate. The metal silicide pattern has an L-shaped cross section.
US11037925B2
The present disclosure provides an integrated circuit that includes a circuit formed on a semiconductor substrate; and a de-cap device formed on the semiconductor substrate and integrated with the circuit. The de-cap device includes a filed-effect transistor (FET) that further includes a source and a drain connected through contact features landing on the source and drain, respectively; a gate stack overlying a channel and interposed between the source and the drain; and a doped feature disposed underlying the channel and connecting to the source and the drain, wherein the doped feature is doped with a dopant of a same type of the source and the drain.
US11037923B2
Through gate fin isolation for non-planar transistors in a microelectronic device, such as an integrated circuit (IC). In embodiments, ends of adjacent semiconductor fins are electrically isolated from each other with an isolation region that is self-aligned to gate electrodes of the semiconductor fins enabling higher transistor packing density and other benefits. In an embodiment, a single mask is employed to form a plurality of sacrificial placeholder stripes of a fixed pitch, a first subset of placeholder stripes is removed and isolation cuts made into the semiconductor fins in openings resulting from the first subset removal while a second subset of the placeholder stripes is replaced with gate electrodes.
US11037919B2
Representative techniques provide process steps for forming a microelectronic assembly, including preparing microelectronic components such as dies, wafers, substrates, and the like, for bonding. One or more surfaces of the microelectronic components are formed and prepared as bonding surfaces. The microelectronic components are stacked and bonded without adhesive at the prepared bonding surfaces.
US11037915B2
An IC chip comprises LED devices exposed on a front side of the IC chip, I/O bumps on a back side of the IC chip, a first die forming a stack with the LED devices and comprising driver circuits electrically connected to the LED devices, a first circuit that extends along the vertical direction from the front side of the IC chip towards a back side of the IC chip and across at least a thickness of the first die to provide electrical connections between the LED devices and at least some of the I/O bumps, a second die including pipelining circuits and control circuits for the driver circuits, a second circuit that extends from the second die, and a circuit board electrically connected to the I/O bumps and to a power system.
US11037914B2
A light emitting display device includes: a display element layer having light emitting elements; a first sub-pixel including a first light emitting element from among the plurality of light emitting elements in a first sub-pixel area of the display element layer; a second sub-pixel including a second light emitting element from among the plurality of light emitting elements in a second sub-pixel area of the display element layer; a third sub-pixel including a third light emitting element from among the plurality of light emitting elements in a third sub-pixel area of the display element layer; a partition wall between the first, second, and third sub-pixels and over an insulating layer, covering the first, second, and third light emitting elements; a first color conversion layer over the insulating layer in the first sub-pixel area and surrounded by the partition wall; and a first color filter over the first color conversion layer.
US11037911B2
A light emitting device includes a wiring substrate, light emitting elements, light-reflecting films, and a light diffusing member. The light emitting elements are mounted in a matrix on the wiring substrate. Each of the light emitting elements includes a sapphire substrate having a lower surface, first lateral surfaces inclined to the lower surface, and second lateral surfaces perpendicular to the lower surface, and a semiconductor layered structure disposed on the lower surface. The light-reflecting films are respectively disposed on the light emitting elements. The light diffusing member is disposed above the light emitting elements. At least a group of the light emitting elements is arranged such that, in every adjacent ones of the light emitting elements in at least one of a row direction and a column direction, the first lateral surface of the light emitting element faces the second lateral surface of the adjacent light emitting element.
US11037904B2
Methods of singulation and bonding, as well as structures formed thereby, are disclosed. A method includes singulating a first chip and after the singulating the first chip, bonding the first chip to a second chip. The first chip includes a first semiconductor substrate and a first interconnect structure on a front side of the first semiconductor substrate. The singulating the first chip includes etching through a back side of the first semiconductor substrate through the first interconnect structure.
US11037903B2
A method of forming a plurality of semiconductor packages includes providing an array of unsingulated semiconductor packages that are at least partially encapsulated in an encapsulant. The array of unsingulated semiconductor packages may be coupled with a lead frame or a substrate. A first plurality of singulation lines are simultaneously etched in the encapsulant through slits in an etch mask using a plasma etching process and a fixture coupled with the array. A second plurality of parallel singulation lines may also be etched. The first and second pluralities of singulation lines may include substantially straight or arcuate lines. The second plurality of parallel singulation lines may be substantially perpendicular to the first plurality of parallel singulation lines and be formed using the plasma etching process, the fixture, and an etch mask. The formation of singulation lines in the array singulates the array into a plurality of singulated semiconductor packages.
US11037902B2
A light-emitting apparatus includes a substrate, pads disposed on the substrate, a sacrificial pattern layer and a light-emitting diode element disposed on the sacrificial pattern layer. The light-emitting diode element includes a first type semiconductor layer, a second type semiconductor layer, an active layer, and electrodes. A connection patterns disposed on at least one of the electrodes and the pads. Materials of the connection patterns include hot fluidity conductive materials. The connection patterns cover a sidewall of the sacrificial pattern layer and are electrically connected to the at least one of the electrodes and the pads. In addition, the manufacturing method of the above light-emitting apparatus is also proposed.
US11037900B2
A chip bonding apparatus and method are disclosed. The chip bonding apparatus includes: at least one separation module for separating chips; at least one bonding module for bonding the chips a substrate; a transportation device for transporting the chips between the separation module and the bonding module, the transportation device including one or more guide tracks and one or more transportation carriers for retaining the chips, each of the guide tracks is provided thereon with at least one of the transportation carriers; and a control device for individually controlling the separation module, the bonding module and the transportation device. The chip bonding apparatus and method allows pickup, transportation and chip-to-substrate bonding of chips in batches with increased chip bonding yield and improved chip bonding accuracy.
US11037896B2
Described is an apparatus which comprises: a backside of a first die having a redistribution layer (RDL); and one or more passive planar devices disposed on the backside, the one or more passive planar devices formed in the RDL.
US11037891B2
An electronic device package includes a first substrate, a second substrate and a conductive layer. The first substrate includes a first bonding pad, and a cavity exposing the first bonding pad. The second substrate is laminated on the first substrate. The second substrate includes a second bonding pad at least partially inserting into the cavity of the first substrate. The conductive layer is disposed in the cavity and at least between the first bonding pad and the second bonding pad to connect the first bonding pad and the second bonding pad.
US11037889B2
A display device is provided. The display device includes a panel. The panel includes a display region and a non-display region and has a normal direction in which the non-display region is adjacent to the display region. The non-display region includes a conductive line which includes a first section and a second section. The first section has a first extension direction and the second section has a second extension direction that is different from the first extension direction. A first conductive layer is disposed on the first section a first distance away from the first section in the normal direction. A second conductive layer is disposed on the second section a second distance away from the second section in the normal direction which is different than the first distance.
US11037879B2
According to one embodiment, a semiconductor device includes a wiring board, a spacer board that is mounted on the wiring board and in which a power supply conductor layer and a ground conductor layer are provided, at least one first semiconductor chip that is mounted on the spacer board including a power supply layer electrically connected to the power supply conductor layer and a ground layer electrically connected to the ground conductor layer, and a second semiconductor chip that is mounted on the wiring board.
US11037874B2
An electronic device comprises an integrated circuit (IC) die including a first plurality of contact pads; and a plurality of stacked interconnect layers. The plurality of stacked interconnect layer include a first interconnect layer including a first conductive plane, a first vertical interconnect portion, and dielectric material isolating the first vertical interconnect portion from the first conductive plane; and a second interconnect layer including a second conductive plane contacting the first conductive plane, a second vertical interconnect portion contacting the first vertical interconnect portion, and the dielectric material isolating the second vertical interconnect portion from the second conductive plane; wherein the first and second vertical interconnect portions are included in a first vertical interconnect through the first and second conductive planes that contacts a first contact pad of the first plurality of contact pads.
US11037870B2
An electronic module has a first substrate 11, a first electronic element 13, a second electronic element 23, a second substrate 21, a first terminal part 110 and a second terminal part 120. The first terminal part 110 has a first terminal base end part 111, a first terminal outer part 113, and a first bending part 112 that is provided between the first terminal base end part 111 and the first terminal outer part 113 and that is bent toward the other side on a side of the first terminal base end part 111. The second terminal part 120 has a second terminal base end part 121, a second terminal outer part 123, and a second bending part 122 that is provided between the second terminal base end part 121 and the second terminal outer part 123 and that is bent toward one side on a side of the second terminal base end part 121.
US11037867B2
A semiconductor module has at least two semiconductor components which are arranged within a housing in each case between two electrical conduction elements and are electrically conductively connected to the electrical conduction elements. The electrical conduction elements respectively have a contact extension that is led out of the housing, wherein two contact extensions arranged in different planes are connected to one another outside the housing via a contact element, which forms a current path between the two contact extensions outside the housing.
US11037866B2
A semiconductor device has inner leads (2a) of leads (2) which are covered with a first resin-encapsulating body (4), and has outer leads (2b) which are exposed from the first resin-encapsulating body (4), and which are given a shape bending downward and have distal ends having the bending shape extending in a lateral direction. The inner leads (2a) embedded in the first resin-encapsulating body (4) extend inward, and are then formed into a shape bending downward. Above end portions (3) having the bending shape, an element mounting portion (11) is formed of the first resin-encapsulating body (4), and a semiconductor element (6) placed on the element mounting portion (11) is covered with a second resin-encapsulating body (8).
US11037864B2
The present disclosure is directed to a lead frame including a die pad with cavities, and methods for attaching a semiconductor die to the lead frame. The cavities allow for additional adhesive to be formed on the die pad at the corners of the semiconductor die, and prevent the additional adhesive from overflowing on to active areas of the semiconductor die.
US11037861B2
An interconnect structure and a method of forming an interconnect structure are provided. The interconnect structure is formed over a carrier substrate, upon which a die may also be attached. Upon removal of the carrier substrate and singulation, a first package is formed. A second package may be attached to the first package, wherein the second package may be electrically coupled to through vias formed in the first package.
US11037859B2
To improve cooling capability, power conversion apparatus 1 that converts a direct current voltage into an alternating current voltage includes: first substrate 100 on which power conversion circuit 2 is mounted; second substrate 200 on which driving circuit 3 that drives power conversion circuit 2 is mounted; and shield plate 300 that is disposed between first substrate 100 and second substrate 200, and first substrate 100 is a metal substrate.
US11037854B2
A die includes a semiconductor substrate, a through-via penetrating through the semiconductor substrate, a seal ring overlying and connected to the through-via, and an electrical connector underlying the semiconductor substrate and electrically coupled to the seal ring through the through-via.
