US09907220B2
A storage unit includes an accumulation structure defined by a plurality of vertical walls having a plurality of guides arranged horizontally and configured to support a plurality of trays. In each tray there is at least one shaped housing that accommodates at least one object and on the sides of the tray there are shaped edges configured to be slidingly coupled with the guides when the tray is inserted between two consecutive vertical walls. Each tray is configured so as to receive on its upper surface one or more spacer elements that can be superimposed to one another and to the upper surface and connected to one another and to the upper surface through removable connections in order to vary the depth of the shaped housing. Movers are provided that are suited to move the trays with the objects arranged thereon and to insert/extract the trays in/from the guides.
US09907216B2
An apparatus includes a cooling segment including an upper box having an open bottom surface facing a top surface of a power semiconductor and adhered to the top surface of the power semiconductor, and a lower box having an open top surface facing a bottom surface of the power semiconductor and adhered to the bottom surface of the power semiconductor, an inlet tank connected to an end portion of one side of the upper box and passing therethrough, and into which a fluid is introduced, an outlet tank connected to an end portion of one side of the lower box and passing therethrough, and into which a fluid is discharged, and a connection tank connected to an end portion of the other side of each of the upper box and the lower box and passing therethrough.
US09907208B2
At least one implementation provides a hold down for an electronic device. The electronic device includes a support frame, a circuit board coupled to the support frame and having at least one component, a thermal pad thermally coupled to the component, and a heat sink associated with the thermal pad. The hold down includes a generally planar portion adapted to be positioned over a surface of the heat sink. The hold down also includes a plurality of connecting structures extending angularly from the generally planar portion. The connecting structures and configured to engage the support frame to cause the hold down to apply the biasing force to retain the thermal pad against at least one of the heat sink or the component when the heat sink and the thermal pad are positioned between the hold down and the support frame. A method is also provided for attaching the hold down.
US09907204B2
The present disclosure provides a heat dissipation device, a working method thereof and a display device. The heat dissipation device is applied to a display device, including a temperature monitoring unit, configured to monitor an environment temperature of each predetermined region of the display device; a control unit, connected to the temperature monitoring unit, configured to determine regions to be cooled according to a monitoring result of the temperature monitoring unit and then send a control instruction to a movement unit; the movement unit, connected to the control unit, and configured to move at least one heat dissipation fan to the regions to be cooled in response to the received control instruction; and the at least one heat dissipation fan connected to the movement unit.
US09907197B2
The present disclosure relates to an electronic card connection device and an electronic device. The electronic card connection device comprises a connector, an electronic card tray and a switch. The connector comprises a terminal housing and a shell, the shell and the terminal housing define a mating space. The electronic card tray being inserted in the mating space, the electronic card tray may comprise an electronic card receiving recess, a mounting block positioned in front of the electronic card receiving recess and an operating handle pivotally connected to the mounting block. The switch may be positioned alongside a rotation range of the operating handle, and partially protrudes into the rotation range allowing rotation of the operating handle to switch the state of the switch.
US09907196B2
The invention concerns an electrical module suitable for operating while optionally being connected to at least one other electrical module of the same type, the electrical module comprising a housing on which are arranged first connection means suitable for connecting the electrical module to an external power source and second connection means allowing the electrical module to exchange first data with the outside, the electrical module further comprising linking means suitable for connecting the electrical module to another electrical module of the same type in order to transmit linking data and/or a linking power supply thereto.
US09907185B2
According to embodiments of the invention, an electronic component assembly may be provided. The electronic component assembly may include an electronic component body. The electronic component assembly may also include one or more elastic members affixed to the electronic component body. The electronic component assembly may also include a catch mechanism affixed to each elastic member adapted to allow insertion of the elastic member and the catch mechanism through a hole of a circuit board in an extended position, and upon release from the extended position, hold the electronic component body in a fixed position by the tension of the elastic member and the catch mechanism grasping an edge of a surface of the circuit board opposite a surface upon which the electronic component body rests.
US09907181B2
An electronic module is provided that includes a multilayer circuit board, and an electronic component, and a Peltier heat pump. The electronic component is mounted on a major surface of the multilayer circuit board and is electrically coupled to at least one memory die. The at least one memory die is at least partially embedded within the multilayer circuit board. The Peltier heat pump device has at least one pair of thermoelectric semiconductor members arranged thermally in parallel and electrically in series, and the at least one pair of semiconductor members are at least partially embedded in the circuit board.
US09907179B2
Disclosed herein is an electronic circuit package includes: a substrate having a power supply pattern; an electronic component mounted on a surface of the substrate; a magnetic mold resin formed of a composite magnetic material including a thermosetting resin material and a magnetic filler, the magnetic mold resin covering the surface of the substrate so as to embed therein the electronic component; and a metal film connected to the power supply pattern and covering at least a top surface of the magnetic mold resin. A volume resistance value of the magnetic mold resin is equal to or larger than 1010Ω, and a resistance value at an interface between the top surface of the magnetic mold resin and the metal film is equal to or larger than 106Ω.
US09907170B2
A computer system assembly that includes a substrate and a first board mounted on the substrate. A flexible cable is secured to the first board. The computer system assembly further includes a second board mounted on the substrate. The second board includes a FPC connector. The FPC connector includes a body having a channel extending through the body such that the flexible cable may be positioned in the channel and pulled entirely through the body of the FPC connector. The FPC connector further includes a latching mechanism that secures the flexible cable within the channel once the flexible cable is pulled through the FPC connector. The first board and the second board are moved closer together as the flex cable is pulled through the FPC connector before at least one of the first board and the second board is mounted on the substrate.
US09907164B2
Disclosed are a printed circuit board and a method for manufacturing the same. The printed circuit board includes a core insulating layer, at least one via formed through the core insulating layer, an inner circuit layer buried in the core insulating layer, and an outer circuit layer on a top surface or a bottom surface of the core insulating layer. The via includes a first part, a second part below the first part, and a third part between the first and second parts, and the third part includes a metal different from a metal of the first and second parts. The inner circuit layer and the via are simultaneously formed.
US09907163B2
A flexible circuit board includes a base material including a first surface and a second surface opposite the first surface, the base material including a conductor layer, a first insulating film covering the first surface of the base material and formed with a first opening, a first insulating member formed inside the first opening and formed with a connection port to expose the conductor layer, the first insulating member having a thermal expansion coefficient smaller than that of the first insulating film, a second insulating film covering the second surface of the base material and formed with a second opening overlapping at least a portion of the first opening in a plan view, and a second insulating member formed inside the second opening and having a thermal expansion coefficient smaller than that of the first insulating film.
US09907161B2
A method for fabricating a substrate structure is provided, which includes the steps of: disposing at least a strengthening member on a carrier; sequentially forming a first circuit layer and a dielectric layer on the carrier, wherein the strengthening member is embedded in the dielectric layer; forming a second circuit layer on the dielectric layer; removing the carrier; and forming an insulating layer on the first circuit layer and the second circuit layer. The strengthening member facilitates to reduce thermal warping of the substrate structure.
US09907159B2
A method and apparatus for tuning crosstalk and return loss are provided. In the method and apparatus, a filter tunes return loss caused by a first external terminal and a second external terminal to compensate for a capacitive load induced by sizes of and a proximity between the first and second external terminals. The filter decouples the tuning of the return loss from tuning a magnitude and a phase of a crosstalk between a first transmission line network and a second transmission line network such that the return loss is tuned with minimal impact on the crosstalk.
US09907157B2
There are provided a printed circuit board and a manufacturing method thereof. The printed circuit board includes: a core layer having a cavity provided therein; an electronic component included in the cavity; a conductive partition disposed on a side of the cavity; and insulating layers disposed on and below the core layer.
US09907148B2
An LED lighting system includes a plurality of light-emitting diodes (LEDs), at least one driver to drive the plurality of LEDs, and at least one heat sink to dissipate thermal energy produced by the LEDs. The heat sink communicates a thermal resistance value or other heat dissipation characteristic information to the LED lighting system. A power adjustment module of the LED lighting system modifies a current flow to the plurality of LEDs based on the characteristics of the heat sink.
US09907147B2
The invention provides a light management information system for an outdoor lighting network system, having a plurality of outdoor light units each including at least one sensor type, where each of the light units communicates with at least one other light unit, at least one user input/output device in communication with at one or more of said outdoor light units, a central management system in communication with light units, said central management system sends control commands and/or information to one or more of said outdoor light units, in response to received outdoor light unit status/sensor information from one or more of said outdoor light units or received user information requests from said user input/output device, a resource server in communication with said central management system, wherein the central management system uses the light unit status/sensor information and resources from the resource server to provide information to the user input/output device and/or reconfigure one or more of the lights units.
US09907143B2
A lighting control device which controls a lighting device, and includes: a feature quantity calculator which calculates a feature quantity of image content to be reproduced and projected by an image reproducing device; and a lighting controller which controls light emission of the lighting device based on the feature quantity calculated by the feature quantity calculator.
US09907139B2
Methods and circuits for controlling LEDs are disclosed. In one embodiment, a multistage driver for driving a plurality of serially connected LEDs includes a voltage regulator circuit configured to receive a rectified AC voltage, where the voltage regulator circuit includes a depletion device configured to generate a unregulated voltage using the rectified AC voltage, a band gap voltage reference circuit configured to generate a plurality of reference voltages using the unregulated voltage, and a current setting circuit configured to control the plurality of serially connected LEDs using the plurality of reference voltages.
US09907129B2
An integrated circuit device is configured to drive multiple LED strings. The device includes a switch mode power supply control circuit configured to generate primary and secondary power transistor control signals and receive at least one current sense signal and an output voltage sense signal. The device also includes an output compare circuit configured to generate a plurality of pulse width modulated signals and a logic circuit configured to generate signals for selecting a reference voltage and for activating an absorber mode. The signal for activating an absorber mode is to be shared with the secondary power transistor control signal. The logic circuit is to be synchronized with the output compare module.
US09907119B2
A heater element for a heatable fluid filled bag includes a heat generating member having a power connecting member means to allow the heater element to be heated when connected to a power source. The element also includes a first insulation layer having ends and a first heat conductive layer having ends. The heat generating member is covered with the first insulation layer followed by the first heat conducting layer to cover the first insulation layer, which are held together at their ends with inner end support members. The inner end support members is insulative having at least one inner end support member with at least one aperture to allow the power connecting member means there through.
US09907113B2
Provided is a system for wireless communications including several base stations supporting a wide area wireless network and several mobile user equipment (UE) devices. Each mobile UE device may be configured to transmit a request to establish a local wireless connection with one or more of the UE devices. The mobile UE device may receive a response containing connectivity information from each of the mobile UE devices and then select one of the mobile UE devices based on the connectivity information received from each of the mobile UE devices. The mobile UE device may then establish a local wireless connection with the selected mobile UE device. The mobile UE device may then communicate with one of the base stations in the wide area wireless network through the selected mobile UE device, utilizing the local wireless connection.
US09907101B2
The invention relates to a method and telecommunications node for controlling an attach state of a user equipment in an attach control node of a telecommunications system further comprising a subscriber database containing subscription data of the user equipment. The method comprises receiving authentication data in the attach control node if an authentication step is required. Following the authentication step, if any, receiving in a first transfer stage a first set of subscription data from the subscriber database and storing the first set of subscription data in the attach control node, wherein the first set of subscription data is insufficient for enabling establishing a communication session between the user equipment and the telecommunications system. If establishing a communication session is required between the user equipment and the telecommunications network, receiving in a second transfer stage following the first transfer stage a second set of subscription data from the subscriber database in the attach control node, and storing the second set of subscription data in the attach control node, wherein the combination of the first set of subscription data and the second set of subscription data is sufficient for enabling establishing a communication session between the user equipment and the telecommunications network.
US09907099B2
Embodiments herein relate to a method in a relay node for acquiring information about a type of a radio network connection between a donor radio base station and a radio base station. The relay node and the donor radio base station are comprised in a radio communications network and the donor radio base station is serving the relay node. The relay node receives a message from the donor radio base station, which message is indicating a type of radio network application protocol, which type is related to a type of the radio network connection between the donor radio base station and the radio base station. The relay node determines the type of the radio network connection based on the type of radio network application protocol indicated in the message. The relay node also stores the type of radio network connection in relation to the radio base station for selecting the type of radio network connection when later communicating with the radio base station.