US11037853B1
A semiconductor heat dissipation structure includes a first semiconductor device including a first active surface and a first back surface opposite to the first active surface, a second semiconductor device including a second active surface and a second back surface opposite to the second active surface, a first heat conductive layer embedded in the first back surface of the first semiconductor device, a second heat conductive layer embedded in the second back surface of the second semiconductor device, and a third heat conductive layer disposed adjoining the first heat conductive layer and extending to the first active surface of the first semiconductor device. The first back surface of the first semiconductor device and the second back surface of the second semiconductor device are in contact with each other. At least a portion of the first heat conductive layer are in contact with the second heat conductive layer.
US11037848B2
A semiconductor module includes block-shaped first and second lower base members provided by bonding of flat lower surfaces on an insulated circuit board and having bottomed first and second hole portions open in upper surfaces in upper portions of the first and second lower base members, tubular first and second upper slide support members inserted in the first and second hole portions in a state where at least a part of outside surfaces is in contact with inside walls of the first and second hole portions, first and second pins inserted in contact with the insides of the first and second upper slide support members, and a sealing resin sealing the first and second pins except for the upper portions of the first and second pins.
US11037835B2
A method of forming a semiconductor device includes providing a semiconductor structure that includes a first semiconductor material extending from a first region to a second region. The method further includes removing a portion of the first semiconductor material in the second region to form a recess, where the recess exposes a sidewall of the first semiconductor material disposed in the first region; forming a dielectric material covering the sidewall; while the dielectric material covers the sidewall, epitaxially growing a second semiconductor material in the second region adjacent the dielectric material; and forming a first fin including the first semiconductor material and a second fin including the second semiconductor material.
US11037830B2
After the step of polishing, a part of each of each gate electrode is removed such that the upper surface of each gate electrode is located closer than the damaged region formed in the gate insulating film located between the gate electrodes to the main surface of the semiconductor substrate in cross-section view. Thus, it is possible to suppress the occurrence of a short-circuit defect during the operation of the semiconductor device.
US11037823B2
Described herein is a technique capable of providing a semiconductor device having good characteristics. According to the technique described herein, there is provided a method of manufacturing a semiconductor device, including: (a) loading a substrate into a process chamber; and (b) forming a stacked etch stopper film by performing: (b-1) forming a first etch stopper film containing a first element and a second element by supplying a first element-containing gas and a second element-containing gas onto the substrate; and (b-2) forming a second etch stopper film containing the first element, the second element and a third element by supplying the first element-containing gas, the second element-containing gas and a third element-containing gas onto the first etch stopper film.
US11037822B2
A method is presented for forming interlayer connections in a semiconductor device. The method includes patterning an etch stack to provide for a plurality of interlayer connections, etching guide layers following the etch stack to a first capping layer to form a plurality of guide openings, concurrently exposing a first plurality of conductive lines and a second plurality of conductive lines to form a plurality of interlayer connection openings by etching through the plurality of guide openings to remove the first capping layer, an interlayer dielectric, and a second capping layer, and depositing a metal fill in the plurality of interlayer connection openings to form the plurality of interlayer connections.
US11037821B2
Methods of forming interconnects and structures for interconnects. A hardmask layer is patterned to form a plurality of first trenches arranged with a first pattern, and sidewall spacers are formed inside the first trenches on respective sidewalls of the hardmask layer bordering the first trenches. An etch mask is formed over the hardmask layer. The etch mask includes an opening exposing a portion of the hardmask layer between a pair of the sidewall spacers. The portion of the hardmask layer exposed by the opening in the etch mask is removed to define a second trench in the hardmask layer.
US11037820B2
A method for forming openings in an underlayer includes: forming a photoresist layer on an underlayer formed on a substrate; exposing the photoresist layer; forming photoresist patterns by developing the exposed photoresist layer, the photoresist patterns covering regions of the underlayer in which the openings are to be formed; forming a liquid layer over the photoresist patterns; after forming the liquid layer, performing a baking process so as to convert the liquid layer to an organic layer in a solid form; performing an etching back process to remove a portion of the organic layer on a level above the photoresist patterns; removing the photoresist patterns, so as to expose portions of the underlayer by the remaining portion of the organic layer; forming the openings in the underlayer by using the remaining portion of the organic layer as an etching mask; and removing the remaining portion of the organic layer.
US11037817B2
An apparatus is provided which comprises: a substrate; one or more active devices adjacent to the substrate; a first set of one or more layers to interconnect the one or more active devices; a second set of one or more layers; and a layer adjacent to one of the layers of the first and second sets, wherein the layer is to bond the one of the layers of the first and second sets.
US11037816B2
In described examples, a device includes a semiconductor substrate; a buried layer; and a trench with inner walls extending from the buried layer to a surface of the semiconductor substrate, the trench having sidewalls, a bottom wall, a barrier layer including a titanium (Ti) layer covering the sidewalls and the bottom wall, and a filler including more than one layer of conductor material formed on the barrier layer.
US11037813B2
A wafer processing method includes a polyolefin sheet providing step of positioning a wafer in an inside opening of a ring frame and providing a polyolefin sheet on a back side of the wafer and on a back side of the ring frame, a uniting step of heating the polyolefin sheet as applying a pressure to the polyolefin sheet to thereby unite the wafer and the ring frame through the polyolefin sheet by thermocompression bonding, a dividing step of cutting the wafer by using a cutting apparatus to thereby divide the wafer into individual device chips, and a pickup step of cooling the polyolefin sheet, pushing up each device chip through the polyolefin sheet, and then picking up each device chip from the polyolefin sheet.
US11037812B2
The transfer of devices or device components from a carrier substrate to a further carrier substrate or to a plurality of further carrier substrates can be performed with little effort (few transfer steps) to the at least one further carrier substrate. The method comprises producing first devices on the first carrier substrate in a two-dimensional grid. It comprises defining positions on the second carrier substrate on the basis of the two-dimensional grid for at least some of the first devices. It comprises releasing a plurality of the first devices from the first carrier substrate while maintaining the two-dimensional grid. Finally, the plurality of first devices are applied to the second carrier substrate in the defined positions while maintaining the two-dimensional grid or a multiple thereof in at least one of the two directions.
US11037804B2
The present invention discloses a method for cleaning substrate without damaging patterned structure on the substrate using ultra/mega sonic device, comprising: applying liquid into a space between a substrate and an ultra/mega sonic device; setting an ultra/mega sonic power supply at frequency f1 and power P1 to drive said ultra/mega sonic device; after micro jet generated by bubble implosion and before said micro jet generated by bubble implosion damaging patterned structure on the substrate, setting said ultra/mega sonic power supply at frequency f2 and power P2 to drive said ultra/mega sonic device; after temperature inside bubble cooling down to a set temperature, setting said ultra/mega sonic power supply at frequency f1 and power P1 again; repeating above steps till the substrate being cleaned.
US11037799B2
The current disclosure describes techniques of protecting a metal interconnect structure from being damaged by subsequent chemical mechanical polishing processes used for forming other metal structures over the metal interconnect structure. The metal interconnect structure is receded to form a recess between the metal interconnect structure and the surrounding dielectric layer. A metal cap structure is formed within the recess. An upper portion of the dielectric layer is strained to include a tensile stress which expands the dielectric layer against the metal cap structure to reduce or eliminate a gap in the interface between the metal cap structure and the dielectric layer.
US11037792B2
The present disclosure provides a semiconductor structure etching solution, including an etchant, an ionic strength enhancer having an ionic strength greater than 10−3 M in the semiconductor structure etching solution, and a solvent having a dielectric constant lower than a dielectric constant of water.
US11037791B2
To suppress thicknesses of a plating film of dies adjacent to a portion in which patterns are not formed on a resist, and improve uniformity of a plated metal layer thickness in a substrate surface. A substrate holder according to the present invention has: a holding surface 57 for holding a substrate; a second holding member 60 configured to have an opening part 63 for exposing the holding surface 57, and to press the substrate placed on the holding surface 57 against the holding surface 57 to thereby hold the substrate; and a shielding plate 65 configured to protrude to an inside of the opening part 63 of the second holding member 60 in a radial direction and to shield a part of the holding surface 57. The shielding plate 65 is configured to be movable along the opening part 63.
US11037781B2
Embodiment methods for performing a high pressure anneal process during the formation of a semiconductor device, and embodiment devices therefor, are provided. The high pressure anneal process may be a dry high pressure anneal process in which a pressurized environment of the anneal includes one or more process gases. The high pressure anneal process may be a wet anneal process in which a pressurized environment of the anneal includes steam.
US11037766B2
A substrate support apparatus includes a substrate stage to support a substrate, and a ground ring assembly along a circumference of the substrate stage, the ground ring assembly including a ground ring body, the ground ring body having a plurality of recesses along a circumferential portion thereof, and a plurality of ground blocks movable to be received into respective recesses of the plurality of recesses, the plurality of ground blocks including a conductive material to be electrically grounded.
US11037765B2
Described herein is a technology related to a method for generating a high density plasma ionization on a plasma processing system. Particularly, the high density plasma ionization may include an electron cyclotron resonant (ECR) plasma that is utilized for semiconductor fabrication such as an etching of a substrate. The ECR plasma may be generated by a combination of electromagnetic fields from a resonant structure, radiated microwave energy from a radio frequency (RF) microwave source, and presence of a low-pressure plasma region (e.g., about 1 mTorr or less) on the plasma processing system.
US11037763B2
There is provision of a member used in a plasma processing apparatus configured to generate plasma from a gas in a processing vessel and to process a substrate disposed on a mounting base in the processing vessel using the plasma. The member includes a surface exposed to the plasma in the processing vessel in a state installed in the processing vessel, and a coating layer including cobalt which covers a part of the surface.
US11037762B2
A plasma processing apparatus includes at least one asymmetry member that causes a non-uniformity of plasma density around the high frequency electrode; and a plasma density distribution controller that is arranged depending on arrangement of the at least one asymmetry member to suppress the non-uniformity of plasma density around the high frequency electrode in the azimuthal direction. The plasma density distribution controller includes a first conductor which has first and second surfaces facing opposite directions to each other and is electrically connected with the rear surface of the high frequency electrode with respect to the first high frequency power; and a second conductor which includes a first connecting portion(s) electrically connected with a portion of the second surface of the first conductor and a second connecting portion electrically connected with a conductive grounding member electrically grounded around the high frequency electrode with respect to the first high frequency power.
US11037757B2
A charged particle beam writing apparatus includes a writer writing a pattern on a surface of a substrate using a charged particle beam, a measurement unit measuring a height of the surface of a central portion of the substrate at a plurality of positions in the central portion, a generator performing fitting using a first polynomial on measurement values from the measurement unit, calculating, by extrapolation using the first polynomial, a first height distribution of the height of the surface of a peripheral portion of the substrate, performing fitting using a second polynomial, which is of a higher order than the first polynomial, on the measurement values, calculating a second height distribution of the height of the surface of the central portion by interpolation using the second polynomial, and generating a height distribution of the substrate by combining the first height distribution and the second height distribution, and a controller adjusting a focal position of the charged particle beam based on the height of the surface at a writing position, the height being calculated from the height distribution of the substrate.
US11037755B2
An observation method includes placing a specimen on a specimen supporting film of a specimen support, attaching the specimen support to a retainer, attaching the retainer to an optical microscope retainer holding base, attaching the optical microscope retainer holding base to a specimen stage of an optical microscope and observing the specimen under the optical microscope, attaching the retainer to a transmission electron microscope retainer holding base, and loading the transmission electron microscope retainer holding base into a transmission electron microscope and observing the specimen under the transmission electron microscope.
US11037732B2
A multilayered capacitor includes a capacitor body including a plurality of dielectric layers and a plurality of internal electrodes; and external electrodes disposed on both end portions of the capacitor body and connected to exposed portions of the internal electrodes, respectively. Each of the external electrodes includes a conductive layer formed on the capacitor body and connected to the internal electrodes; an inner plated layer including nickel (Ni) and phosphorus (P), and covering the conductive layer; and an outer plated layer including palladium (Pd) and phosphorus (P), and covering the inner plated layer.
US11037723B2
A transformer includes a magnetic core, a first winding and at least one second winding. The magnetic core has a window through which the first winding passes through without contacting the magnetic core. The second winding passes through the window of the magnetic core and is wound on the magnetic core. The second winding has a distance from the first winding, and a semi-conductive part is disposed between the second winding and the magnetic core. The present disclosure can effectively lower the risk of partial discharge between the second winding and the magnetic core, and thus the transformer of the present disclosure has high reliability.
US11037715B2
A magnetic sensor includes a plurality of magnetic detection elements, and a plurality of magnetic field generators associated with the plurality of magnetic detection elements. Each of the plurality of magnetic field generators includes a first ferromagnetic material section and a first antiferromagnetic material section. The first antiferromagnetic material section is in contact with and exchange-coupled to the first ferromagnetic material section. The first ferromagnetic material section has an overall magnetization. The plurality of magnetic field generators includes first and second magnetic field generators configured so that the overall magnetization of the first ferromagnetic material section of the first magnetic field generator is in a different direction from the overall magnetization of the first ferromagnetic material section of the second magnetic field generator.
US11037711B2
Provided herein is a soft magnetic alloy powder that can exhibit a high saturation flux density and desirable soft magnetic characteristics. A dust core using such a soft magnetic alloy powder is also provided. A soft magnetic alloy powder is used that includes an amorphous phase, and an αFe crystalline phase residing in the amorphous phase. The αFe crystalline phase has a crystallite volume distribution with a mode of 1 nm or more and 15 nm or less, and with a half width of 3 nm or more and 50 nm or less.
US11037700B2
A system and method for an LCDI power cord and associated circuits is provided. The system and method include energizing shielded neutral wires and shielded line wires and monitoring the energized shields for surges, e.g., arcing, detected by a Leakage Current Detection Circuit (LCDC) and/or voltage drops, e.g., shield breaks, detected by a Shield Integrity Circuit (SIC).
US11037699B2
Provided is a power cable, particularly, an ultra-high voltage underground or submarine cable for long-distance direct-current transmission. Specifically, the present invention relates to a power cable which includes an insulating layer of high dielectric strength, is capable of uniformly and effectively alleviating an electric field applied to the insulating layer, is particularly structurally stable, has high flexibility, and is capable of suppressing partial discharge, dielectric breakdown, etc. of the insulating layer, thereby increasing the lifespan and productivity of the cable.
US11037695B2
An aluminum alloy wire composed of an aluminum alloy, wherein the aluminum alloy contains more than or equal to 0.03 mass % and less than or equal to 1.5 mass % of Mg, more than or equal to 0.02 mass % and less than or equal to 2.0 mass % of Si, and a remainder of Al and an inevitable impurity, Mg/Si being more than or equal to 0.5 and less than or equal to 3.5 in mass ratio, and the aluminum alloy wire has a dynamic friction coefficient of less than or equal to 0.8.
US11037694B2
Highly uniform and thin silver nanowires are described having average diameters below 20 nm and a small standard deviation of the diameters. The silver nanowires have a high aspect ratio. The silver nanowires can be characterized by a small number of nanowires having a diameter greater than 18 nm as well as with a blue shifted narrow absorption spectrum in a dilute solution. Methods are described to allow for the synthesis of the narrow uniform silver nanowires. Transparent conductive films formed from the thin, uniform silver nanowires can have very low levels of haze and low values of ΔL*, the diffusive luminosity, such that the transparent conductive films can provide little alteration of the appearance of a black background.
US11037690B2
The invention relates to a method for preparing lead (212) for medical use. This method comprises the production of lead (212) by the decay of radium (224) in a generator comprising a solid medium to which the radium (224) is bound, followed by the extraction of the lead (212) from the generator in the form of an aqueous solution A1, characterised in that the lead (212) contained in the aqueous solution A1 is purified from the radiological and chemical impurities, also contained in said aqueous solution, by a liquid chromatography on a column. The invention also relates to an apparatus specially designed for automated implementation in a closed system of said method. It further relates to lead (212) produced by means of this method and this apparatus. Applications: manufacture of radiopharmaceuticals based on lead (212), useful in nuclear medicine for the treatment of cancers, particularly by a-radioimmunotherapy, or for medical imaging, in both humans and animals.
US11037687B2
Systems, methods, and devices of the various embodiments enable a Nuclear Thermionic Avalanche Cell (NTAC) to capture gamma ray photons emitted during a fission process, such as a fission process of Uranium-235 (U-235), and to breed and use a new gamma ray source to increase an overall emission flux of gamma ray photons. Various embodiments combine a fission process with the production of Co-60, thereby boosting the output flux of gamma ray photons for use by a NTAC in generating power. Various embodiments combine a fission process with the production of Co-60, a NTAC generating avalanche cell power, and a thermoelectric generator generating thermoelectric power.
US11037671B2
A computer-implemented dental charting system includes a computer storing tooth data for at least one patient and a display operable to display the tooth data. The computer is responsive to voice commands, and the display has a periodontal mode and a restorative mode. The display includes an exam overview window illustrating a plurality of tooth images, each tooth image corresponding to a patient tooth location, and an exam focus window. The exam focus window illustrates a magnified view of at least one of the plurality of tooth images, and illustrates data corresponding to the selected tooth location. The exam focus window may be displayed beside the exam overview window, as a floating window on top of the exam overview window, or on a physically separate display from the exam overview window.
US11037669B2
The disclosed system calculates a single score for a consumable that indicates the nutritional health of that consumable. Nutritional health in one embodiment is an indication of whether nutrients within a consumable are within a healthy range that is specific to a user based on a recommended caloric intake. The system determines the impact on the individual's nutritional health by determining whether the nutritional content of a consumable falls within a range customized to the individual. The disclosed system thus tracks and displays the impact of consumables on individuals personalized nutritional requirements. The disclosed system also generates nutritional advice, enabling the individual to discover the impact of changes to nutritional habits on the individual's overall nutritional health. In an embodiment, the disclosed system determines and displays consumables that would need to be consumed to meet an individual's nutritional health needs over a specified period, such as in a given day.
US11037668B2
An infusion pump automation system and method includes an infusion pump, an infusion pump and a remote processor. The remote processor is remote to the infusion pump and includes a controller interface and a controller, such that the controller bidirectionally communicates with the infusion pump, determines a current infusion state of the infusion pump and a current infusion pump user interface state and accepts a command to change the infusion state of the infusion pump from an external server. The controller determines if the command is consistent with the current infusion state of the infusion pump and the current infusion pump user interface state, executes the command if the command is able to be successfully executed, and confirms that the command is successfully executed.
US11037666B1
A method and apparatus for detecting suspicious activities surrounding the management of controlled substances in a medical facility is described herein, where the activities that may indicate the diversion of controlled drugs are flagged for further review. The activities are detected by invigilating application layer network packets, related to controlled substances, on the medical facility network, and processing these packets with a rules engine and machine learning generated rules to make a determination if the circumstances surrounding the packets indicate the diversion of controlled substances.
US11037665B2
Performing an operation comprising applying one or more natural language processing (NLP) algorithms to a text transcription of a medical encounter dialogue to determine a plurality of features of the dialogue, processing, by a machine learning (ML) model executing on a processor, the text transcription and the plurality of features of the dialogue to identify a plurality of candidate medications from a knowledge base corresponding to a first statement made by a medical professional during the medical encounter, and outputting an indication of the plurality of candidate medications for display.
US11037664B1
Decision support technology is provided for use with patients who may experience respiratory deterioration. A mechanism is provided to determine whether a patient is experiencing (or is likely to experience at a future time) an autoimmune inflammatory event, which may include performing a spectral analysis on a time series of nocturnal or axillary temperatures for the patient to determine a spectrum slope or intercept. The time series may be demeaned, detrended, and apodized before performing the spectral analysis. A comparison of the slope or intercept with a baseline value is used to determine an indication of the patient's likely condition or future condition regarding the autoimmune inflammatory event. Based on the comparison, an intervening action may be invoked, such as alerting a caregiver, providing a recommendation or modified treatment, or determining and recommending a tailored prescription of medicine for the patient.
US11037661B2
Exemplary methods, apparatuses, and systems generate and maintain patient-specific models of patient data to assist in monitoring a patient's unique health conditions, and to provide more informative analyses of patient data and the relationships between elements of patient data. When a patient modeling server receives patient data from an external device, the patient modeling server determines whether values for elements of patient data satisfy individualized ranges for the elements of patient data, specific to the patient. In response to this determination, the patient modeling server can transmit notification and/or alert messages, and modify the individualized ranges for the elements of patient data. The patient modeling server also determines relationships between elements of patient data, based on analyses performed on the elements of patient data, to generate patient-specific models.
US11037657B2
A mechanism is provided to implement a health risk assessment system for adaptively and dynamically generating a personalized questionnaire for health risk assessment of a patient. A set of responses are analyzed and a patient is grouped to an initial group that matches a similar patient group. Utilizing the initial group, an initial question is selected to present to the patient. Responsive to receiving a current response to the initial question, the current response is analyzed, the patient is grouped to a next group, and a next question is identified and presented to the patient. The process continues until a last group is reached where a scoring of possible health risks associated with the patient is performed based on each response provided by the patient and identified groupings. A final possible health risk or ranked set of possible health risks is then presented based on the scoring.