US09907098B2
Embodiments are provided for identifying transitory WiFi users and providing a differential treatment of such users in terms of delaying associating steps between user stations (STAs) and an access point (AP). A transitory user refers to a user or user device that connects to a WiFi AP but does not run applications that require association or assigning IP addresses, such as short-term or temporary connected WiFi users that are on the move. In an embodiment, a STA connects to an AP. Upon the STA indicating its transitory behavior to the AP or the AP detecting criteria of transitory behavior of the STA, the STA obtains a delay time value from the AP. The STA then delays sending an association request to the AP, or alternatively, the AP delays handling the association request from the STA in accordance with the delay time value.
US09907097B2
A first station for communicating with a second station is disclosed. The first station may include a storage unit configured to store relationship information defining a communication relationship between the first station and the second station. The first station may also include a communication unit configured to communicate with the second station and with an access point. The communication relationship may be maintained when the communication unit begins communicating with the access point.
US09907089B2
Embodiments of the present invention disclose a method and an apparatus for retrieving transmission opportunity control in reverse direction grant. The method includes: obtaining, by a reverse direction responder (RD responder), a TXOP control from a reverse direction initiator (RD initiator); enabling, by the RD responder, a multi-user multiple-input multiple-output (MU-MIMO) mode; sending, by the RD responder, a frame to a plurality of stations concurrently in a TXOP period, the plurality of stations comprise the RD initiator; wherein the frame carries information that only requires the RD initiator to send back only a single acknowledgement in the TXOP period to return the TXOP control.
US09907082B2
A radio base station providing a service to a radio terminal by using plural component carriers includes a scheduler preferentially allocating, to the radio terminal, one of the component carriers that has a transmission power dynamic range whose lower limit value is lower than lower limit values of transmission power dynamic ranges of a rest of the component carriers; and a transmitter transmitting a radio signal to the radio terminal by using the allocated component carrier.
US09907069B2
This communication device that can, for each timeslot, switch the communication partner for performing wireless communication, is characterized by being provided with: a plurality of antennas including at least one directional antenna; at least one communication circuit that transmits/receives a signal with the communication partner using the antennas; and a control unit that allocates the communication circuit and the antennas used in wireless communication on a timeslot-by-timeslot basis.
US09907068B2
Embodiments of the present disclosure provide a method for negotiating inter-eNB functions, an apparatus and system therefor. The method includes: transmitting, by an eNB, a backhaul type of the eNB, and/or a backhaul type of at least one neighboring eNB of the eNB, to another eNB negotiating inter-eNB functions with the eNB, so that the other eNB negotiates with the eNB for inter-eNB functions. With the method and apparatus of the embodiments of the present disclosure, the eNBs may be assisted in negotiating inter-eNB functions, thereby providing better services to UEs.
US09907062B2
A method for designating, by a user agent supporting multiple carriers in a wireless communication network, one assigned carrier as an anchor carrier, at least one assigned carrier as an inactive carrier, and at least one assigned carrier as an active carrier. The method can also include receiving a command from an enhanced node B causing a first carrier to transition from an inactive carrier to an active carrier. Additionally, the method can include responsive to reception of the command, monitoring a control channel corresponding to the first carrier. Further, the method can also include receiving downlink control information (DCI) via the control channel. The method can also include responsive to reception of the DCI, starting a timer, and deactivating the first carrier at the expiration of the timer.
US09907058B2
The present invention relates to a wireless communication system and, more specifically, provides a method for controlling uplink power and a device therefor. The method whereby user equipment controls uplink transmission power in a wireless communication system according to one embodiment of the present invention may comprise the steps of: receiving configuration information regarding a plurality of subframe sets from a base station; receiving uplink grant information for scheduling uplink transmission in a plurality of subframes and transmission power control (TPC) information; and performing uplink channel transmission in the plurality of subframes. The TPC information may be applied to only one among the plurality of subframes if the plurality of subframes belong to one same subframe set among the plurality of subframe sets.
US09907056B2
A method for operating a device-to-device (D2D) device includes determining, by the D2D device, availability of a D2D buffer status report (BSR) resource. The method also includes in response to determining that the D2D BSR is not available, generating, by the D2D device, a D2D scheduling request (D2D-SR) message in accordance with D2D-SR configuration information and transmitting, by the D2D device, the D2D-SR message in a D2D-SR resource when the D2D-SR resource is available.
US09907055B2
The present invention relates to a method for performing a random access procedure in a wireless communication system supporting repeated transmission of a same signal, and an apparatus for same, and more specifically, to a method and an apparatus for same, the method comprising: detecting a physical downlink control channel (PDCCH) signal; and transmitting a physical uplink shared channel (PUSCH) signal using an uplink grant, when the PDCCH signal includes the uplink grant, wherein the PUSCH signal is transmitted from a subframe having a first offset from among subframes from which the PDCCH signal has been detected, when user equipment is a first type of user equipment, wherein the PDCCH signal is repeatedly transmitted from a first plurality of subframe sections, when the user equipment is a second type of user equipment, wherein the transmission of the PUSCH signal begins from a subframe capable of starting repeated PUSCH transmission and closest to the last subframe in the first plurality of subframe sections, and wherein the subframe capable of starting repeated PUSCH transmission is determined in advanced through upper layer signaling.
US09907050B2
A system and method for managing alerts of a mobile communications device is provided. The system includes the device, a processor, and a sensor for monitoring activity of a user and generating sensor data indicative of the activity. The processor is configured for processing the sensor data to determine a current activity of the user; detecting an alert corresponding to an incoming communication; classifying the alert as being immediate or deferred based at least in part on the current activity. If the alert is immediate, the processor is configured to announce the alert without delay; otherwise, the processor is configured to announce the alert after a delay. The delay can terminate when a holdback timer expires or the current activity changes to an activity that indicates that the user can be notified.
US09907044B2
A ranging operation between a first wireless device and a second wireless may be performed by: sending, to the second wireless device, a data frame including a request for the second wireless device to report its actual SIFS duration to the first wireless device; determining a time of departure (TOD) of the data frame; receiving, from the second wireless device, a response frame including SIFS information indicative of the actual SIFS duration of the second wireless device; determining a time of arrival (TOA) of the response frame; and determining a round trip time (RTT) of the data frame and the response frame using the TOD of the data frame, the TOA of the response frame, and the actual SIFS duration of the second wireless device.
US09907042B2
Some demonstrative embodiments include apparatuses, systems and/or methods of determining a Time Synchronization Function (TSF) based on Fine Timing Measurement (FTM) messages. For example, a wireless station may be configured to determine a first TSF value of a local TSF of the wireless station at arrival of a first FTM message from a responder station; to determine a second TSF value of the local TSF at arrival of a second FTM message from the responder station, the second FTM message including a first Time of Departure (TOD) value of the first FTM message; to process a third FTM message from the responder station, the third FTM message including a second TOD value of the second FTM message; and to apply to the local TSF a TSF correction based at least on the first TSF value, the second TSF value, the first TOD value, and the second TOD.
US09907037B2
Embodiments of a user station (STA) and methods for synchronizing with devices in a wireless communication network are generally described herein. In some embodiments, a STA accesses a list of social channels. The STA may transmit a scan message on a primary social channel. The primary social channel may be included in the list of social channels. The STA may determine an identity of the primary social channel by inspecting the list of social channels. The STA may synchronize with a device on the primary social channel when the STA detects transmissions on the primary social channel within a time duration subsequent to transmitting the scan message on the primary social channel. Otherwise, the STA may transmit a scan message on a secondary social channel selected from the list.
US09907032B2
A method includes: receiving, by a UE, a power control parameter set sent by a base station, where the power control parameter set includes at least one power control parameter group, where the power control parameter group includes at least one power control parameter; determining, by the UE, a first power control parameter group according to the power control parameter set; and determining, by the UE, a transmit power of the UE according to a power control parameter in the first power control parameter group. so that the UE obtains through calculation, according to the power control parameter in the first power control parameter group, the transmit power that satisfies a service currently initiated by the UE, and a communication range of the UE is ensured.
US09907028B1
A device, method, and computer-readable medium are provided for mitigating uplink signal interference to non-serving nodes in a wireless communications system. An uplink signal is transmitted from a subject node to a serving node. The subject node receives a non-serving node downlink signal from a non-serving node. Based on one or more ascertained characteristics of the downlink signal received from the non-serving node, the subject node determines that the uplink signal transmitted therefrom is causing interference to the non-serving node. The subject node reduces a transmit power level of the uplink signal in response to determining that the uplink signal is causing interference with the non-serving node. In some instances, an optimal orientation for positioning an antenna coupled to the subject node can be determined by employing aspects of the foregoing.
US09907004B1
A method and system for dynamically controlling transition of a UE between operating modes based on a consideration of air interface congestion and interruption-sensitivity of communication. The UE operates by default in a first mode such as a circuit-switched-fallback (CSFB) mode. While so operating, a determination is made that the UE's serving air interface is threshold highly congested. In response, if the UE is not engaged in interruption-sensitive communication, the UE then transitions from operating in the first mode to operating in a second mode such as a non-CSFB mode (e.g., a single-radio LTE (SRLTE) mode).
US09906993B2
The disclosure describes methods and apparatuses for handover-related measurements and events for power adaptation. The disclosure provides for management of an eNodeB for improving reliability of incoming handovers to a cell provided by the eNodeB. At least one handover failure event for an incoming handover to a cell provided by the target eNodeB is detected. The eNodeB or central entity determines that the cell is providing an undesired coverage area based on the at least one handover failure event. In response to determining that the cell is providing an undesired coverage area, the transmit power for the cell may be adjusted to alter the undesired coverage area. A performance measurement based on the at least one handover failure event may be used to evaluate the undesired coverage area. The incoming handover failure events may include incoming too-early handovers, incoming too-late handovers, incoming wrong cell handovers, and incomplete incoming handovers.
US09906992B1
A computer device may include a memory configured to store instructions and a processor configured to execute the instructions to receive a handover request from a user equipment (UE) device via an evolved Packet Data Gateway (ePDG), wherein the handover request includes a request for a dual Packet Data Network (PDN) context and designate the UE device as having dual PDN context, based on the received handover request. The processor may be further configured to identify an Internet Protocol (IP) address for a Long Term Evolution (LTE) bearer associated with the UE device; create a PDN session to the ePDG using the IP address, based on the UE device having the dual PDN context; and send a Protocol Configuration Options (PCO) message to the UE device via the ePDG, wherein the PCO message includes an indication of dual PDN context support; and select to maintain the LTE bearer.
US09906991B1
A method and apparatus for a mobile communication device such as a mobile telephone includes a communication system that operates using narrow band-internet of things communication. The mobile communication device switches from communication using a mobile telephone communication system to communication using the narrow band-internet of things communication upon occurrence of a condition. The condition may include the mobile communication apparatus being out of range of a base station for the mobile telephone communication network or the battery level of the mobile communication device falling below a threshold. The mobile communication apparatus may switch from discontinuous reception to extended discontinuous reception If the battery power falls below a second threshold, or may switch to a power save mode if the battery power falls below a third threshold. Fewer services are available with the narrow band-internet of things communication, but the range is extended and power usage is less.
US09906980B2
A first user equipment is configured to mitigate multi-antenna inter-stream interference. A method by the first UE includes determining, based on one or more criteria, a number of multi-antenna streams whose interference can be currently mitigated by the first UE, and transmitting information based on the number of multi-antenna streams to a first network node, to a second network node, and/or to a second UE. A related method by a first network node serving or managing the first UE includes obtaining information based on a number of multi-antenna streams whose interference can be currently mitigated by a first UE at the first UE, and performing one or more radio operational tasks using the information based on the number of multi-antenna streams whose interference can be currently mitigated.
US09906960B2
A method for gaining access beyond a restricted access gateway includes an access key sequence stored on memory of a device. The access key sequence includes a sequence of key entries and key touch movements. An entered request sequence including keys activated by touch on a keyboard of the device and directions of touch movements made on the keyboard is recorded. With an access controller, it is determined whether the recorded entered request sequence matches the access key sequence. Access beyond the restricted access gateway is granted to functions when the recorded entered request sequence matches the access key sequence.
US09906958B2
A mobile access terminal providing access to data in a secure element of the mobile access terminal is provided. The mobile access terminal comprises the secure element; a web browser; a near field communications system; an over-the-air proxy; an application programming interface layer; and a web server residing on a secure storage area of the mobile access terminal, wherein the web browser is provided with exclusive access to the web server.
US09906957B1
Embodiments of the present invention provide methods, systems, and computer-readable storage medium for managing access to an application on a mobile computing device. In an embodiment, a method includes receiving a request from a user to return to the application and return to a previous screen of the application on the mobile computing device, and determining, using a processor, whether the previous screen of the application was in a secured area of the application. If it was in the secured area, then an authentication protocol is triggered prior to allowing the user to return to the previous screen in the secured area of the application on the mobile computing device. In another embodiment, geolocation dependent information is provided to a user via an application on a mobile computing device.
US09906953B2
A method and user equipment for discovering a device user to improve security of user identifier information, so that user equipment discover each other securely. The method includes receiving a first message that is sent by a second user equipment and at least includes implicit user identifier information of the second user equipment, obtaining, according to correspondences stored in a first user equipment, a user identifier corresponding to the implicit user identifier information of the second user equipment; and determining, in the user identifier corresponding to the implicit user identifier information of the second user equipment, a user identifier of the second user equipment, to discover a user of the second user equipment. The present disclosure is applicable to the field of communications.
US09906952B2
Methods, systems, and devices are described for the prevention of network peripheral takeover activity. In some embodiments, peripheral devices may implement an anti-takeover mechanism encrypting messages and transmitting unencrypted decryption keys for a limited period of time. Anti-takeover peripheral devices may transition from a plain operational mode, to a decryption key transmission mode, to a secure mode based on pre-defined triggering events, commands, or timers. Random decryption key values may be generated by peripheral devices and transmitted to listening devices for later storage and retrieval by the listening device. Decryption keys may be stored in remote data stores for later retrieval by anti-takeover aware controller devices.
US09906951B1
Privacy centric feature analysis. A secure set of multiple mapped features is selected and provided to a mobile device. Each mapped feature maps a sharable feature to a matching criterion for an item of protected information and no combination of mapped features for a secure set are unique to an individual item of protected information. Privacy compliance instructions enable the mobile device to select a mapped feature from a received set of mapped features by identifying an item of protected information available to the mobile device which corresponds to a matching criterion found in the received set of mapped features. The sharable feature of the selected mapped feature is identified and sent to a privacy compliant destination. Advantageously, the analysis system protects the privacy of the mobile device user because it does not require the mobile device to relay protected information for the selection of customized content or relevant advertisements.
US09906941B2
The embodiments of the present application provide a method for sending user subscription data, a method for receiving user subscription data, an HSS, and an SGSN. After receiving a request from an SGSN, the HSS determines whether the user subscription data includes CAMEL service data. If the user subscription data includes the CAMEL service data, the HSS sends the user subscription data to the SGSN by using a Gr interface, or sends non-CAMEL service data in the user subscription data by using the S6d interface and sends the CAMEL service data in the user subscription data by using a Gr interface to the SGSN.
US09906937B2
An embodiment of the present invention relates to a method for changing the state of a neighbor awareness networking (NAN) terminal in a wireless communication system, the method comprising the steps of: receiving a synchronization beacon frame from less than three terminals, within a discovery window; and changing the state on the basis of anchor master information of the synchronization beacon frame, wherein a received signal strength indication (RSSI) of the synchronization beacon frame is between a first value and a second value, and if an anchor master rank value included in the synchronization beacon frame is greater than that stored in the terminal, the terminal converts the state from an asynchronous state to synchronous state.
US09906920B2
An indoor positioning system based on building design information is disclosed. The system includes a server computer to provide indoor position information relating to a building, a plurality of beacons to be installed in selected locations in the building and to broadcast by each beacon an indoor position message indicating the indoor position of the beacon, and an installer to configure the beacons with their corresponding indoor position information. An indoor positioning system development system is also provided. The development system incorporates building information files and provides a development interface for users to determine respective locations to install the beacons. Once completed, the obtained results are converted into an indoor position message for each beacon and configured in the corresponding beacon.
US09906912B2
The invention relates to methods and network nodes of controlling a communication mode of a mobile terminal in a mobile service chaining network, and managing a registered Internet Protocol (IP) address for a mobile terminal.In a first aspect of the invention, a method performed by at least one control plane node of controlling a communication mode of a mobile terminal in a mobile service chaining network is provided. The method comprises setting the mobile terminal in idle mode and submitting an instruction to at least one Internet Protocol Advertisement Point (IAP) serving the mobile terminal to invalidate context for the mobile terminal held by the at least one IAP, wherein the at least one IAP invalidates at least a registered Internet Protocol (IP) address used for the mobile terminal.
US09906911B2
In some embodiments, a node associated with a distributed antenna wireless system obtains one or more combined receive signals responsive to a transmission by the wireless device. The distributed antenna wireless system comprises multiple Remote Radio Heads (RRHs) each comprising one or more receivers. Each receive branch of one or more receive branches of the distributed antenna wireless system comprises a combination of one receiver from each of the RRHs. The one or more combined receive signals comprise, for each receive branch, a combined receive signal that is a combination of signals received by the receivers comprised in the receive branch in accordance with different simultaneous ON/OFF patterns assigned to the RRHs for the receive branches. The node analyzes the one or more combined receive signals to determine information indicative of a geographic location of the wireless device.
US09906910B2
A communication system includes multiple beacon terminals located at a specific area, each beacon terminal being configured that transmits beacon data including identification information identifying the beacon terminal and area identification information identifying the specific area where the multiple beacon terminals are located, a server that stores contents for the multiple beacon terminals associated with the beacon data, and a mobile terminal including a receiver that receives the beacon data from at least one of the multiple beacon terminals and circuitry that determines whether or not the contents for the multiple beacon terminals associated with the received beacon data are stored in a memory of the mobile terminal to generate a determination result and acquires the contents for the multiple beacon terminals associated with the received beacon data from the server based on the determination result.
US09906905B2
Systems and methods for creating a database of geofences and registering geofences, with each geofence in the database being associated with an IP address, preferably an IPV6 address. Each geofence is defined using at least one geographic designator, preferably real property boundaries. Entitlements can be associated with geofences relating to permissive and prohibitive activities within the geofences.
US09906901B2
Method for monitoring the presence of a mobile station in at least one special area, wherein a radio communication defining device transmits one radio distinctive defining signal that define the special area by its coverage, the mobile station processes a signal received in order to determine whether or not it is defining signal and more precisely a distinctive one that defines the special area, the mobile station sends an updating signal to a mobile telephone network, the network routes the updating signal to special operating means that adapt the value of an operating parameter. According to the invention, the special area is associated to the mobile station by transmitting to the mobile station a checking data used by the mobile station for determining whether or not the defining signal received is distinctive defining signal.
US09906896B2
One or more implementations can include methods, systems and computer readable media for client location discovery. In some implementations, the method can include receiving, at an access point, a location discovery request message from a client and sending a request from the access point to a location server requesting location information for the client, when a location server is available. The method can also include receiving location information from the location server, when a location server is available and providing the access point location as location information, when a location server is not available. The method can further include sending the location information as a response to the client.
US09906887B2
Various exemplary embodiments relate to a method of determining by a network node whether a session establishment request is for a subscriber of a home network. The method may include: defining a home network identity including a network identifier and an emergency access point name (APN); receiving a session establishment request; comparing a called station ID of the session establishment request with the emergency APN; comparing a subscription ID of the session establishment request with the network identifier; and if either the called station ID matches an emergency APN or the subscription ID matches a network identifier: determining that the subscriber is a subscriber of the home network, and fulfilling the session establishment request. Various exemplary embodiments relate to a system for determining the home network of a subscriber. The system may include a policy and charging rules node (PCRN) configured to process a session establishment request.
US09906886B2
A playback device identifies a first audio filter and a second audio filter. The first audio filter is configured to have a first frequency response and the second audio filter is configured to have a second frequency response. The audio input is processed according to the first audio filter and the second audio filter to produce respective first audio output and second audio output. The first audio speaker renders the first audio output and the second audio speaker renders the second audio output, where the second frequency response of the second audio filter compensates for interference between the first audio output rendered by the first audio speaker and the second audio output rendered by the second audio speaker.
US09906878B2
Methods and apparatus for transmitting vibrations via an electronic and/or transducer assembly through a tooth or teeth are disclosed herein. The assembly may be attached, adhered, or otherwise embedded into or upon a removable oral appliance to form a hearing aid assembly. Such an oral appliance may be a custom-made device. The electronic and transducer assembly may receive incoming sounds either directly or through a receiver to process and amplify the signals and transmit the processed sounds via a vibrating transducer element coupled to a tooth or other hone structure, such as the maxillary, mandibular, or palatine bone structure.
US09906874B2
A system (202) for binaural signal processing. A first speaker (210) and a second speaker (220) are respectively mounted proximal to, and deliver respective first and second acoustic signals to, the left and right ears of a user. A first microphone (212) and a second microphone (222) are respectively mounted proximal to the left and right ears. A binaural processing device receives signals from the microphones and, based on the microphone signals, determines the first and second acoustic signals. The binaural processing device operates at a distance from both the left and right ears of the user. The speakers, microphones and the binaural processing device are connected by a signal network.
US09906872B2
A hearing prosthetic has microphones configured to receive audio with signal processing circuitry for reducing noise; apparatus configured to receive a signal derived from a neural interface, and to determine an interest signal when the user is interested in processed audio; and a transducer for providing processed audio to a user. The signal processing circuitry is controlled by the interest signal. In particular embodiments, the neural interface is electroencephalographic electrodes processed to detect a P300 interest signal, in other embodiments the interest signal is derived from a sensorimotor rhythm signal. In embodiments, the signal processing circuitry reduces noise by receiving sound from along a direction of focus, while rejecting sound from other directions; the direction of focus being set according to timing of the interest signal. In other embodiments, a sensorimotor rhythm signal is determined and binned, with direction of audio focus set according to amplitude.
US09906869B2
A method of forming a micromechanical structure comprising, forming a sacrificial layer on a surface and walls of a trench in a substrate; depositing a structural layer over the sacrificial layer, extending into the trench, selectively etching the structural layer to define a pattern having a boundary, at least a portion of the structural layer overlying a respective portion of the trench being removed and at least a portion of the structural layer extending into the trench being preserved at the boundary; and removing at least a portion of the sacrificial layer from underneath the structural layer, prior to removal of at least a portion of the sacrificial layer extending into the trench at the structural boundary. A micromechanical structure formed by the method is also provided.
US09906868B2
A miniature speaker includes a frame; a vibration system including a diaphragm and a voice coil driving the diaphragm. The diaphragm includes a first fixation part located on a middle position of the diaphragm, a second fixation part located on an edge of the diaphragm and connected fixedly on the frame, and a vibration part connected between the first fixation part and the second fixation part. A magnetic circuit system includes a lower plate and a magnet part on the lower plate. A cover plate includes a bottom wall, and a side wall connected with the second fixation part. A gasket is located between and abuts against the bottom wall and the first fixation part. The gasket, the first fixation part and the magnet part are sandwiched firmly between the bottom wall and the lower plate.
US09906864B2
Provided is a control method of a user terminal apparatus and device, for speaker location detection and level control using a magnetic field. The method includes receiving reference magnetic field information generated by at least one speaker, in response to a magnetic field being generated based on the reference magnetic field information by the at least one speaker, detecting the magnetic field generated by the at least one speaker, acquiring location information of the at least one speaker using the detected magnetic field information and the reference magnetic field information, and transmitting the location information of each of the at least one speaker to a source apparatus.
US09906862B2
There is provided a stereo microphone unit having a first and a second interference tube which are arranged at an angle relative to each other and which respectively have a first end and a second end. The stereo microphone unit has a first and a second microphone capsule for detecting an audio signal. The microphone capsules are respectively provided at an end of the first and second interference tubes. The microphone unit further has a securing unit for jointly securing the first and second interference tubes, in particular to a mobile device or to a stand. There is also a cover as a wind protector which is connected to the securing unit and completely encloses the first and second interference tubes.
US09906860B2
An electronic device and a method for dynamically adjusting the output of a headset are provided in the invention. The electronic device includes a first connection interface, a processor and a storage device. The first connection interface is coupled to a detection device, transmits a plurality of detection-source signals to the detection device, and receives a plurality of groups of headset output signals corresponding to the plurality of detection-source signals from the detection device. The processor is coupled to the first connection interface, obtains gain information according a plurality of groups of measured headset signals corresponding to the plurality of groups of headset output signals, and dynamically adjusts the output of a headset according to the gain information. The storage device is coupled to the processor and stores the gain information.