US11037655B2
Methods of formulating live biotherapeutics are disclosed in which a deficiency or excess of a specific bacterial strain in a person's microbiome is identified by comparing a gene-specific characterization of the person's microbiome against a comprehensive, non-redundant reference gene catalog, and the biotherapeutic is formulated by selecting bacteria to address the deficiency or excess. Embodiments include the formulation of live biotherapeutics for improving the health of a person's vaginal microbiome, i.e. using a vaginal reference gene catalog, and may be suitable for ameliorating, treating, or preventing a malignancy such as a cancer of the female genitourinary system.
US11037649B2
A test device capable of measuring characteristics of respective transistors constituting a memory cell is provided. The test device for testing a SRAM connects a resistor to a bit line on one side of a memory cell selected by a word line selection circuit and a bit line selection circuit of the SRAM. In a manner that a selected transistor and a resistor of the memory cell constitute a source follower circuit, the test device applies a voltage to each portion of the memory cell, applies an input voltage to a gate of the transistor constituting the source follower circuit, and inputs an output voltage outputted from a source of the transistor constituting the source follower circuit.
US11037647B1
An electronic system such as an imaging system may include processing circuitry and memory circuitry. The memory circuitry may include one-time-programmable memory having error correction code functionalities (e.g., SECDED functionalities). The one-time-programmable memory may have a first set of previously programmed bits and a second set of unprogrammed and unused bits. The processing circuitry may process instructions to update a bit in the second set of bits. To preserve the ECC functionalities (e.g., the ECC check bits associated with the first and second sets of bits, the processing circuitry may also update additional bits in the second set of bits.
US11037643B2
According to one embodiment, a magnetic memory puts a first magnetic domain having a magnetization direction which is the same as or opposite to a magnetic domain of a first layer of a magnetic memory line, into the first layer, based on a value of data and the magnetization direction of the first layer. When receiving a first command, the magnetic memory puts a first additional magnetic domain and a second additional magnetic domain having a magnetization direction opposite to the first additional magnetic domain into the magnetic memory line. When receiving a second command, the magnetic memory read the first and second additional magnetic domains to determine the magnetization direction of the first magnetic domain.
US11037638B1
A request to write a set of host data is received. A first plurality of write operations is performed to write a first portion of the set of host data to a first set of memory cells of the memory device arranged in a first pattern. The first set of memory cells arranged in the first pattern comprises alternating memory cells on each word line of the memory device and excludes a second set of memory cells adjacent to the first set of memory cells. A second plurality of write operations is performed to write a second portion of the set of host data to the second set of memory cells arranged in a second pattern. The second set of memory cells arranged in the second pattern comprises other alternating memory cells on each word line of the memory device adjacent to the first set of memory cells.
US11037625B2
A solid state drive (SSD) includes dynamic random access memory (DRAM), flash memory, and a solid state drive (SSD) controller. The solid state drive (SSD) also includes a peripheral component interconnect express (PCIe) bus to connect the SSD to a computing device such that a central processing unit (CPU) of the computing device exclusively reads data from, and writes data to, the DRAM. The SSD controller writes data to the flash memory from the DRAM independently of received commands from the computing device.
US11037622B2
A semiconductor device whose operating speed is increased is provided. The semiconductor device includes a write word line, a read word line, a write bit line, a read bit line, a first wiring, and a memory cell. The memory cell includes three transistors of a single conductivity type and a capacitor. Gates of the three transistors are electrically connected to the write word line, a first terminal of the capacitor, and the read word line, respectively. A second terminal of the capacitor is electrically connected to the read bit line. A source and a drain of one transistor are electrically connected to the write bit line and the gate of another transistor, respectively. Two of the three transistors are electrically connected in series between the read bit line and the first wiring. A channel formation region of each of the three transistors includes, for example, a metal oxide layer.
US11037620B1
A memory device having fault detection functionality for improving functional safety and a control system including the memory device are provided. The memory device includes a first memory cell array configured to store input data and output the input data as output data and a second memory cell array configured to store bit values of a row address and a column address of the first memory cell array in which the input data is stored, and output the bit values of the row address and the column address as an internal row address and an internal column address. The row/column address designating a read operation may be compared to the internal row/column address, and an address comparison signal as a result of the comparison may be output. The address comparison signal may provide fault detection functionality for a data error of an automotive electronic system.
US11037617B2
A method of operating a memory device is provided, comprising determining a number of operations corresponding to a memory location during a first timing period; and scheduling an extra refresh operation for the memory location after the first timing period when the determined number of operations exceeds a predetermined threshold. A memory device is provided, comprising a memory including a memory location; and circuitry configured to: determine a number of operations corresponding to the memory location during a first timing period; and schedule an extra refresh operation for the memory location after the first timing period when the determined number of operations exceeds a predetermined threshold.
US11037610B2
A read time-out manager may include a counter and a plurality of timers. The counter may generate a counter output signal based on a first cycle time. The plurality of timers may be each configured to be assigned a read identification to measure a time-out period corresponding to the read identification. Each of the plurality of timers may operate in synchronization with the counter output signal to generate a time-out signal based on a second cycle time different from the first cycle time.
US11037608B2
A stacked memory device includes: a plurality of semiconductor chips that are stacked and transfer signals through a plurality of through-electrodes, wherein at least one of the semiconductor chips comprises: a re-timing circuit suitable for receiving input signals and first and second clocks, performing a re-timing operation of latching the input signals based on the second clock to output re-timed signals, and reflecting a delay time of the re-timing operation into the first clock to output a replica clock; and a transfer circuit suitable for transferring the re-timed signals to the through-electrodes based on the replica clock.
US11037606B2
Methods for powering up a memory device, for example, are disclosed. One such memory device includes power up circuitry configured to receive an external power supply and to provide an internal power supply to the memory device upon receipt of a command. The power up circuitry may be configured to provide the internal power supply limited to a peak current, or may be configured to provide the internal power supply not limited to a peak current. The memory device may be, for example, a synchronous dynamic random access memory (SDRAM) device or Flash memory.
US11037604B2
The invention provides a method for processing and analyzing forensic video data using a computer program, the method comprising the steps of recording the forensic video data; providing supplementary data related to the recorded video data, wherein the supplementary data may be provided from or input by a source external of the computer program, in particular a human, or wherein the supplementary data may be extracted from the forensic video data by the computer program in an initial analyzing step; analyzing the forensic video data by the computer program using the supplementary data; and displaying a part of the forensic video data, the displayed part being based on a result of the analyzing step.
US11037603B1
In one aspect, an example method includes (i) receiving a first group of video content items; (ii) identifying from among the first group of video content items, a second group of video content items having a threshold extent of similarity with each other; (iii) determining a quality score for each video content item of the second group; (iv) identifying from among the second group of video content items, a third group of video content items each having a quality score that exceeds a quality score threshold; and (v) based on the identifying of the third group, transmitting at least a portion of at least one video content item of the identified third group to a digital video-effect (DVE) system, wherein the system is configured for using the at least the portion of the at least one video content item of the identified third group to generate a video content item.
US11037600B2
Disclosed are a video processing method and apparatus, a terminal and a medium. The method includes acquiring a first editing parameter of a playback speed of a continuous video and a second editing parameter of a playback speed of each of at least one target video segment, where the continuous video is synthesized from at least two video segments and the at least one target video segment includes at least one of the at least two video segments; calculating a target playback speed of each of the at least two video segments according to the first editing parameter and the second editing parameter corresponding to the each of the at least one target video segment; and synthesizing, based on the target playback speed of the each of the at least two video segments, the at least two video segments into a target video conforming to a preset duration.
US11037592B2
To provide a resin film, of which dimensional stability required of an ultra-high density recording medium can be controlled easily by drive tension, and which has processability at high temperature in a processing step of the resin film into a magnetic recording medium. A resin film having a Young's modulus in the film longitudinal direction of 1 GPa or more and a film thickness of 1 μm or more, wherein the product of the Young's modulus in the longitudinal direction and the thickness is 5 GPa·μm or more and 20 GPa·μm or less and wherein a dimensional change in the film longitudinal direction is −2% or more and +2% or less when the film is heated at a rate of 5° C./min under a load of 2 kg/mm2 applied in the longitudinal direction and the temperature has reached 110° C., the resin film satisfying at least either of the following (1) or (2): (1) the Young's modulus in the film longitudinal direction is 6 GPa or less and the film thickness is 4.5 μm or less; and (2) the Young's modulus in the film longitudinal direction is 4 GPa or less and the film thickness is 6 μm or less.
US11037586B1
The present disclosure includes methods and systems for lapping a row bar of sliders. According to the present disclosure, an electrical interconnect configuration is provided that permits the net current provided to a row bar to heat electrical heating devices during lapping to be managed so as help prevent exceeding breakdown currents of related electrical channels.
US11037579B2
A coding technology that efficiently codes an input sound signal irrespective of the characteristics thereof and can obtain a decoded sound signal that sounds less artificial to a listener. A coding method codes an input sound signal frame by frame of a predetermined time segment by a selected coding processing from a plurality of types of coding processing in the frequency domain, the coding method makes it possible for a selection unit to select coding processing which is different from the coding processing of the preceding frame as coding processing of the present frame if at least one of the magnitude of the energy of high frequency components of the input sound signal of the preceding frame and the magnitude of the energy of high frequency components of the input sound signal of the present frame is smaller than or equal to a predetermined threshold value.
US11037561B2
A method and apparatus for voice interaction control of a smart device, wherein the method comprises: monitoring and collecting in real time a voice signal emitted by a user of the smart device (S11); conducting voice recognition to the collected voice signal (S12); and according to a result of the voice recognition to the voice signal by the smart device, wakening a corresponding function of the smart device and judging whether to control the smart device to move, and if yes, acquiring a position of the user and controlling the smart device to move toward the user, to shorten a distance between the smart device and the user, and then recognizing a voice signal that the user again emits; and if not, directly according to the result of the voice recognition controlling the smart device to execute a corresponding operation (S13).
US11037556B2
Method and apparatus are disclosed for speech recognition for vehicle voice commands. An example vehicle includes a microphone to collect a signal including a voice command, memory, and a controller. The controller is configured to determine an initial identification by feeding the signal into a first automatic speech recognition (ASR) engine and determine habits by feeding user history into a habits engine. The controller also is configured to identify the voice command by feeding the signal, the initial identification, and the habits into a second ASR engine. The controller also is configured to perform a vehicle function based on the voice command.
US11037553B2
The invention is directed to a learning-type interactive device which performs voice dialogue with a user and accumulates a result of the voice dialogue as knowledge including: a voice recognition portion which performs voice recognition on an acquired uttered voice of the user and converts the voice into text; an intention understanding portion which analyzes an utterance intention from the text voice-recognized by the voice recognition portion with reference to intention understanding model data learned from intention understanding learning data; an answer generation portion which refers to a QA DB and generates an answer text from the utterance intention analyzed by the intention understanding portion, a knowledge extraction portion which extracts knowledge from the text voice-recognized by the voice recognition portion, the utterance intention, and the answer text, and a knowledge classification portion which classifies the knowledge extracted by the knowledge extraction portion according to characteristics.
US11037552B2
A method and apparatus for personalizing a speech recognition model is disclosed. The apparatus may obtain feedback data that is a result of recognizing a first speech input of a user using a trained speech recognition model, determine whether to update the speech recognition model based on the obtained feedback data, and selectively update, dependent on the determining, the speech recognition model based on the feedback data.
US11037550B2
First and second speech data can be received from respective first and second devices. The first and second speech data can be determined to be from a same dialog. A link can be generated based on the dialog.
US11037549B1
A system and method for automating the training of enterprise customer response systems using a range of dynamic or generic data sets, used to gradually take human supervision and intervention out of the training process for enterprise WA and similar automated response engines, by training existing machine learning models or engines using a heuristic middleman annotation assistant that helps map generic/public/new datasets to the existing machine learning model or engine, and allowing for limited human oversight over the remaining unknown or badly classified data segments which is used to further teach the heuristic and classification model until the human oversight is no longer needed for the heuristic to learn and map newer datasets, thereby reducing human, dollar, and time costs, and improving automated response system efficiency.
US11037548B2
A method for training an artificial neural network-based speech recognition model is disclosed. In the method for training an artificial neural network-based speech recognition model, a user's speech is learned by using target data representing features and non-target data representing non-features as random inputs and outputs, and then the user's speech is recognized under a noise situation. A method for training an artificial neural network-based speech recognition model and speech recognition device of the present disclosure can be associated with artificial intelligence modules, drones (unmanned aerial vehicles (UAVs)), robots, augmented reality (AR) devices, virtual reality (VR) devices, devices related to 5G service, etc.
US11037547B2
A method of attention-based end-to-end (A-E2E) automatic speech recognition (ASR) training, includes performing cross-entropy training of a model, based on one or more input features of a speech signal, determining a posterior probability vector at a time of a first wrong token among one or more output tokens of the model of which the cross-entropy training is performed, and determining a loss of the first wrong token at the time, based on the determined posterior probability vector. The method further includes determining a total loss of a training set of the model of which the cross-entropy training is performed, based on the determined loss of the first wrong token, and updating the model of which the cross-entropy training is performed, based on the determined total loss of the training set.
US11037546B2
Examples of the present disclosure describe systems and methods utilize domain knowledge to influence a selection of a candidate action template in a neural conversation model. More specifically, natural language rules may be provided to a natural language rule inferencer to bias a selection of a candidate action template. In some instances, the natural language rules may include a user input and a system action. In other instances, the natural language rules may include a previous system action and a next system action. A biasing vector may then influence a selection of a candidate action template of a set of candidate action templates to determine a most relevant candidate action template based on the natural language rules, the candidate action templates, and the user utterance or other system input.
US11037542B2
A pressing surface of a hammer and a to-be-pressed surface of a key switch have relatively-concaved shapes in a longitudinal direction of the hammer. When a switch body is pressed by the hammer, an inclination caused by an overall curvature of the switch body that results from the fact that the switch body is pressed by the hammer from an oblique direction is canceled by an inclination of the switch body caused by partial compression and deformation that results from the relatively-concaved shapes, so that movable contacts in the switch body frontally face stationary contacts and come into contact with the stationary contacts, respectively.
US11037533B2
An upright keyboard instrument reduced in depth dimension and compact as a whole. Damper levers each extend in a vertical direction and are pivotally movably supported at or in the vicinity of a longitudinal center thereof, in a side-by-side arrangement in a left-right direction at a location rearward of actions. A damper rod extends in a left-right direction. A pedal rod extends in the vertical direction and is disposed forward of the damper levers, so as to be moved upward by depression of a pedal. A damper lever drive mechanism is provided between a longitudinal end of the damper rod and an upper end of the pedal rod and drives lower portions of the damper levers such that the lower portions are pressed rearward by moving the damper rod rearward in accordance with upward movement of the pedal rod.
US11037532B2
An information processing apparatus includes a determination unit configured to determine an output explicitness level of notification information to a user, and an output control unit configured to perform control such that the notification information is output in an output mode according to the determined output explicitness level. The output control unit performs control such that the notification information is output in a display mode of assimilating the notification information into a display environment in accordance with the output explicitness level.
US11037526B2
An apparatus comprising ambient light color compensation circuitry to subtract a color component associated with ambient light from a corresponding color component of image data of an image to be displayed in accordance with a color profile of the ambient light.
US11037518B2
A display driver is disclosed that includes: an external interface circuit having input modes as interface modes to input display data. The display driver keeps the scan driving of a display panel stopped during a predetermined period until the driving of the display panel by display data input in the interface mode after switching is enabled in case that the interface mode of the external interface circuit is switched in the middle of driving the display panel based on display data input through the external interface circuit.
US11037517B2
A display device to display an image during frame intervals, and to display a blank image during a blank interval defined between the frame intervals, includes: a gate driving circuit including a plurality of stages, an ith stage (i is an integer greater than or equal to 2) from among the plurality of stages including a clock terminal to receive a clock signal, wherein the clock signal swings between a first clock voltage and a second clock voltage smaller than the first clock voltage during a normal interval corresponding to each of the frame intervals, and the clock signal is changed to a voltage lower than the second clock voltage during a stabilization interval corresponding to the blank interval.
US11037510B2
A pixel driving system for AMOLED display device and driving method are disclosed. The pixel driving system for AMOLED display device includes a sub-pixel driving circuit and a node voltage generating module electrically connected to the sub-pixel driving circuit. Wherein the node voltage generating module is inputted with the a red-green-blue display data for processing the red-green-blue display data, obtaining an APL value of a current frame of the AMOLED display device, and according to the APL value and a preset node voltage calculation formula, the node voltage generating module generates a corresponding node voltage and outputting to the source of the driving thin-film transistor. Adjusting the gate-to-source voltage of the driving thin-film transistor by using the APL value, thereby adjusting the driving current flowing through the light-emitting diode to adjust the entire display brightness of the AMOLED display device.
US11037504B2
A pixel array substrate including a substrate, a plurality of display pixels, a plurality of sensing pixels, and a read-out circuit is provided. The substrate includes a first region and a second region. The second region is located between the first region and an edge of the substrate. The display pixels are disposed on the first region and the second region of the substrate. The sensing pixels are disposed on the first region of the substrate. The read-out circuit is electrically connected to the sensing pixels. A portion of the read-out circuit is disposed on the second region of the substrate and the portion of the read-out circuit is located between two display pixels of the display pixels.
US11037502B2
The present disclosure discloses a shift register and a driving method thereof, a gate driving circuit, an array substrate, and a display device. With a signal control circuit, a branch control circuit, a cascade signal output circuit and at least two scanning signal output circuits, each shift register can output at least two different scanning signals to correspond to different gate lines in an array substrate. This can reduce the number of shift registers in a gate drive circuit and the space occupied by the gate drive circuit and can achieve an ultra-narrow bezel design, as compared with an existing shift register that can only output one scan signal. Furthermore, as signals of different output control node do not influence each other, the stability of waveforms of the output scanning signals may also be improved, and a difference in the waveforms of the scanning signals is avoided.
US11037501B2
The disclosure relates to the field of display technologies, and discloses a display panel, a method for driving the same, and a display device. In embodiments of the disclosure, a switch circuit is between a group of shift registers and respective gate lines to transmit a scan signal output by the corresponding shift register group to the respective gate lines, wherein the shift register group performs forward or backward scanning on the respective gate lines, that is, the display device can perform both forward scanning and backward scanning so that an application field of the display device can be greatly extended.
US11037487B2
A display device includes: a display panel including a plurality of pixels; a power supply configured to generate a gamma power voltage based on a power control signal; a gamma voltage generator configured to generate gamma voltages based on the gamma power voltage and a gamma control signal; a data driver configured to generate a data signal corresponding to a grayscale value included in image data using the gamma voltages and to provide the data signal to the pixels; and a power controller configured to adjust the power control signal and the gamma control signal based on a maximum voltage level of the data signal, wherein a voltage level of the gamma power voltage is proportional to the maximum voltage level of the data signal.
US11037486B2
A pixel is provided that has an internal compensation circuit capable of compensating for a threshold voltage of a driving transistor without loss of a data voltage and a light emitting display apparatus including the same. The pixel includes a light emitting device and a pixel circuit connected to the light emitting device. The pixel circuit includes a driving transistor including first and second gate electrodes, a source electrode, and a drain electrode, a first capacitor formed between the first gate electrode and the source electrode of the driving transistor, a second capacitor formed between the second gate electrode and the source electrode of the driving transistor, and a switching circuit connected to the first and second gate electrodes, the source electrode, and the drain electrode of the driving transistor and operating in order of a first to a fourth period.
US11037484B2
Provided is a display device, more particularly, a display device including a gate driver. The display device includes: a plurality of pixels; a plurality of gate lines connected to the plurality of pixels; a gate driver including a plurality of stages outputting gate signals to the plurality of gate lines; a clock signal wiring transferring a clock signal to the gate driver; a voltage wiring transferring an off voltage to the gate driver, in which the clock signal wiring is positioned at a first side of the gate driver, and the voltage wiring is positioned at a second side facing the first side of the gate driver.
US11037482B1
Systems and methods for a multi-primary color system for display. A multi-primary color system increases the number of primary colors available in a color system and color system equipment. Increasing the number of primary colors reduces metameric errors from viewer to viewer. The multi-primary color system includes Red, Green, Blue, Cyan, Yellow, and Magenta primaries. The systems of the present invention maintain compatibility with existing color systems and equipment and provide systems for backwards compatibility with older color systems.
US11037468B2
The present disclosure relates to a mock-up medicament injector for training purposes or an actual medicament injection device (1) comprising a sensor device (2) configured to detect movements of the whole device, and a logging device (3) configured to record said movements and thus track user behaviour of the device. The sensor can be e.g. an accelerometer, gyroscope or magnetometer. The device can communicate the logged data either in real time or at a later point in time from its memory to an external computer device. The present disclosure also relates to a corresponding method for tracking behaviour of a user using the medicament injector or training device (1).
US11037467B2
A suction simulation device includes a suction catheter and a suction unit in fluid communication with the suction catheter. The suction unit includes a reservoir for holding fluid and the suction unit is configured to provide vacuum capability to the suction catheter. The suction simulation device also includes a pump in fluid communication with the suction unit, the pump configured to flow the fluid from the reservoir. The suction simulation device is adapted for use with a manikin comprising an airway. Also disclosed is a suction simulation system and a method of simulating a scenario requiring mechanical ventilation.