US09906852B2
A positioning and retaining structure for an in-ear earpiece. An outer leg and an inner leg are attached to each other at an attachment end and attached to a body of the earpiece at the other end. The outer leg lies in a plane. The positioning and retaining structure have a stiffness that is greater when force is applied to the attachment end in a counterclockwise direction in the plane of the outer leg than when force is applied to the attachment end in a clockwise direction in the plane of the outer leg. The positioning and retaining structure position an earpiece associated with the earpiece in a user's ear and retains the earpiece in its position.
US09906848B2
The present invention relates to a speaker box module, and particularly relates to a loudspeaker that produces sound through the mechanical vibration generated by electromagnetic force and a manufacturing method therefor. The loudspeaker comprises a speaker box module which comprises a speaker, a passive radiator and a speaker box panel, wherein a mounting hole is arranged in the speaker box panel; the speaker is arranged in the mounting hole and is integrated with the speaker box panel by means of insert injection molding; a secondary mounting hole is arranged in the speaker box panel at one side of the mounting hole; and the passive radiator is arranged in the secondary mounting hole and is integrated with the speaker box panel by means of insert injection molding. The loudspeaker is small and thin, structurally simple, and enhances bass, and can be used as a built-in speaker or an external speaker for modern tablet computers or smart phones, and the like. In order to ensure that the speaker box has excellent acoustic effect, the present invention uses an insert injection integrated manufacturing process, which ensures maximum acoustic effect of the speaker box while greatly reducing man-hours and thereby increasing production efficiency.
US09906847B2
At least one embodiment of the invention provides an easy-to-install recessed speaker mounting assembly. The assembly may comprise a mounting frame, a plurality of dog fasteners, and a dog actuator ring. The mounting frame may define an opening for receiving an audio transducer, and the mounting frame may also include an outer flange around an outer perimeter of the mounting frame. The plurality of dog fasteners may be rotationally coupled to the mounting frame. The dog actuator ring may be adapted to fit within an inner perimeter of the mounting frame, wherein rotation of the dog actuator ring relative to the mounting frame causes the rotating dog fasteners to rotate and secure the mounting frame to a mounting substrate.
US09906844B2
Video recognition processing regarding a video signal input from an outside is performed. Hence, video reception device configured to transmit/receive data through communication network includes video recognition unit. The video recognition unit is configured to perform at least one of: online matching processing for generating second content recognition information from a partial video extracted by video extraction unit, transmitting the second content recognition information to video recognition device so as to request video recognition device to perform video recognition processing; and local matching processing for collating the second content recognition information with first content recognition information included in a local database stored in storage unit.
US09906836B2
A video playing apparatus, a control apparatus, a video playing system and a control method are provided. The video playing apparatus comprising a storage unit (101), a receiving unit (102), a comparing and matching unit (103), a control unit (104) and a display unit (105), wherein the storage unit (101) is configured to store personal information and corresponding viewing information of a viewer, the personal information including identification information; the receiving unit (102) is configured to receive the identification information of the current viewer; the comparing and matching unit (103) is configured to retrieve the matched personal information in the storage unit according to the identification information of the current viewer; the control unit (104) is configured to retrieve the corresponding viewing information stored in the storage unit according to the matched personal information, and perform a play control for a video, and the display unit (105) is configured to display the video information. Thus, an identity of the current viewer can be recognized, so that the corresponding viewing information can be acquired according to the personal information of the viewer to achieve an intelligent playing control for the video. The present disclosure has a good practicability and is well worth to be promoted.
US09906833B2
Methods and systems are disclosed to monitor a media device. An example method includes attempting to detect a logical transition between two sequential bits in a sequence of bits of a digital audio signal output by a port of the media device, the digital audio signal being encoded via differential encoding; and when the logical transition is detected, generating operating state data including a first time and indicating that the media device was in an on state at the first time; or when the logical transition is not detected, generating the operating state data including the first time and indicating that the media device was in an off state at the first time.
US09906827B2
When an advertisement break is detected on a program channel stream, demographic data is obtained which is descriptive of the subscribers who are currently watching material from the program channel stream, and one or more streams containing substitute advertisements are generated based on the demographic data. The substitute advertisements in each stream, thus generated, are targeted at a different demographic group of the subscribers. The number of substitute advertisement streams corresponds to the number of unused transmission channels allocated for transmission of such streams. Groups of subscribers' set-top terminals (STTs) are directed to tune to the allocated transmission channels during the advertisement break to receive the substitute advertisement streams, respectively. Consequently, the subscribers are shown the substitute, targeted advertisements instead of the regularly-scheduled advertisements.
US09906814B1
A method for temporal filtering based on motion detection on areas of different sizes is disclosed. Step (A) may compute a first motion score of a first area in a target picture by motion detection of the first area between the target picture and a reference picture. Step (B) may compute a second motion score of a second area in the target picture by motion detection of the second area between the target picture and the reference picture. The first area and the second area are generally of different sizes. Step (C) may temporal filter the target picture with the reference picture based on the first motion score and the second motion score to generate a filtered picture. At least one of the first motion score, the second motion score and the filtered picture may be based on one or more gain settings in a circuit.
US09906810B2
In inter prediction that is performed by partitioning a first block, which is obtained by partitioning each picture, into one or more second blocks, a spatial merge candidate generating unit derives a spatial merge candidate without referring to a block included in a first block that includes a second block. In case of a mode where a coding block is divided by a horizontal border into prediction blocks arranged vertically, the reference index derivation unit of a time merge candidate sets reference index information of a time merge candidate to a value of reference index information of an encoded prediction block adjacent to a left edge of a prediction block subject to encoding.
US09906809B2
In inter prediction that is performed by partitioning a first block, which is obtained by partitioning each picture, into one or more second blocks, a spatial merge candidate generating unit derives a spatial merge candidate without referring to a block included in a first block that includes a second block. In case of a mode where a coding block is divided by a horizontal border into prediction blocks arranged vertically, the reference index derivation unit of a time merge candidate sets reference index information of a time merge candidate to a value of reference index information of an encoded prediction block adjacent to a left edge of a prediction block subject to encoding.
US09906798B2
An image encoding method includes: selecting one motion prediction model from a plurality of motion prediction models including a translational motion model and a non-translational motion model for each of blocks in the image; performing motion prediction using the selected motion prediction model to generate a prediction image; generating a reconstructed image using the prediction image; determining that filtering is to be performed if the non-translational motion model is selected for at least one of a first block and a second block that is adjacent to the first block; and performing the filtering on a boundary between the reconstructed image for the first block and the reconstructed image for the second block if it is determined that the filtering is to be performed.
US09906787B2
An encoder encodes a video signal formed of video frames, each including image blocks. The encoder includes a processing unit which calculates at least one high resolution reference image block on the basis of previously encoded image blocks by executing a super resolution algorithm to perform a local motion compensation; and a motion compensation unit which calculates on the basis of the calculated high resolution reference image block a temporal predictor which is subtracted from a current image block of the video signal. Together, the encoder and a corresponding decoder improve the signal quality of a video signal significantly.
US09906784B2
Embodiments of the present invention disclose a method and an apparatus for acquiring video coding compression quality. The method may include: acquiring video stream information; calculating video content complexity according to the video stream information; and calculating video coding compression quality according to the bit rate, the frame rate and the video content complexity. In the embodiments of the present invention, the video coding compression quality may be acquired as long as the video frame information, the bit rate, the frame rate and the video content complexity of a video stream are acquired. The video coding compression quality may be used in subsequent video quality assessment. This process greatly reduces video quality assessment complexity and the assessment may be performed in real time. In addition, the assessed coding compression quality meets the subjective feeling of human eyes better.
US09906778B2
A calibration device, a calibration program, and a calibration method that can adjust the relation between a distance to an object that is a real image and a view of a stereoscopic image that is a virtual image and create an association therebetween are provided. The calibration device of the present invention includes a display device that can generate a stereoscopic image, a depth level sensor that measures a distance to an object, and an adjusting unit that adjusts the stereoscopic image generated by the display device and a depth level of the object detected by the depth level sensor.
US09906763B2
A projection type display apparatus includes: a semiconductor laser element that outputs laser light based on supply of current; a digital mirror device (DMD) that modulates the light output from the semiconductor laser element and emits the modulated light; a projection lens that projects the incident light via the DMD; a drive unit that drives the semiconductor laser element and includes a current detection unit for detecting the current value of the current flowing through the semiconductor laser element; and a controller that, when the current value detected by the current detection unit becomes greater than a first threshold, controls driving of the DMD so that the light output from the DMD will not be incident on the projection lens, and when the current value detected becomes greater than a second threshold greater than the first threshold, causes the drive unit to cut off the supply of current.
US09906761B2
In a projector which constitutes an image projection system to project one image by combining a plurality of projection images projected by a plurality of projectors on a screen while overlapping parts of the projection images with each other, the projector is provided with a deformation unit configured to carry out geometric deformation with respect to an image to be projected therefrom, and a setting unit configured to set a parameter for deformation processing by the deformation unit, wherein the setting unit sets the parameter for deformation processing based on a relation between a position of an overlap area in the projection image before the deformation by the deformation unit is carried out, and a position of an overlap area in the projection image after the deformation by the deformation unit has been carried out.
US09906756B2
A device for integrating digital telephony information with a social platform includes a memory storing instructions, and a processor that executes the instructions to: receive information for multiple parties connected to a conference telephone call, create virtual groups for the multiple parties, assign permissions to each of the virtual groups, mute portions of the conference telephone call related to a discussion of a particular topic is controlled based on permissions, capture clips and actions from the conference telephone call, connect to a social enterprise platform and automatically upload a recording after the conference telephone call has ended, synchronize permissions across the social enterprise platform, link media sources together, provide context across the linked media sources, and integrate the captured clips and the actions.
US09906747B2
A solid-state imaging device includes a plurality of pixels arranged in a matrix, wherein one pixel of the plurality of pixels is arranged in one unit pixel region of a plurality of unit pixel regions, a plurality of sub vertical output lines, each of which outputs pixel signals from the plurality of pixels in the same pixel column, and a plurality of block select circuits provided in one-to-one correspondence with the plurality of sub vertical output lines. A load capacitance connected to a main vertical output line is reduced by connecting the plurality of sub vertical output lines and the main vertical output line via the plurality of block select circuits. This makes high-speed pixel signal readout possible.
US09906744B2
An image sensor and an image pick-up apparatus including the same are provided. The image sensor includes a plurality of phase difference detection pixels and a plurality of image detection pixels arranged in a lattice pattern together with the phase difference detection pixels, wherein the phase difference detection pixels are arranged at an interval of a predetermined number of pixels in the lattice pattern, and the predetermined number of pixels has a maximum value of 16. In a phase difference detection type auto focus (AF) system, focus accuracy is improved without deterioration of image quality.
US09906742B2
A method for estimating values lost to inoperable pixels on ultraviolet (UV) sensor arrays comprising identifying an inoperable pixel on a UV sensor array, applying a three by three kernel to the inoperable pixel, the three by three kernel being centered on the inoperable pixel, acquiring a centroid value for the inoperable pixel, applying a compensation algorithm based on the three by three kernel radial centroid value, and calculating estimated values for the inoperable pixel.
US09906736B2
A sight attachable to a weapon and comprising an objective lens, an image display, and a digital reticle. The objective lens focuses infrared light received from a scene onto a thermal imager, which is comprised of a focal plane array that detects infrared radiation in the scene focused by the lens. The image display is in signal communication with the thermal imager and provides an image of the received infrared light from the scene. The image rendered by the display is visible to the user. The digital reticle is rendered on the display and provides an aim point of the weapon upon a target in the scene. The image of the scene and superimposed reticle are directly viewable by a user with the aim point of the weapon upon the target being maintained constant over a range of viewing angles that depart from a viewing angle perpendicular to the display.
US09906733B2
A range determiner assembly may include an image sensor, a detector board and processing circuitry. The image sensor may be configured to obtain image data for each of three views of a target at each of a plurality of different locations along the track of a craft moving at a determinable altitude above a surface of the earth. The detector board may include a first line array, a second line array and a third line array. Each of the first, second and third line arrays may receive a respective sequence of images from a corresponding one of the three views. The processing circuitry may be configured to determine a relative distance between the craft and the target based on the image data.