US11037465B2
A device for training users in a proper mixing of pharmaceutical components, or for aiding in the mixing, or for performing the mixing, and administration of pharmaceutical components is disclosed. The device comprises a housing for receiving a pharmaceutical delivery device containing the pharmaceutical components. There is also a microcontroller disposed in the housing and a motion/orientation detection device disposed within or on the housing and in communication with the microcontroller. A method for use of the device is also disclosed, along with a substance for use as one of the pharmaceutical components.
US11037450B2
The present invention extends to methods, systems, and computer program products for using geofences to restrict vehicle operation. Aspects of the invention include creating dynamic geofences and limiting vehicle movements (e.g., speed, acceleration, steering, etc.) within and in the vicinity of the dynamic geofences to protect pedestrians from physical harm. In general, radio devices track people in an area by counting the number of devices and calculating the number of people based on average number of devices per person. Using count and location data, a geofence is created when population or population density within an area exceeds a threshold. The geofence can be sent to vehicles to restrict vehicle operation, for example, slowing down or stopping the vehicle, within and around the geofence.
US11037447B2
Parking control method and corresponding computer program. For outdoor parking zones (100), each zone (100) with a beacon device (101) broadcasting a beacon signal (102) with a unique code. Taking part: a server (300) and vehicles (200) with a portable user device (210) and a vehicle code (201). Comprising the following steps: determining a parking start for a parking zone (100); sending to said server (300) a parking request (401); by said server (300), determining whether the request is acceptable with a maximum parking time and sending a replay; by said portable device (210), informing of said reply; by said server (300), registering said vehicle as parked in said parking zone (100); determining a parking end for the current parking zone (100);—sending to said server (300) a parking end request (404); and by said server (300), registering said vehicle code (201) as not parked.
US11037436B2
A remote access device and methods of operation thereof are provided for accessing a physical object or location. The remote access device includes an accelerometer, a wireless transmitter, and control circuitry. The control circuitry causes the wireless transmitter to transition between a first operating mode and a second operating mode in response to receiving signals from the accelerometer indicating a first change in motion states of the remote access device. The control circuitry causes the wireless transmitter to transition between a first operating mode and a second operating mode in response to receiving signals from the accelerometer indicating a second change in motion states of the remote access device. The control circuitry further causes the wireless transmitter to transition between the first operating mode and the second operating mode in response to receiving signals from the accelerometer indicating a third change in motion states of the remote access device.
US11037432B1
Systems and methods of security monitoring using a learning process are provided. Intelligent security systems may perform a learning process to observe the paths of travel by occupants, as detected by various sensors distributed throughout a monitored location over a period of time. After the security system is initially installed, the system may learn the various paths taken by occupants of the house by keeping track of the sequence in which the sensors are activated due to normal human activity. Based on this data, a fully connected graph of sensors with all valid interconnections between sensors is available to the security system.
US11037425B2
A sleepiness estimating device includes an environmental information detector that detects a plurality of conditions of an environment surrounding a user and outputs environmental information indicating the detected conditions of the environment, a calculator that calculates an environmental level indicating a degree of how likely the user becomes sleepy in the environment in accordance with the environmental information output by the environmental information detector, and an output that outputs the environmental level calculated by the calculator.
US11037418B2
A distributed occupancy detection system includes plural networked node devices configured to be spatially distributed throughout a structure. Each node device includes an occupancy sensor that senses a presence characteristic indicative of an object being in a monitored area of the structure that is associated with the occupancy sensor. Each node device also includes one or more processors that determine a probability that the object is or was located in the structure based on the presence characteristic sensed by the occupancy sensor of a first node device and based on the presence characteristic sensed by the occupancy sensor of one or more neighboring node devices. The one or more processors determine whether the object is in the structure based on the probability.
US11037417B2
Embodiments of the present invention are directed to security systems for securing an item of merchandise from theft or unauthorized removal. For example, the security system may include a sensor configured to be coupled to the item of merchandise and a base configured to removably support the sensor and the item of merchandise thereon. The base includes a charging circuit for providing power to the sensor and/or the item of merchandise. The security system also includes a controller operably coupled to the base and a key configured to wirelessly communicate with the base and/or controller. The sensor is configured to wirelessly communicate with the base.
US11037406B2
Games, gaming machines and gaming systems are provided wherein a player playing a first wagering game may be awarded one or more free game plays (e.g. without the player having to place an additional wager) of a second wagering game which comprises a different game instance than the game that the player is playing. The one or more free games may be awarded based upon events or criteria occurring in the game that the player is playing or based upon events or criteria external thereto, or combinations thereof. The free games may comprise different game instances of the same game that the player is playing, or may comprise plays of different games, such as of games that the player may or may not select to play. The free games may be presented immediately or at a later time.
US11037403B2
An electronic gaming system includes a processor configured to execute instructions, which when executed, cause the processor to at least receive a wager amount from an electronic gaming machine (EGM), where the wager amount is associated with a player wager in a base bingo game played by a player of the EGM. The instructions also cause the processor to receive a bingo card parameter from the EGM, where the received bingo card parameter is associated with a bingo card provided to the player in the base bingo game, determine, based upon the wager amount, an award eligibility probability, and determine, based at least in part upon the award eligibility probability, whether the player is eligible to receive an award, and in response, compare the received bingo card parameter to a plurality of bingo card parameters, the plurality of bingo card parameters defining a paytable. Moreover, the instructions may cause the processor to determine, based upon the comparison, whether to provide the award to the player.
US11037396B2
A system includes a smart table that includes at least one wireless beacon device configured to wirelessly connect with a mobile device of a player. The system also includes a processor configured to detect, via the wireless beacon, presence of the mobile device, transmit a request for a custom beacon identifier (ID), and receive the custom beacon ID. The processor also configures the wireless beacon device with the custom beacon ID, thereby causing the wireless beacon device to broadcast the custom beacon ID, the custom beacon ID is received by the mobile device of the player. The processor also receives a pairing authorization message that authorizes the smart table to pair with the mobile device of the player, and pairs with the mobile device using the custom beacon ID, the pairing establishes a wireless communication session between the mobile device and the smart table, allowing cardless identification of the player.
US11037391B1
Systems, methods, and apparatuses for ATM deposit jammed item imaging and transaction completion are described herein. An ATM senses a jammed document deposit and creates an incident data packet including transaction information. The incident data packet is received and saved by the provider computing system for future transaction matching. A scannable code is displayed to link the scanned document to the incident. A servicer is notified to retrieve and generate a scanned image of a jammed document using a servicer device. The servicer scans the scannable code using the servicer device and causes the servicer device to decode the scannable code to determine incident-related information. The image may be assessed for quality in real time, and depending on quality, transmitted, along with the incident-related information, such as an incident identifier and/or additional transaction information, by the servicer device to a provider computing system for completing the transaction.
US11037390B2
A valuable medium handling apparatus configured to handle a plurality of types of valuable media. The valuable medium handling apparatus includes an inlet configured to deposit the plurality of types of valuable media, a setting unit configured to set the types of the valuable media being handled by the apparatus as a first type or a second type, a determination unit configured to determine whether a type of each of the valuable media deposited in the inlet is the first type or the second type based on the setting result of the setting unit and determine whether the valuable medium determined as the first type is a genuine medium or a counterfeit medium, and a plurality of stackers configured to stack the valuable medium of the type determined by the determination unit, the plurality of stackers including a first stacker and a second stacker.
US11037386B2
A system for detecting a range extension type relay attack includes a transmitter, a receiver and a module. The transmitter transmits a RF signal from one of a vehicle and a portable access device to the other one of the vehicle and the portable access device. The receiver receives a response signal in response to the RF signal. The module: generates a parameter associated with the transmission of the RF signal and the reception of the response signal; based on the parameter, detects the range extension type relay attack performed by an attacking device, where at least one of (i) the RF signal is relayed via the attacking device from the vehicle to the portable access device, or (ii) the response signal is relayed via the attacking device from the portable access device to the vehicle; and perform a countermeasure in response to detecting the range extension type relay attack.
US11037381B2
The present invention is one that enables an actual vehicle run on a chassis dynamometer to be reproduced in a vehicle drive train test, and includes: a loading device to be connected to a rotating shaft of a vehicle drive train; and a load controller that controls the loading device to change a load. In addition, the load controller includes a relationship data storage part adapted to store speed-load relationship data indicating the relationship between rotation speed of the loading device and a load corresponding to the rotation speed, and changes the timing of the load to be given by the loading device correspondingly to the rotation speed of the loading device with respect to timing determined by the speed-load relationship data. Alternatively, the load controller changes the load correspondingly to the rotation speed of a roller mounted with a tire in the chassis dynamometer.
US11037359B1
Improved techniques for providing passthrough images in the form of a stylized image embodying a novel perspective. A raw texture image of an environment is generated. A depth map is acquired for the environment. A stylized image is generated by applying a stylization filter to the raw texture image. Subsequent to acquiring the depth map and subsequent to generating the stylized image, a stylized parallax-corrected image is generated by reprojecting the stylized image to a new perspective using depth data.
US11037358B1
The present disclosure relates to methods and apparatus for graphics processing. Aspects of the present disclosure can determine at least some shading data for each of a plurality of patches. Further, aspects of the present disclosure can store the at least some shading data for each of the plurality of patches in a GMEM. Additionally, aspects of the present disclosure can communicate the at least some shading data for each of the plurality of patches. In some aspects, the present disclosure can configure the GMEM for storing the at least some shading data for each of a plurality of patches. Aspects of the present disclosure can also calculate when the GMEM has stored a maximum amount of shading data. Moreover, aspects of the present disclosure can divide each of the plurality of patches into one or more sub-patches when the GMEM has stored the maximum amount of shading data.
US11037354B1
Some implementations involve, on a computing device having a processor and a memory, creating a model of a jointed 3D asset that includes at least one joint that connects a first object to a second object, where a first end of the first object connects to a surface of a deformable coupler such that the first object is capable of rotating relative to the second object, and a second end of the second object connects to the surface of the deformable coupler such that the second object is capable of rotating relative to the first object. In various implementations, applying a motion to the model of the jointed 3D asset deforms the deformable coupler to allow translation of the first object with respect to the second object while allowing the first object and second object to rotate.
US11037349B2
An information displaying system according to an embodiment of the present disclosure includes a first display section configured to display a time axis of detected signals along a first direction, a second display section configured to display a plurality of signal waveforms based on the detected signals in parallel so that the signal waveforms are arranged side by side in a second direction different from the first direction, and a controller configured to control the first display section and the second display section. When, in the second display section, a location on at least one of the plurality of the signal waveforms or near the at least one of the plurality of the signal waveforms is designated, the controller highlights the designated location, and displays a designated result on a time location in the first display section corresponding to the designated location.