US09906730B2
Provided is a motion controller device that allows users to easily share focus, zoom, and iris position control operations.A motion controller device includes a master unit and one or more slave units separated from the master unit and configured to communicate with the master unit. The master unit includes a focus control signal output unit configured to output a control signal for controlling a focus position of a lens of a video camera, a zoom control signal output unit configured to output a control signal for controlling a zoom position of the lens, and an iris control signal output unit configured to output a control signal for controlling an his position of the lens. A selection can be made as to whether an output from at least one of the focus control signal output unit, the zoom control signal output unit, and the iris control signal output unit is controlled by the master unit or the one or more slave units.
US09906725B2
A method and device for adapting a display image on a hand-held portable wireless display and digital capture device. The device includes a camera for capturing a digital video and/or still image of a user, means for adjusting the captured digital image in response to poor image capture angle of said image capture device so as to create a modified captured digital image; and means for transmitting said modified captured digital image over a wireless communication network to a second hand-held portable wireless display and digital capture device.
US09906721B2
The technology disclosed herein combines wide angle lenses with normal lenses to create an undistorted 360° view of the surrounding environment. The normal lenses record an image of the surrounding environment in the areas where the wide angle lenses provide a distorted view. The wide angle lenses and the normal lenses can be part of a stand-alone imaging device, can be accessories to a mobile device, or can be integrated into a mobile device. Various ways to integrate the wide lenses and/or the normal lenses into the camera are disclosed herein.
US09906712B2
Methods and apparatus to capture photographs using mobile devices are disclosed. An example method includes receiving sensor data from a sensor in a mobile device. The example method further includes presenting visual feedback to a user, via a display of the mobile device, to guide the user in capturing a photograph with a camera of the mobile device. The visual feedback based on the sensor data.
US09906709B2
An image pickup apparatus on which a lens unit is to be removably mounted includes an image pickup element, a first focus detection unit which performs a focus detection by a contrast detection method based on a signal output from the image pickup element, a second focus detection unit which performs a focus detection by a phase difference detection method based on a pair of image signals output from the image pickup element, and a control unit which performs a focus control based on an in-focus position detected by the first or second focus detection unit, and the control unit receives, from the mounted lens unit, first information related to a displacement of the in-focus position by the phase difference detection method and determines whether to use the second focus detection unit for the focus control according to the first information.
US09906708B2
An imaging apparatus moves a focus lens on the basis of an imaging signal of an image pickup device to perform a focal adjustment. The image pickup device images a subject. The imaging apparatus includes an evaluation value calculation circuit, a control circuit, and a movement determination circuit. The evaluation value calculation circuit extracts a predetermined signal component from an imaging signal to generate an evaluation value. The control circuit performs a focal adjustment on the basis of the evaluation value. The movement determination circuit determines whether or not the subject or the imaging apparatus is moving. The control circuit changes a frame rate of the image pickup device from a first frame rate to a second frame rate higher than the first frame rate when the movement determination circuit determines that the subject or the imaging apparatus is moving.
US09906706B2
The present invention provides an image sensor, including: a sensor array layer including a plurality of normal sensor units and a pair of autofocus sensor units; a plurality of color filter units disposed on the sensor array layer to cover the plurality of normal sensor units; a pair of IR-pass filter units disposed on the sensor array layer to respectively cover the pair of autofocus sensor units; a micro-lens layer including a plurality of micro-lenses disposed on the color filter units and the IR-pass filter units, wherein one of the pair of autofocus sensor units detects infrared light came from a first side, and the other of the pair of autofocus sensor units detects infrared light came from a second side opposite to the first side to perform a phase detection autofocus function.
US09906700B2
An array imaging module includes a molded photosensitive assembly which includes a supporting member, at least a circuit board, at least two photosensitive units, at least two lead wires, and a mold sealer. The photosensitive units are coupled at the chip coupling area of the circuit board. The lead wires are electrically connected the photosensitive units at the chip coupling area of the circuit board. The mold sealer includes a main mold body and has two optical windows. When the main mold body is formed, the lead wires, the circuit board and the photosensitive units are sealed and molded by the main mold body of the mold sealer, such that after the main mold body is formed, the main mold body and at least a portion of the circuit board are integrally formed together at a position that the photosensitive units are aligned with the optical windows respectively.
US09906699B2
To provide a blade drive device that may prevent malfunction of blades. A blade drive device includes a base plate having an opening to be opened and closed by a blade on an optical axis, and a flexible substrate having joint portions to which conductor wires of a first actuator and a second actuator that drive the blades are joined, the flexible substrate being provided between the base plate and the blades on one side of the base plate in an axis direction of the optical axis. The base plate is provided with a substrate housing part in which at least a part of the flexible substrate is housed and to which a covering material for covering the joint portions is applied. The substrate housing part is provided with wall surface extending from the other side toward the one side in the axis direction of the optical axis. The wall surface is provided with corner portions extending along a direction crossing the axis direction of the optical axis. The corner portions are provided between the blades and the flexible substrate in the axis direction of the optical axis.
US09906698B2
An imaging apparatus includes an imager with an imaging optical system to having an object-side hypercentric property, an illuminator with a plurality of illumination optical systems having mutually different exit pupil positions and a mover for relatively moving these with respect to a well plate. Imaging is performed simultaneously with stroboscopic illumination when the imager is located at a predetermined imaging position, and illumination optical systems are switched according to the imaging position.
US09906696B2
A first magnetic body is arranged between a coil and an image pickup element, and has an opening through which light directed from an imaging optical system toward the image pickup element passes. A second magnetic body is arranged at a position on the coil side with respect to the first magnetic body in an optical axis direction of the imaging optical system. The second magnetic body is arranged such that at least a portion thereof overlaps the first magnetic body when seen in the optical axis direction, at a position on the coil side with respect to the opening. The second magnetic body is made of a ferromagnetic material having higher relative permeability than that of the first magnetic body, and has a smaller area than that of the first magnetic body when seen in the optical axis direction.
US09906690B2
A standard printer characterization target is printed with a reference printer and measured. From the measured data, a model is derived that describes for each ink the behavior of each individual ink in combination with different combinations of the other inks. In order to reduce the complexity for obtaining a printer model of a second printer, a second target is printed that includes only a subset of the color patches in the standard printer characterization target. With the model and interpolation, it is possible to reconstruct colorimetric data for missing color patches in the reduced target.
US09906681B2
An original is read, image data is generated, image data of a set transmission resolution is generated based on the generated image data, printing is performed based on the generated image data, a transmission instruction is accepted, and image data of a set transmission resolution is transmitted in accordance with the accepted transmission instruction.
US09906677B2
An image forming apparatus that is remotely accessed from a terminal apparatus includes: a display; a display control unit configured to control display of the display and to transmit image data of an image to the terminal apparatus in order to display the image to be displayed on the display, onto the terminal apparatus; an attribute information acquisition unit configured to obtain first attribute information related to an attribute of the terminal apparatus; a web content acquisition unit configured to obtain web content by issuing a notification of second attribute information related to an attribute of the image forming apparatus to a server in a case where remote access is not being executed, and by issuing a notification of the first attribute information to the server in a case where remote access is being executed; and a browser unit configured to generate an image based on the obtained web content.
US09906672B2
A communication apparatus may include a first wireless interface and a controller. The controller may include a setting information memory configured to store setting information indicating a selected result selected by a user among a first setting and a second setting, the first setting indicating that target data is to be sent to an external apparatus via the first wireless interface, and the second setting indicating that the target data is not sent to the external apparatus. The controller is configured to maintain an operation state of the communication apparatus in a power saving state, in a case where a predetermined notice is obtained from the first wireless interface under a situation where the operation state of the communication apparatus is the power saving state and the setting information memory stores the setting information indicating the second setting.
US09906671B2
A system and method are provided including one or more processors and one or more computer-readable media coupled to the one or more processors. The one or more computer-readable media storing instructions that, when executed by the one or more processors, cause the one or more processors to perform operation including performing, at an image processing device, a login process wherein access to one or more resources on the image processing device is granted based on a credential associated with a user and receiving a request to perform a scan and send process is received at the image processing device, the request comprising instructions for scanning a physical document and sending an electronic document representing the scanned physical document to a destination system. The scan process is initiated and a data object including data representing job data and the credential associated with the use is generated. The send process using the generated data object is executed as a background process on the image processing device and a subsequent user is able to access the image processing device and use at least one resource of the image processing device simultaneously.
US09906669B2
A scanning system according to the present invention includes an image acquisition unit that acquires a plurality of pieces of image information generated by continuously scanning a medium to be scanned, a path calculation unit that calculates a path of scanning the medium based on the plurality of pieces of image information acquired by the image acquisition unit, a processing method determination unit that determines a processing method of the plurality of pieces of image information in accordance with a path calculated by the path calculation unit, and a processing unit that processes the plurality of pieces of image information by a processing method determined by the processing method determination unit and converts the plurality of pieces of image information into information in a form corresponding to the processing method.
US09906668B2
An image forming apparatus includes: an edge detection unit that detects one edge, in a conveyance direction, of a conveyed sheet; a passing detection unit that detects passing of the one edge; a judging unit that judges whether the edge detection unit or the passing detection unit has detected the one edge, within a predetermined monitoring time after the edge detection unit or the passing detection unit detected the one edge; a notifying unit that gives a notification indicating that front-back magnification correction is difficult to perform on the sheet when the judging unit has judged that the one edge is not detected within the monitoring time; an acquiring unit that acquires a desirable front-back magnification correction value input via an input unit according to the notification; and a correction unit that performs a front-back magnification correction process on the sheet, using the acquired front-back magnification correction value.
US09906665B1
Scanning devices include an input tray shaped to hold scannable items before scanning, an output tray shaped to hold the scannable items after scanning, a series of opposing belts positioned to transport the scannable items from the input tray to the output tray, and a round roller contacting a drum belt of the opposing belts. The opposing belts are positioned to have each of the scannable items constantly be held between the opposing belts or between the round roller and the drum belt of the opposing belts while the opposing belts are transporting the scannable items from the input tray to the output tray. A scanner is positioned in a gap between two of the opposing belts, and the gap is in a process direction that the opposing belts are moving the scannable items.
US09906658B2
An image processing system includes an image scanner that scans an image on a document into image data, a destination accepting unit that accepts selection of a destination that the image data is transferred by a first user, the destination at least corresponding to a user other than the first user selecting the destination, a blank page detector that detects a blank page in the image data, an image data processor that removes the detected blank page from the image data to generate blank page removed data and blank page data of the detected blank page, a specification unit that specifies a first destination of the first user, and a transmitter that transfers the blank page removed data to the destination corresponding to the user other than the first user and transfers the blank page removed data and the blank page data to the first destination of the first user.
US09906657B2
A terminal apparatus can communicate by radio with an MFP in a defined range among a plurality of MFPs. When an MFP of which radio communication intensity is higher than a threshold value defined in advance is detected among the plurality of MFPs, the terminal apparatus quits radio communication before it accepts an operation to indicate connection of radio communication from a user. When such a user operation is accepted, the terminal apparatus establishes radio communication with an MFP of which radio communication intensity is highest at the time when the user operation is performed.
US09906653B2
This disclosure provides systems, methods, services, and platforms for prompting a user to respond to an offer on a mobile device. The disclosure enables Mobile Network Operators to create campaigns to target customers who are nearing the limit of their data plans, voice plans, SMS plans, and MMS plans. In some embodiments, the cloud server interacts with a client application to prompt the use of a mobile device to respond to an offer send in a campaign. The disclosure also provides embodiments to check to see if the user has opted out of receiving offers, or if a device can not execute a command, or if a threshold number of offers has already been sent. This disclosure also provides embodiments for authenticating third party account log-in.
US09906648B2
A method and system for prediction in a telecommunications network are described. Particularly, contact allocation, staff time distribution, and other performance metrics may be determined in a contact center operation environment comprising multiple media types and/or multiple agent skill sets for handling contact types. In an embodiment, models simulating queue behavior are built. Staff count may be altered in order to determine staffing allocations and performance scenarios using the models. Long term and short term predictions may be used to configure the telecommunication network and route communications through the telecommunications network.
US09906642B2
The present disclosure discloses a method for identifying an identity, device and a communication terminal. The method includes that: a voiceprint feature of a current call object and a mobile phone number of the current call object are extracted; the identity of the current call object is identified according to the voiceprint feature and the mobile phone number. The present disclosure solves the problem in the related art that it is difficult to effectively identify the identity of a call object, thus providing a method for effectively identifying the identity of a current call object and technically reducing the probability of phone fraud on a user.
US09906641B2
Provided are a system and method of providing a voice-message call service. A mobile device that performs a call with an external mobile device comprises a control unit configured to obtain text, the text converted from voice data that is exchanged between the mobile device and the external mobile device, during the call between the mobile device and the external mobile device, and obtain input text input to the mobile device and provided text that is received from the external mobile device; and a display unit configured to arrange the text, the input text, and the provided text and display the arranged text, input text, and provided text on a screen of the device, during the call between the mobile device and the external mobile device.
US09906640B2
A method of accessing In Case of Emergency ICE information in a mobile entity (100); the method comprises the steps of: actuating a state transition of a key (105) of the mobile entity (100); presenting a menu for selecting at least one operational mode of said mobile entity (100) as a response to said actuating of the key (105); wherein said menu further comprises an option of retrieving ICE information accessible from a memory of said mobile entity (100); receiving said ICE information from said memory by selecting said option of retrieving ICE information in said menu among said options representing operational modes of said mobile entity (100); and rendering said ICE information, whereby said ICE information is accessed (303).
US09906638B2
A control method executed by a system including a beacon and a computer capable of executing an application, the control method includes receiving a radio wave from the beacon; generating a pattern of transition in reception intensity of the received radio wave; generating a profile of a temporal change by simplifying the generated pattern of transition; comparing the generated profile with at least one of a plurality of reference profiles different from each other; and determining how to control the application in accordance with a result of the comparing.
US09906617B2
A method for operating a receiving portable terminal in a mobile communication system includes receiving a first packet from a sending portable terminal, determining a fingerprint overlapping a fingerprint corresponding to at least one chunk of the first packet in a fingerprint set cache, determining a fingerprint set including the most redundant fingerprints, in the fingerprint set cache, determining at least one fingerprint to send, in the determined fingerprint set, sending the at least one determined fingerprint to the sending portable terminal, and receiving a second packet from the sending portable terminal. An apparatus includes a controller configured to determine at least one redundant fingerprint overlapping a fingerprint corresponding to at least one chunk of the first packet in a fingerprint set cache, determine a fingerprint set including the most redundant fingerprint in the fingerprint set cache, and determine at least one fingerprint to send in the determined fingerprint set.
US09906616B2
Communication systems and methods suitable for use with multiple lines associated with one or more devices are disclosed. Exemplary systems include a proxy service node to enable registration of multiple lines associated with a device. Exemplary systems can also include a converged database to store and provide access to service-related data.
US09906614B2
Techniques are provided for selectively broadcasting information from a sender's computer to one or more recipient computers in real-time. A user connects to a networked content server and browses selected content items which are determined to be of interest to other collaborators. The user activates a content sharing mode and indicates which content is to be shared. A reference to the shared content is sent to the server which in turn pushes the referenced content to identified content recipients. Content recipients can be identified based on a variety of factors, such as by subscription to a listening channel opened by the content sender, by individual selection by the content sender, and/or by geolocation. The shared content can be automatically displayed to each identified content recipient non-intrusively. Content can be pushed to the content recipients via a persistent open communication channel established between the content server and content recipients.
US09906612B2
Embodiments provide techniques for testing a plurality of variations of a user experience on a subscription-based online site, where each of the plurality of variations is distinct from other variations in the plurality of variations. Each of a plurality of users is assigned to one of the plurality of variations. For each of a plurality of user requests received during a predetermined window of time, embodiments determine one of the plurality of variations for use in processing the user request, based on a user associated with the user request, and process the respective user request using the determined variation. Long-term user metric information relating to subscription services for the subscription-based online site is determined, with respect to the plurality of users. Embodiments then rate at least one of the plurality of variations, based on the determined long-term user metric information.
US09906610B1
A media sharing system that shares media obtained on cell phones or tablets from many users, who have joined an event. The media can be photos. An event is created based on at least one of a time, location, or some other parameter. Each user to the event uploads their photos from the event, and receives photos from others in the event. Then a composite of multiple different photos is created. This can be done for sports events or hotels.
US09906589B2
The disclosure is related to a shard manager that manages assignment of shards (data partitions) to application servers. An application service (“app service”) provides a specific service to clients and can be executing on multiple application servers. The dataset managed by the app service can be divided into multiple shards and the shards can be assigned to different app servers. The shard manager can manage the assignment of shards to different app servers based on an assignment policy. The shard assignments can be published to a configuration service. A client can request the configuration service to provide identification information of the app server to which a particular shard the client intends to access is assigned. The shard manager can also provide dynamic load balancing solutions. The shard manager can poll the app servers in runtime to determine the load information and per-shard resource usage, and balance the load by reassigning the shards accordingly.
US09906587B2
Technologies are generally described for a data transmission scheme for a cloud-based system. In some examples, a data transmission system may include a communication speed determination unit configured to determine communication speed between a server and multiple client devices connected to the server; a client classification unit configured to classify each of the multiple client devices based at least in part on the communication speed determined by the communication speed determination unit; and a data transmission unit configured to transmit a predetermined portion of data to one or more of the client devices connected to the server.
US09906582B2
To share snips of content, an identifier of a recipient for a link to a content file is received. With reference to content access rules for the recipient, content access metadata of the content file is parsed to identify a range of the content file accessible to the recipient. In a user interface, an indicator of the range of the content file is presented. A user can identify a selection of a snip of the content file accessible to the recipient in the user interface. Once the selection is identified, the link to the content file can be generated and forwarded to the recipient. The link can include an argument that identifies a start and an end of the snip of the content file. The link can also include other arguments, such as copy snip, access rule, or expiration arguments.
US09906579B2
Methods and systems for generating and reusing dynamic web content involve, for example, automatically generating client-side code on a server at run time, and automatically downloading the client-side code to the client side at run time. The client-side code is executed on the client side to become a widget with dynamic behavior attributes displayed as a component of a web page on a display screen of a client-side computing device. Dynamic behavior of the client-side code may triggered via an event handler mechanism wherein properties of the client-side code are dynamically changed without affecting any other content on the web page. The widget may be redisplayed on a subsequent occasion with a change in the widget without regenerating the client-side code.
US09906570B2
A session control system controls establishing a session to transmit contents data between communication terminals, in a communication system including multiple relay management devices managing relaying the contents data transmitted from the communication terminals. The session control system includes a selection unit configured to select one of the relay management devices to manage relaying the contents data, every time the session is to be established; and a transmitter unit configured to transmit selection information representing the relay management device selected by the selection unit, at least to the communication terminals being connected with the relay management devices different from the relay management device selected by the selection unit, among the communication terminals to be participating in the session to be established.
US09906565B2
The present invention relates to a session merging entity in a communication system IMS. The merging entity is handling communication of the first user; the communication comprises a first session and a second session. The first session and the second session are merged into a single session towards the second user, if the same IMS communication service identifier has been indicated for the first session and the second session. The merging entity may also be located at the terminal device of the second user.
US09906548B2
A method to augment a plurality of IPS or SIEM evidence information is provided. The method may include monitoring a plurality of processes associated with a computer system. The method may also include identifying a plurality of processes that have network activity. The method may further include capturing the identified plurality of processes that have network activity. The method may also include storing the identified captured plurality of processes that have network activity. The method may include monitoring a plurality of selected programs associated with an operating system of the computer system. The method may also include identifying a plurality of selected programs that have network activity. The method may further include capturing a plurality of screen capture images associated with the identified plurality of selected programs. The method may include storing, by the second component the captured plurality of system process activity.
US09906545B1
The disclosed computer-implemented method for identifying message payload bit fields in electronic communications may include (i) monitoring messages transmitted via a network, (ii) selecting a plurality of messages transmitted via the network, each of the plurality of messages comprising an identical message identifier corresponding to a specified message type having a payload, (iii) determining for each bit position in the payload of the specified message type, a quasi-entropy value based on a proportion of occurrences of a first bit value and a proportion of occurrences of a second bit value at each corresponding bit position in the plurality of messages, and (iv) identifying at least one of a near-random bit field, a periodic bit field, and a constant bit field within the specified message type based on the determined quasi-entropy values. Various other methods, systems, and computer-readable media are also disclosed.
US09906543B2
From a log of a machine, an entry is selected relating to providing a subservice in processing a service request from a requestor associated with a key. The log entry includes a subsequence of machines used and a cost of providing the subservice. A set of entries is selected from the log, an entry including the subsequence and a second cost of providing the subservice but in processing a different service request from a different requestor associated with a different key. A distance is computed between the cost and the second cost. A number of occurrences of the subsequence with the key is determined. Using the number and the distance for the subsequence, a value pair is computed. Responsive to an aggregate number in the value pair not exceeding a threshold count. The processing of the service request is output as a suspect for using an improper sequence of machines.
US09906539B2
The present invention relates to methods, network devices, and machine-readable media for an integrated environment for automated processing of reports of suspicious messages, and furthermore, to a network for distributing information about detected phishing attacks.
US09906531B2
A computer program product for cross-site request forgery (CSRF) prevention is provided and includes a computer readable storage medium having program instructions embodied therewith. The program instructions are readable and executable by a processing circuit to cause the processing circuit to issue a server request for a certificate, which is associated with a user, responsive to a client request to visit a uniform resource indicator (URI) being received, validate the certificate upon receipt in fulfillment of the server request, compare a referrer listed in a header of the client request with a list of certificate elements in the certificate, authenticate the user in accordance with correlation between the referrer and at least one of the certificate elements and authorize the client request to visit the URI upon the user being authenticated.
US09906528B2
An approach is provided for performing authentication in a communication system. In one embodiment, a key is established with a terminal in a communication network according to a key agreement protocol. The agreed key is tied to an authentication procedure to provide a security association that supports reuse of the key. A master key is generated based on the agreed key. In another embodiment, digest authentication is combined with key exchange parameters (e.g., Diffie-Hellman parameters) in the payload of the digest message, in which a key (e.g., SMEKEY or MN-AAA) is utilized as a password. In yet another embodiment, an authentication algorithm (e.g., Cellular Authentication and Voice Encryption (CAVE)) is employed with a key agreement protocol with conversion functions to support bootstrapping.
US09906524B2
Realized is a low-cost provision system capable of providing a provision item or a provision system that requires a smaller number of operation steps to be made by a user. A server includes a first receiving unit receiving transaction information transmitted by a communication terminal requesting a provision device having a provision item stored thereon to make a transaction of the provision item, a second receiving unit receiving a communication result including authentication information input to the communication terminal before the communication, the communication result being generated by a communication between the provision device and the communication terminal, and a transmission unit transmitting an instruction to execute the transaction to the provision device based on the transaction information or the communication result.
US09906516B2
A device may receive information associated with a user request to access a service using a first device. The information may include a user credential. The device may identify a second device associated with the user credential. The device may provide a notification, associated with the user request to access the service, to the second device, and may receive a response from the second device. The response may indicate to permit access to the service. The device may provide an instruction to permit the first device to access the service. The device may provide information that identifies services for which access has been permitted for the user credential. The device may receive an indication to prevent further access, for the user credential, to at least one service. The device may provide an instruction to prevent further access to the at least one service for the user credential.
US09906514B1
A system, method, and apparatus are provided for applying a technique for resisting or hindering scraping of a website or other repository of electronic data. When a connection from an entity is received at the website, if no signal or information is received that identifies the entity (e.g., a user identifier, a cookie), or the information is insufficient to discriminate the entity from other entities (e.g., an IP address that is or may be shared), one or more techniques are applied, such as: delaying loading of a page or page component, rendering a page (or page component) as an image, rendering only a portion of a page, applying a CAPTCHA, redirecting the entity to a login page, and/or others. Thus, an anti-scraping technique is activated for a connection from what could be a scraper that has purged its browser data of some or all identifying information.