US11037348B2
Embodiments of the present disclosure provide a method and an apparatus for displaying a business object in a video image and an electronic device. The method for displaying a business object in a video image includes: detecting at least one target object from a video image, and determining a feature point of the at least one target object; determining a display position of a to-be-displayed business object in the video image according to the feature point of the at least one target object; and drawing the business object at the display position by using computer graphics. According to the embodiments of the present disclosure, the method and apparatus are conductive to saving network resources and system resources of a client.
US11037344B1
A system and method for user content presentation, including: receiving, in association with a request to establish a graph relationship between a first account and a second account, a strength of relationship from the first account to the second account, the strength of relationship selected based on input from a user of the first account; selecting, by a computer processor, a delivery attribute associated with the second account based on the strength of relationship, where the delivery attribute is positively correlated with a measure of content authored by the second account to be provided to the first account; selecting content authored by the second account for inclusion in a stream of the first account based on the delivery attribute; and providing the stream of the first account for display on a client computing device.
US11037339B2
The present disclosure relates to systems and methods for reconstructing an image in an imaging system. The methods may include obtaining scan data representing an intensity distribution of energy detected at a plurality of detector elements and determining an image estimate. The methods may further include determining an objective function based on the scan data and the image estimate. The objective function may include a regularization parameter. The methods may further include iteratively updating the image estimate until the objective function satisfies a termination criterion, and for each update, updating the regularization parameter based on a gradient of an updated image estimate. The methods may further include outputting a final image based on the updated image estimate when the objective function satisfies the termination criterion.
US11037333B2
An electronic device according to an embodiment includes a display displaying content and a processor operatively connected to the display. The processor is configured to obtain information about an exterior color, to extract a dominant color from a specified area in an area in which the content is displayed, and to apply a gradation effect for transitioning from the exterior color to the dominant color, to at least part of an edge area of the display.
US11037323B2
The image processing apparatus of the present invention is an image processing apparatus that generates a virtual viewpoint image based on image data obtained by capturing an image capturing area from a plurality of directions by a plurality of cameras, the image processing apparatus including: an acquisition unit configured to acquire viewpoint information of a virtual viewpoint; an area determination unit configured to determine a three-dimensional area in accordance with a position and a size of a specific object within the image capturing area; and a generation unit configured to generate the virtual viewpoint image in accordance with the virtual viewpoint indicated by the viewpoint information based on determination by the area determination unit such that an object within a field of view in accordance with the virtual viewpoint and not included in the three-dimensional area determined by the area determination unit is not displayed in the virtual viewpoint image.
US11037320B1
A method including detecting an object in a line of sight of at least one sensor; adjusting a current path of the robot to include a detour path around the object, instructing the robot to resume along the current path after avoiding the object, discarding at least some data collected by sensors of the robot in overlapping areas covered, inferring previously visited areas and unvisited areas, generating a planar representation of a workspace of the robot by stitching data collected by at least some sensors of the robot at overlapping points, and presenting at least the planar representation and coverage statistics on an application of a communication device.
US11037312B2
Technologies for thermal enhanced semantic segmentation include a computing device having a visible light camera and an infrared camera. The computing device receives a visible light image of a scene from the visible light camera and an infrared image of the scene from the infrared camera. The computing device registers the infrared image to the visible light image to generate a registered image. Registering the infrared image may include increasing resolution of the infrared image. The computing device generates a thermal boundary saliency image based on the registered infrared image. The computing device may generate the thermal boundary saliency image by applying a Gabor jet convolution to the registered infrared image. The computing device performs semantic segmentation on the visible light image, the registered infrared image, and the thermal boundary saliency image to generate a pixelwise semantic classification of the scene. Other embodiments are described and claimed.
US11037310B2
An image processing device includes circuitry configured to: calculate a displacement of each of a plurality of corresponding feature regions between a reference image and a base image; calculate, as a evaluation score, difference value between displacements of two feature regions adjacent to each other in at least one of the up/down direction, the left/right direction, and the oblique 45° direction; determine an abnormal region on the basis of the score; classify other feature regions excluding the abnormal feature region; calculate a projection conversion matrix by using the displacement of the other feature regions and the result of the classification; calculate a degree of alignment of each pixel of the reference image with respect to each pixel of the base image by using the matrix; and generate a combined image by combining the reference image converted based on the degree of alignment with the base image.
US11037305B2
Implementations of the present disclosure can include a method and apparatus for processing point cloud data. Specifically, the method for processing point cloud data can be provided, including: acquiring a first frame and a second frame respectively from the point cloud data; extracting a first candidate object from the first frame and a second candidate object corresponding to the first candidate object from the second frame, respectively; determining a first location of the first candidate object and a second location of the second candidate object in a coordinate system of the point cloud data, respectively; and identifying any one of the first candidate object and the second candidate object as a moving object, in response to an offset between the first location and the second location.
US11037303B2
An image processing apparatus and method for detecting and tracking multiple moving objects in successive frames includes circuitry configured to detect a plurality of moving regions within a plurality of frames based on an optical flow map of a plurality of pixels within the plurality of moving regions. A plurality of merged objects are identified from the detected plurality of moving regions. A plurality of split objects are identified from the detected plurality of moving regions and the identified plurality of merged objects. A location of each of the detected plurality of moving regions, the identified plurality of merged objects and the identified plurality of split objects is predicted and tracked within the captured plurality of frames.
US11037298B2
Systems, devices, methods, and computer processing products for automatically checking for errors in segmentation (contouring) using heuristic and/or statistical evaluation methods.
US11037295B2
A method for training a computer-implemented machine learning model for detecting irregularities in medical images, the method including: identifying at least one predetermined type of body region (14) depicted in a medical image (10), said body region (14) having a depicted irregularity (12); defining a plurality of image segments (20) each including at least part of the depicted body region (14), wherein a resolution of the image segments (20) is maintained or not reduced by more than 20% compared to the medical image (10); and using said image segments (20) to train a machine learning model to detect similar irregularities (12) in other medical images (10). Further, the invention relates to a use and to systems for training a computer-implemented machine learning model for detecting irregularities in medical images.
US11037294B2
An image processing device includes a processor including hardware. The processor is configured to: sequentially perform, on all at least two types of stains, an extraction process to extract a stained area due to a target stain from a single stain image of the target stain, starting from a stain having high specificity with regard to a target site; and sequentially perform a correction process, on all at least one type of second stain except for a first stain having the highest specificity among the at least two types of stains, to correct the single stain image by excluding stained areas of all stains having higher specificity than the target stain from the single stain image of the target stain, starting from the stain having the high specificity.
US11037290B2
A computed tomography (CT) image processing apparatus includes an image processor which sets two or more CT number ranges of interest defined by a window level and a window width for CT numbers of CT image data, and maps the CT numbers to display grayscale values of a display. The display displays the CT image data according to a mapping result. A gradient of a graph showing a relationship between the CT numbers and the display grayscale values in a CT number range included in the two or more CT number ranges of interest, is greater than a gradient in a CT number range not included in the two or more CT number ranges of interest. The graph has a zero or positive gradient over an entire section, or has a zero or negative gradient over the entire section.
US11037283B2
Provided is a hyperspectral imaging (HSI)-based inspection apparatus capable of quickly and stably performing two-dimensional (2D) HSI for an inspection object, and accordingly, capable of quickly and accurately inspecting the inspection object. The HSI-based inspection apparatus includes: a stage on which an inspection object is arranged; an optical system configured to allow light to be incident on the inspection object and emit the light reflected from the inspection object; a scan mirror configured to reflect the emitted light from the optical system while rotating; and a hyperspectral camera configured to obtain an image having a wavelength direction and a line direction as two axes for light reflected from the scan mirror, wherein, by using the rotation of the scan mirror, the hyperspectral camera is configured to perform the 2D HSI for the inspection object.
US11037279B2
There is provided an image processing apparatus. A compositing unit performs compositing processing for compositing a first reflection characteristic data that shows a reflection characteristic of a first virtual light source on a predetermined object and a second reflection characteristic data that shows a reflection characteristic of a second virtual light source on the predetermined object. A generation unit generates a reflection component relating to an object that is included in an image, based on a reflection characteristic shown by composited reflection characteristic data obtained by the compositing processing. An addition unit adds the reflection component to the image.
US11037278B2
This disclosure relates to improved techniques for generating images from raw image sensor data captured in low-light conditions without the use of flash photography. The techniques described herein utilize a neural network architecture to transform the raw image sensor data into well-exposed images. The neural network architecture can be trained using a multi-criterion loss function that jointly models both pixel-level and feature-level properties of the images. The images output by the neural network architecture can be provided to a contrast correction module that enhances the contrast of the images.
US11037267B2
Systems and methods are provided for multimedia processing. For example, an encoded file is acquired; the encoded file is parsed to obtain application-indication information and watermark-indication information associated with the encoded file; a multimedia-recording application associated with the application-indication information is called; watermark information is generated based on at least the watermark-indication information; the watermark information displayed on a recording interface of the multimedia-recording application; and in response to multimedia information being generated on the recording interface of the multimedia-recording application, the watermark information and the multimedia information is integrated.
US11037263B2
The present disclosure relates to systems and methods for directing a provider terminal corresponding to a provider of a transportation service to display an identity relating to a service request. The systems may perform the methods to obtain a target service request associated with a target transportation service from a target requestor; and direct a provider terminal corresponding to a provider of the target transportation service to display an identity relating to the target service request to assist the provider to identify the target requestor.
US11037262B2
Methods, systems, apparatus, and computer program products are provided. In an example embodiment, a method is provided comprising receiving input identifying load information corresponding to a load to be inserted into a transportation plan. The transportation plan comprises a plurality of transportation schedules, each schedule comprising a plurality of transportation movements. The method further comprises identifying an available movement network comprising portions of transportation schedules having open capacity, each portion of a transportation schedule having open capacity being a potential leg of a path from the origin location to the destination location; determining potential solutions for transporting the load from the origin location to the destination location by combining one or more legs to determine a path of open capacity movements from the origin location to at least part way to the destination location; and providing one or more potential solutions for display via a user interface.
US11037261B2
A computer-implemented method under control of one or more computing devices configured with specific computer-executable instructions, the method comprising: receiving a request from a first user of a group of users for an empty export container; notifying the group of users of the request; receiving an offer from a second user of the group of users to match the request by exchanging an empty import container owned or leased by a shipping line; notifying the first user of the offer; if the offer is accepted by the first user, determining if the empty import container is approved by the shipping line top be exchanged as the empty export container; if the empty import container is approved, notifying the first and second users to exchange the empty import container as the empty export container.