US09906507B2
A system and method for authenticating and enabling an electronic device in an electronic system are disclosed. A particular embodiment includes: an electronic system comprising: a protected device; a requesting device node, executing on a computing system, the requesting device node including: a device query data packet generator to generate a device query packet including data representing one or more identifiers of the protected device and a particular paired system; and an authentication key retriever to obtain an authentication key based on the device query data packet from an authentication provisioning node using an external data communication; and an obfuscation state machine of the particular paired system configured with a pre-defined quantity of state elements, a pre-defined quantity of the state elements being functional state elements, the obfuscation state machine being programmed with the authentication key to cause the obfuscation state machine to transition the protected device from an initial obfuscation state to a functional state.
US09906505B2
An embodiment features an RSA process in which the private key is separated into shares. Decryption (and authentication and other RSA objectives) may be accomplished by successive modular exponentiation of, for example, a ciphertext or a signature.
US09906502B2
A system and method for establishing a pairwise temporal key (PTK) between two devices based on a shared master key and using a single message authentication codes (MAC) algorithm is disclosed. The devices use the shared master key to independently compute four MACs representing the desired PTK, a KCK, and a first and a second KMAC. The Responder sends its first KMAC to the Initiator, which retains the computed PTK only if it verifies that the received first KMAC equals its computed first KMAC and hence that the Responder indeed possesses the purportedly shared master key. The Initiator sends a third message including the second KMAC to the Responder. The Responder retains the computed PTK only if it has verified that the received second KMAC equals its computed second KMAC and hence that the Initiator indeed possesses the purportedly shared master key.
US09906501B2
A secure messaging system provides a secure messaging exchange service to identified users.
US09906500B2
A secure data parser is provided that may be integrated into any suitable system for securely storing and communicating data. The secure data parser parses data and then splits the data into multiple portions that are stored or communicated distinctly. Encryption of the original data, the portions of data, or both may be employed for additional security. The secure data parser may be used to protect data in motion by splitting original data into portions of data, that may be communicated using multiple communications paths.
US09906496B2
Techniques are provided for implementing a zone-based firewall policy. At a virtual network device, information is defined and stored that represents a security management zone for a virtual firewall policy comprising one or more common attributes of applications associated with the security zone. Information representing a firewall rule for the security zone is defined and comprises first conditions for matching common attributes of applications associated with the security zone and an action to be performed on application traffic. Parameters associated with the application traffic are received that are associated with properly provisioned virtual machines. A determination is made whether the application traffic parameters satisfy the conditions of the firewall rule and in response to determining that the conditions are satisfied, the action is performed.
US09906492B2
Provided are a control device, system, and method capable of controlling an accessible range of information on an individual external device basis even in the case of a valid access for the information from an external device. An ACL management server is installed to introduce an ACL associating a service provider ID identifying a service provider accessing an ECU mounted on an automobile with an attribute of an ECU that the service provider can access or with an ASIL determined for the ECU, and to manage the ACL safely and in the latest state. Also, a service providing server is installed for providing services for reading and rewriting ECU control information in accordance with a request from a user. A gateway is installed for determining, using the ACL, whether access to the ECU should be granted with respect to access instruction execution information received from the service providing server.
US09906490B2
In a relay managing method through a network management system (NMS) server, a registration request is received from a relay BTS interface unit (BIU). The identification information of the BIU that transmits the registration request is compared with a previously registered BIU registration table, and a new BIU ID is provided to the BIU that transmits the registration request, when information corresponding to the identification information of the BIU that transmits the registration request does not exist in the BIU registration table. Subsequently, registration is performed by mapping the identification information of the BIU that transmits the registration request and allocation IP information to the provided new BIU ID.
US09906489B2
A method, a system and a device for implementing interconnection between IP domains. The method mainly includes: first, the Media Gateway Controller (MGC) sends the IP domain information of the IP domain to which the media stream to be created pertains to the Media Gateway (MG) between IP domains; when the MG receives the IP domain information for creating the media stream from the MGC, the MG creates the corresponding media stream between the IP domains according to the IP domain information, thus implementing the interconnection between the IP domains.
US09906479B1
A storage controller processes electronic messages by partitioning a storage device into logical disks and designating a logical disk as unavailable based on its storage capacity being fully used. A future time is assigned to each logical disk that is available for writing, and an estimated deletion time is determined for an electronic message. The electronic message is stored in a logical disk that is identified by comparing the assigned future times of the logical disks to the estimated deletion time of the electronic message. The electronic message is deleted based on the detection of a triggering event. If deleting messages result in an unavailable logical disk having more than a threshold amount of unused storage capacity, then each of the electronic messages stored in the unavailable logical disk is copied to a logical disk available for writing and the unavailable designation is removed from the logical disk.
US09906476B2
A filter rule generation apparatus includes a storage unit and a processor. The storage unit is configured to store instructions. The processor, in accordance with each of the instructions stored on the storage unit, executes a process that causes the filter rule generation apparatus to perform extracting a co-occurrence message group per system, based on a co-occurrence probability, from a plurality of logs in which messages are accumulated, the messages being generated within systems, first generating value information representing a degree of similarity in operation between the systems, based on the extracted co-occurrence message group, clustering the systems, based on the value information, and second generating a rule for extracting messages from the logs of the systems included in each cluster, based on the co-occurrence message group in the cluster generated by the clustering.
US09906470B2
A method and device are provided for synchronizing data transmission of multicasting/broadcasting services (MBS) by a plurality of Base Stations. Meanwhile, each of the Base Stations receives the MBS data to be transmitted and determines whether any of the MBS data has not been properly received. If so, the respective Base Station may initiate a process to recover the missing MBS data and/or to obtain information regarding the missing data to determine the duration of the time period that would have been required for transmitting the missing MBS. If the missing data has not been timely recovered, the respective Base Station determines a starting point and the duration of a silence period based on the information obtained, and refrains from transmitting signals along a communication channel allocated for transmission of MBS data, during that silence period.
US09906468B2
A network processor controls packet traffic in a network by maintaining a count of pending packets. In the network processor, a pipe identifier (ID) is assigned to each of a number of paths connecting a packet output to respective network interfaces receiving those packets. A corresponding pipe ID is attached to each packet as it is transmitted. A counter employs the pipe ID to maintain a count of packets to be transmitted by a network interface. As a result, the network processor manages traffic on a per-pipe ID basis to ensure that traffic thresholds are not exceeded.
US09906467B2
A data communication apparatus includes a router, first and second packet producers, and a penalizer. The router is directly connected to the first and second producers. The penalizer assesses penalties against each producer whenever that producer is serviced. The penalty value depends at least in part on an expected extent to which the first producer requires service. The penalizer then accumulates penalties against each producer.
US09906465B2
A system and method for managing dynamically allocated resources assigned to a service includes providing a service to be used by a plurality of sites in a federation. Usage information associated with the service is communicated to each of the plurality of sites. A disposition of the service is determined based on local policies and the usage information received from other sites by a service owner. The disposition of the service is updated across a plurality of sites in accordance with messages sent by the service owner to reduce resource usage.
US09906462B2
Provided are a computer program product, system, and method for indicating a sending buffer and receiving buffer in a message to use to validate the message in the receiving buffer. A receiving node includes a receive buffer for each of a plurality of external adaptors in external nodes. The receive buffers store messages from the external adaptors. Each of the messages includes an indicated receiving adaptor to receive the message and an indicated sending adaptor that sends the message. A determination is made as to whether the sending adaptor that sent the message comprises the indicated sending adaptor and that a receiving adaptor that received the message comprises the indicated receiving adaptor. An error is indicated for the message in response to determining that at least one of the sending and receiving adaptors that sent and received the message, respectively do not comprise the indicated sending and receiving adaptors, respectively.
US09906455B2
Methods and systems are provided for filtering packets in a wireless communication system in the to-subscriber direction. This filtering is at least in part based on RF circuit state information. For example, a packet filter is used that either permits or denies packets from reaching a mobile subscriber based on whether there is already an established RF circuit to provide packets to the mobile subscriber. Alternatively, or in addition, the packet filter may consider the history of circuit state transitions associated with a particular mobile subscriber, the percentage (or aggregate number) of available airlink resources that are currently in use, and/or the length of time associated with the dormancy of a mobile subscriber's RF connection. In various embodiments, the packet filter may cause one or more packets to be sent to a mobile subscriber using a special data channel that does not require the establishment of an RF circuit.
US09906454B2
In various example embodiments, a system and method are presented for a bandwidth (BW) management system. The BW management system accepts, on behalf of a receiving host, data packets for a first individual flow at a flow rate sent by a sending host. The bandwidth management system manages bandwidth by traffic classes representing collections of flows associated with nodes in a hierarchical bandwidth tree (HBT). The first individual flow is included within the collection of individual flows associated with one or more of the traffic classes. The BW management system controls the rate at which the sending host is transmitting the data packets for the first individual flow using a sliding window protocol by managing the bandwidth utilization of the nodes to conform to bandwidth limits assigned to the nodes. The BW management system receives the data packets for the first individual flow at an adjusted flow rate based on the sliding window protocol.
US09906446B2
A network element within a data center comprises a switch adapted to receive a data packet, a server in communication with the switch, and a switching engine in the switch. The switching engine may be configured to modify policy header information in the data packet to direct the packet to the server. The server may be configured to modify the policy header information while the data packet is in the server to return the data packet to said switch.
US09906434B2
A communication method of the SMF type for a network of nodes including a multicast group. The method includes the steps, performed by a first node, of: determining a set of respective multipoint relays; determining the nodes for which the first node is a multipoint relay; determining a routing table including identifiers of destination nodes and corresponding identifiers of next-hop nodes; receiving a multicast packet sent from a sending node, where the first node is a multipoint relay; checking if, for each node identifier of the multicast group, the entry in the routing table that includes a destination node identifier corresponding to the node identifier of the multicast group contains a next-hop node identifier that corresponds to the sending node, and if the counter contained in the multicast packet respects a relation with a limit; and determining whether to retransmit the multicast packet, on the basis of the outcome of the checking step.
US09906409B2
A method and a network node device run Push-Button Configuration sessions within a heterogeneous network, IEEE 1905.1, using a push button configuration mechanism that ensures that only one single new network node device is registered for a single push button key press event and thus overlapping Push-Button Configuration sessions within a heterogeneous network are prevented. After finishing the push button configuration mode, the number of new nodes is checked. If more than one node has been added, a configuration roll-back is performed. Preferably, the push button configuration roll-back is performed as soon as the authentication of more than one distinct node has been detected. The roll-back includes the deletion or deactivation of credentials established by the push-button configuration.
US09906405B2
Operational parameters of a running multiserver data processing system are automatically and repeatedly sampled and compared with constraints defined in a capacity and placement planning specification of the multiserver data processing system. Constraint violations are automatically declared as operational anomalies and, if serious enough, corresponding alarm signals are automatically produced.
US09906402B2
A method includes deploying in series a plurality of configurable devices in a network configured to communicate with one another via a protocol for exchanging state information wherein at least one of the plurality of configurable devices is in an active state and at least one of the plurality of devices is in a standby state, detecting, by the at least one of the plurality of configurable devices in a standby state, a failure of a configurable device in an active state via a protocol and switching the at least one configurable device in a standby state to an active state.
US09906401B1
With exponential growth in virtualized traffic within physical data centers, many end users (e.g., individuals and enterprises) have begun moving work processes and data to cloud computing platforms. However, accessing virtualized traffic traversing the cloud computing platforms for application, network, and security analysis is a challenge. Introduced here, therefore, are visibility platforms for monitoring virtualized traffic traversing a cloud computing platform, such as Amazon Web Services, VMware, and OpenStack. A visibility platform can be integrated into a cloud computing platform to provide a coherent view of virtualized traffic in motion across the cloud computing platform for a given end user. Said another way, a visibility platform can intelligently select, filter, and forward virtualized traffic belonging to an end user to a monitoring infrastructure, thereby eliminating traffic blind sports.
US09906400B2
A management system includes a plurality of network devices, and a management server that manages a plurality of setting values to be set in the plurality of network devices. The network device includes a request unit configured to perform a request of a setting value to be set; a setting unit configured to set the acquired setting value; an execution unit configured to execute an import processing; a notification unit configured to perform a notification of a start of the import processing; a control unit configured to control the request between the start and a completion of the import processing; and a transmission unit configured to transmit a setting value after the import processing. The management server includes a response unit configured to respond an error to the request from the network device; and an application unit configured to apply the setting value after the import processing.