US11037260B2
A system includes a processor coupled to a memory. The processor and memory are configured to, during an emergency situation, initiate presentation, on a user interface, of information indicative of a location of one or more shelters. The processor and memory are configured to, during the emergency situation, receive, from a server, data indicative of actual occupancy of at least one of the one or more shelters. The processor and memory are configured to enable a rescuer to access information, through the user interface, about one or more of a potential occupancy and the actual occupancy of the at least one of the one or more shelters.
US11037255B1
Systems and methods are disclosed for electronically detecting and determining a type of inspection to recommend for a property and/or one or more characteristics of the property using input from multiple computing devices, such as image capturing devices, mobile devices, external data sources, internal data sources, and/or other data sources. A computing device may receive, via a communication interface, a plurality of images of a property. The computing device may determine, based on the plurality of images of the property, a score indicative of a level of care of the property. The computing device may determine, based on the plurality of images of the property, an estimate of a value of the property. Based on the determined score indicative of the level of care of the property and the determined estimate of the value of the property, the computing device may determine a recommendation for a type of inspection to perform on the property. The computing device may send, via the communication interface, the recommendation for the type of inspection for display on a display of a user device.
US11037252B2
Smart routing synchronization systems socialize a synthetic rebroadcast or group stream for enabling members of a user group to (re)broadcast select content to other members of the user group and collaboratively curate content delivery. The systems are based on a content-identification process and further a process for (re)broadcasting content. These processes are cooperable among a group of member clients each of which are in communication with at least two content sources. The synchronization process identifies select content and directs delivery of the content from an optimal resource for each member client via a smart routing protocol. The (re)broadcast process prompts delivery of the select content to members of the user group from a content origination member of the group, and group members are thereby able to simultaneously access the content for the purpose of providing a content-based platform for social interaction.
US11037251B2
A system, a machine-readable storage medium storing instructions, and a computer-implemented method are described herein are directed to a Key Feature Engine receives a request for a desired number of key features to be identified from a data set in at least a portion of a database. The Key Feature Engine executes instances of multiple types of machine learning data models on the data set to calculate respective regression coefficients, in each machine learning data model instance, for each feature in a plurality of features defined by a plurality of data categories of a social network service. The Key Feature Engine identifies at least one key feature, of one or more instances of the multiple types of machine learning data models, based on a value of a corresponding regression coefficient.
US11037234B1
A computer-implemented data processing system comprises account management logic, workflow logic, and interface logic. The account management logic is configured to manage financial accounts associated with a plurality of users. The workflow logic is configured to identify workflow items to be acted upon by users in connection with financial transactions relating to the financial accounts. The interface logic cooperates with the workflow logic to generate a plurality of display screens to be displayed by wireless handheld mobile devices. The display screens comprise a home page screen that is provided to the user upon login and that includes a link to a workflow screen where the user may act upon one or more of the workflow items.
US11037232B2
Examples of the present disclosure relate to systems and methods for managing membership information. In an example, membership information relating to a service comprising authentication information, billing details, among other information may be identified within an electronic communication from a service and stored. In addition, reminders regarding important dates (such as auto-renewal dates) for a membership may be generated, communication from services may be sorted by service type or service provider, or a user may easily unsubscribe from a service. Additional/alternative aspects of the technology may relate to managing information related to one or more memberships.
US11037230B2
There is provided a method that includes (a) presenting, via a communications network, a first interface that enables a creditor to access a credit application template, to create a customized credit application, and (b) presenting, via the communications network, a second interface that enables a credit applicant to access the customized credit application and provide information required by the customized credit application. There is also provided a system that executes the method.
US11037225B2
A device receives, from multiple cameras, streaming video data associated with multiple vehicles and provides the streaming video data to a user device associated with a user. The device receives, from the user device, a request to control a first camera and provides, to the user device, first streaming video data associated with the first camera. The device receives, from the user device, a camera control command for the first camera and causes the first camera to perform an action. The device receives updated first streaming video data from the first camera and provides, to the user device, the updated first streaming video data. The device receives, from the user device, information identifying a first vehicle in the updated first streaming video data and identifies first augmented reality vehicle information associated with the first vehicle. The device provides the first augmented reality vehicle information to the user device.
US11037223B1
In some embodiments, a web-based postage transaction may be facilitated. In some embodiments, an applet embedded on a web page may be provided to a client computer in response to the client computer accessing the web page. A request related to a postage transaction may be received from the client computer. In response to the request, a validation check may be performed by providing a validation token to the embedded applet at the client computer to be validated by the embedded applet. Based on a determination by the embedded applet at the client computer that the validation token is valid, the embedded applet at the client computer is configured to execute at least a part of the request.
US11037218B1
A system for ordering a new electronic device is provided with an application programming interface to receive notification of the availability of a new electronic device and to send a selection of a feature for that new electronic device. A database can be coupled to a server to store the selected feature and to store a priority status value assigned to the new electronic device when feature selections are made. The priority status value allows prioritized ordering of a new electronic device. Preferably, one or more new electronic devices are ordered within a pre-determined period after a pre-order opening date, all of which is performed on the application programming interface of an electronic device.
US11037214B2
A system, method, and a computer-readable storage device for generating a performance offering for executing an interactive application in a cloud system is described herein. In one aspect, a purchasing request is received from a customer device. The purchasing request may include an interactive application profile of an interactive application that lists a web service utilized by an interactive application. A performance offering for hosting the web service is then generated based on an analysis of a web service benchmark corresponding to the web service and a cloud profile. The cloud profile can characterize computing resources available within a cloud system. The performance offering is then communicated to the customer device as a user selectable menu option.
US11037211B2
The present principles are directed to systems and methods for providing a trading system cooperatively integrated with manufacturing control and distribution systems, and, more specifically, to provide a trading, clearance, settlement, and depository for securities, commodities, and their derivatives (collectively “securities”) that utilize asset-backed, virtualized data tokens and blockchain technology to facilitate price discovery and automated transactions at all stages of the asset development, manufacturing, and distribution of commodities.
US11037207B2
Methods and systems relating to formulating requests to a commerce management engine for product information may include a synchronization engine that estimates, using error data, future synchronization errors of product information to one or more channels. Each channel has respective product data fields for that channel and the error data relates to a prior synchronization of product information from one or more storefronts to the one or more channels and includes identified errors from the prior synchronization and corresponding corrections for resolving at least a subset of the identified errors. The synchronization may formulate a request, wherein the request requests product information for one or more products of the one or more storefronts for a future product synchronization with the one or more channels and includes a request parameter that is based on the estimated future synchronization errors.
US11037194B2
A favorable merging or grouping of simply connected regions into which the array of information samples is sub-divided, is coded with a reduced amount of data. To this end, a predetermined relative locational relationship is defined enabling an identifying, for a predetermined simply connected region, of simply connected regions within the plurality of simply connected regions which have the predetermined relative locational relationship to the predetermined simply connected region. Namely, if the number is zero, a merge indicator for the predetermined simply connected region may be absent within the data stream. In other embodiments, spatial sub-division is performed depending on a first subset of syntax elements, followed by combining spatially neighboring simply connected regions depending on a second subset of syntax elements, to obtain an intermediate sub-division.
US11037183B2
Systems, methods, and other embodiments are disclosed that are configured to characterize an effect on sales of a retail item due to a sales promotion. In one embodiment, first sales data for the retail item is retrieved from a plurality of stores that have applied the sales promotion for the retail item. Second sales data for the retail item is retrieved from a single store that has applied the sales promotion for the retail item. A combined promotion effect value is generated based on the first sales data and the second sales data. The combined promotion effect value characterizes an effect on sales of the retail item as sold by the single store due to the sales promotion.
US11037177B1
In a computer-implemented method, telematics data collected during one or more time periods by one or more electronic subsystems of a vehicle and/or a mobile device is received. The telematics data includes operational data indicative of how a driver of the vehicle operated the vehicle. The telematics data is analyzed to identify one or more driving behaviors of the driver. Based upon the one or more of driving behaviors, a driver profile is generated or modified. A suggested vehicle component type matching the generated or modified driver profile is identified, at least by determining that the generated or modified driver profile meets a set of one or more matching criteria associated with the suggested vehicle component type. An indication of the suggested vehicle component type is displayed to a user.
US11037174B2
In general, the subject matter described in the specification can be embodied in methods, systems and program products for an improved review system with location-verified reviews. The system verifies a user's location using one or more available sources, such as geographic location by global positioning system (GPS), cellular localization systems, or wireless local area network (WLAN). The user confirms the business or attraction at the current geographic location that the user would like to review. The system then accepts a review of the business or attraction at the current geographic location. The review is indexed for retrieval. Preferably, the system includes a delay before indexing a review, wherein the management of the business or attraction is notified of the review so that it can respond to any complaints in the review before it is made available for retrieval.
US11037169B1
A method, system and computer program product automate support for an Internet of Things (IoT) device by a trusted agent. The system includes a mobile wallet executed by a user device that effects execution of a financial transaction with a third party system for an IoT device. A device interface receives a unique identifier associated with the IoT device. A network interface accesses support information associated with the unique identifier of the IoT device. A secure storage used by the mobile wallet stores the unique identifier and support information. A support operation engine executes a support operation for the IoT device based on the unique identifier and support information in the secure storage accessed by the mobile wallet.
US11037164B2
One or more embodiments of the specification provide a method, apparatus, and non-transitory computer-readable storage medium for processing an event involving a plurality of users in a blockchain. The method is implementable by any user involved in the event, the method comprising: generating, by a computing device associated with a user of the event, descriptive information of the event; submitting the descriptive information to the blockchain, so that the descriptive information is synchronized to a computing device associated with another user of the event for the another user to verify the descriptive information and submit triggering information corresponding to the event to the blockchain after verifying the descriptive information; and submitting, by the computing device associated with the user, triggering information associated with the user corresponding to the event to the blockchain for the blockchain to process the event according to the descriptive information after verifying all triggering information submitted by the plurality of users.
US11037157B1
A method includes performing operations as follows on at least one processor: receiving credentials from a shopper, the credentials being associated with a purchase from a merchant, evaluating a history of purchases by the shopper from the merchant, determining that the shopper is entitled to virtual card present status from a financial institution based on evaluating the history of purchases, and sending a payment authorization request message for the purchase to the financial institution that comprises an indication that the shopper is entitled to virtual card present status.
US11037153B2
The disclosure facilitates a transaction by determining implicit consent for a transaction from a user by a wearable computing device. A request to complete the transaction is received, biometric data associated with the user is collected, and context data associated with the biometric data is received. In response to the request to complete the transaction, weighted values of the biometric data and the context data are generated based on defined consent rules. Upon the generated weighted values satisfying one or more consent thresholds, implicit consent is determined for the transaction from the user, whereby completion of the transaction is enabled. Accurately determining implicit consent of a user for a transaction based on the user's biometric data streamlines the transaction process into an efficient, user-friendly experience for the user while maintaining the security of the user's identity and account information.