US09906386B1
A frequency-shift keying (FSK) demodulator includes a digital phase-locked loop (DPLL) based frequency estimator to convert a phase signal to a frequency signal, a frequency offset estimator to estimate and track direct current (DC) component of the frequency signal, and an average filter communicatively coupled to the frequency offset estimator to perform an accumulate-and-dump operation to improve a symbol-level signal to noise ratio (SNR) of the frequency signal.
US09906374B2
Efficient certificate revocation list (CRL) processing is disclosed. A desired modification to an encoded CRL is determined. A computing device sequentially processes, during a first pass, a first CRL stream comprising the CRL to identify a CRL length difference between the CRL and a modified CRL based on the desired modification. The computing device sequentially processes, during a second pass, a second CRL stream comprising the CRL. The computing device, during the second pass, streams a modified encoded header portion to a modified CRL stream that identifies a new length of the modified CRL based on the length difference, streams a modified encoded CRL entries portion comprising a plurality of CRL entries to the modified CRL stream that contains the desired modification, and streams a modified encoded trailer portion to the modified CRL stream that contains a new digital signature based on the desired modification.
US09906372B2
An authentication device may be provided. The authentication device may include a memory configured to store: a first public key; and first data signed using a first private key corresponding to the first public key, the signed data including a second public key. The authentication device may further include a first verification circuit configured to verify the first data using the first public key; and a second verification circuit configured to verify second data using the second public key, the second data signed using a second private key corresponding to the second public key.
US09906371B2
One or more computer processors identify a first certificate that is used to establish a secure Internet connection. One or more computer processors identify a stored second certificate that shares at least one attribute with the first certificate. One or more computer processors determine a policy action based, at least in part, on a result of a comparison between an attribute of the first certificate and an attribute of the second certificate.
US09906369B2
Embodiments disclosed herein provide a method that includes receiving, at a client-side web browser, a minimal bootstrap payload from an application server; storing, by a client-side processor, the minimal bootstrap payload in a client-side local cache, where the locally cached minimal bootstrap payload is executed by the client-side processor before executing an application from the application server; the minimal bootstrap payload includes at least one public key and at least one Uniform Resource Location (URL) address of an application code payload.
US09906367B2
The present disclosure involves systems and methods for providing end-to-end tamper protection in a cloud integration environment. One example method includes receiving, at a receiver in a cloud-based integration scenario, a B2B communication from a sender including data associated with a business transaction, the received communication in a target format. The cloud-based integration system transforms the original communication in a source format into the target format of the receiver. A digitally-signed sender fingerprint of critical fields extracted from the set of data associated with the at least one business transaction in the source format of the original B2B communication are received and verified as signed by the sender. A receiver fingerprint in the target format is generated using the critical fields from the received communication based on a pre-defined algorithm. The sender fingerprint and the generated receiver fingerprint are compared to determine if they are identical.
US09906366B1
A service provider based security system of a cellular network includes a security device that is deployed in the cellular network. The security device receives and monitors cellular network traffic to identify a data packet of the cellular network traffic that is associated with a graphics protocol. Responsively, the security device creates a digital fingerprint using unique service provider specific information and/or a portion of the data packet. The security device encrypts the digital fingerprint. Further, the encrypted digital fingerprint is embedded in a header of the identified data packet and/or stored in a database coupled to the security device for further access by authorized users. Additionally, the security device determines a security action that is to be executed in association with the identified data packet.
US09906363B2
The present invention makes it possible, in encrypted data verification, to avoid the leaking of information related to the original plaintext, thereby ensuring safety. The system of the present invention is provided with: means (103 in FIG. 1) for generating first and second auxiliary data for verifying whether or not the Hamming distance of a plaintext between a first encrypted data in which input data is encrypted and is recorded in a storage device, and a second encrypted data obtained by encrypting input data of a target to be checked is equal to or less than a predetermined value; and means (402 and 403 in FIG. 1) for taking the difference between the first encrypted data recorded in the storage device, and the second encrypted data, and determining, using the first and second auxiliary data, whether or not the Hamming distance of the plaintext corresponding to the difference between the first encrypted data and the second encrypted data is equal to or less than the predetermined value.
US09906361B1
An apparatus comprises a storage system and a key manager incorporated in or otherwise associated with the storage system. The storage system comprises first storage of a first type and second storage of a second type with the first storage providing enhanced data protection relative to the second storage. The key manager is configured to maintain a master key hierarchy for the storage system. The master key hierarchy comprises a plurality of levels each including one or more master keys, with an uppermost level of the master key hierarchy comprising a root master key that is stored in the first storage and at least one lower level of the master key hierarchy comprising a plurality of master keys that are stored in the second storage under encryption by the root master key. Keys of a lowermost level of the master key hierarchy are associated with respective groups of data items.
US09906352B2
The invention provides an uplink and downlink slot time resource configuration method based on interference perception in a TDD system, which is applied to a communication network comprising a source base station, a target base station, as well as a user terminal in the source base station and a user terminal in the target base station, and the method comprises: judging whether the base station-to-base station interference is larger than a preset threshold value or not, if yes, canceling the uplink and downlink slot time resource configuration, and if no, continuously executing the next step; judging whether the interference measurement of the target base station on the user terminal in the source base station is larger than a preset threshold value or not, if no, executing the uplink and downlink slot time resource configuration, and if yes, executing the next step; judging whether the interference measurement of the source base station on the user terminal in the target base station is larger than a preset threshold value or not, if yes, canceling the uplink and downlink slot time resource configuration, and if no, executing the uplink and downlink slot time resource configuration. By the information interaction between the base stations, the flexible configuration of uplink and downlink slot time resources is realized, and the crossing slot time interference problem brought by the flexible configuration of the uplink and downlink slot time resources in different network structures is solved.
US09906338B1
A method and system for controlling which of a plurality of base stations will serve a WCD. Per the disclosure, a base station is selected from the plurality based at least on an extent to which the selected base station can provide MU-MIMO service efficiently to the WCDs that the selected base station is serving. Thus, the base station that will serve the WCD could be selected for effectively serving a lower quantity of WCDs (if MU-MIMO service is enabled) than other base stations of the plurality. And the WCD could then receive service from the selected base station.
US09906333B2
Implementations for retransmitting erroneous portions within a transmission frame are described. A sender transmits a transmission frame and the receiver performs error detection on portions of the transmission frame in order to determine if any are received in error. The receiver sets up a feedback channel and transmits acknowledgements to the receiver to indicate that one or more portions have been received and to identify any portions that are received with errors. At least some of the acknowledgements are transmitted prior to receipt of the entire transmission frame. The sender retransmits any portions that are identified as being erroneous within the transmission frame.
US09906328B2
A technology is disclosed for decoding a received signal at a wireless device. A first receiving process is performed comprising a decoding of the signal giving a first decoded result. It is determined if the first decoded result is correctly decoded. If so, the first decoded result is provided for downstream processing. If not, a second receiving process is performed comprising a decoding of the received signal for providing a second decoded result; and the second decoded result is provided for downstream processing. Further, either the first or second receiving process performs a blind detection of the transmission properties of an interfering signal and performs an interference cancellation thereupon.
US09906324B2
Selective deciphering of a received signal, as taught herein, provides a number of advantages, including greater efficiency through the elimination or at least reduction of wasted decoding cycles. The technique, such as practiced in a user equipment or other wireless communication device, capitalizes on the advantageous recognition herein that the demodulation results obtained for at least some types of received data blocks may be inspected or otherwise evaluated for characteristic patterns that are indicative of whether the data block was or was not ciphered for transmission. That evaluation informs the selective deciphering decision.
US09906318B2
An apparatus is disclosed that includes a frequency multiplexer circuit coupled to an input node and configured to receive an input signal via the input node. The frequency multiplexer circuit comprises a first filter circuit, a second filter circuit, and a third filter circuit. The apparatus also includes a switching circuit that is configurable to couple at least two of a first output of the first filter circuit, a second output of the second filter circuit, or a third output of the third filter circuit to a single output port.
US09906316B2
A system and method for measuring phase variations in signals are disclosed. The system and method may be integrated inside a circuit pack in the form of a built-in-self-test (BIST) unit. The BIST provides predetermined periodic attenuation to an input signal and determines phase variation in output signal due to applied attenuations by measuring sideband power of the output signal.
US09906313B2
An optically powered media conversion device for performing optical to electrical conversion is disclosed. The conversion device includes at least one optical coupler for receiving at least one optical signal comprising at least one wavelength, wherein the at least one optical coupler extracts energy from the at least one optical signal, and at least one detector for extracting data from the at least one optical signal and converting the optical signal to an electrical signal using a photovoltaic process. The conversion device further includes a transmitter for converting an electrical signal to an optical signal and transmitting the optical signal to a first device.
US09906300B2
A sensor assembly comprises a remote data concentrator (RDC) and an optically powered transducer module (OPTM). The RDC transmits a first optical pulse including a parameter request signal along an optical fiber. The OPTM is connected to the optical fiber, and comprises a photodiode, an energy storage device, a sensor, a processor, and a laser. The photodiode receives the first optical pulse, and the energy storage device is charged by the photodiode. The sensor, processor, and laser are powered by discharging the energy storage device. The sensor senses a parameter specified by the parameter request signal. The processor generates a signal packet from the output of the first sensor. The laser transmits a second optical pulse including the signal packet along the optical fiber to the RDC.
US09906298B2
A visible light communication system having a transmission apparatus for modulating a transmission signal to a multiple-value number and a reception apparatus for demodulating a multiple-value modulated transmission signal is provided. The transmission apparatus includes a plurality of light emitters for emitting light in different colors, a chromaticity coordinates calculator for mapping a digital value to a chromaticity coordinates value, and a light intensity controller for controlling a light intensity of each of the light emitters based on the chromaticity coordinates value corresponding to the digital value. The reception apparatus includes a plurality of light receivers having different spectral characteristics, a chromaticity coordinates calculator for calculating a chromaticity coordinates value according to a received light intensity detected by each of the light receivers, and a demodulator for demodulating the digital value from the chromaticity coordinates value.
US09906297B2
A method and system for implementing visible light communication, a sending apparatus and a receiving apparatus are disclosed. The method includes: after performing constellation modulation on data to be sent, a sending end mapping a modulated signal to a corresponding luminescent light source and transmitting the data to be sent through an optical signal; a receiving end converting a received optical signal into an electrical signal, and determining a constellation modulation signal according to a luminescent light source corresponding to the received signal, and demodulating the constellation modulation signal to obtain received data.
US09906294B2
Systems and methods for improving optical restoration time in a network include maintaining a status of wavelength load for a plurality of optical links in the network; utilizing the wavelength load to estimate a restoration time for one or more wavelengths being added to each of the plurality of optical links; and determining one or more restoration paths for the one or more wavelengths in the network and considering a total service restoration time in selecting a path for each of the one or more wavelengths, wherein each of the one or more restoration paths comprises one or more of the plurality of optical links.
US09906290B2
Each independent repeater network may be associated with a respective network weight and a respective group identifier. When two repeater networks with the same group identifier merge, configuration may flow from the network with a higher network weight to the network with a lower network weight. When two repeater networks with different group identifiers merge, configuration may flow from the connecting host interface of a repeater of one of the networks to the connecting client interface of a repeater of the other network. In cases of simultaneous connection between two networks, group identifier change may take precedence over configuration update caused by the merging of the two networks.
US09906285B2
Methods and systems for hybrid radio frequency digital beamforming may include, in an electronic device comprising an antenna array including antennas arranged along first and second directions, beamforming signals in an analog domain along the first direction of the antenna array and beamforming signals in a digital domain along the second direction of the antenna array. The antenna array may include subsets of antennas, where each subset has a system-on-chip (SOC) with analog and digital beamforming circuitry. Signals may be beamformed in the analog domain by amplifying signals received by the antenna array using a configurable gain and shifting the phase of at least one of the amplified signals. The phase-shifted signals may be summed and converted to a digital signal. A frequency-dependent coefficient may be applied to the digital signal. The antenna array may have a fewer number of antennas along the first direction as compared to a number of antennas along the second direction.
US09906283B2
The embodiments of the present invention provides an uplink interference inhibition method and user equipment. In the method, an objective function is established, and a pre-coding vector of the user equipment (UE) signal transmission is solved according to the objective function under a constraint condition, such that the larger the available signal power of the UE is, the better, and the smaller the interference of Device to Device (D2D) signal transmission to cellular uplink is, the better; and the best is if the interference of the UE to cellular uplink is within the first threshold and the reliability of the UE signal transmission, thus in the case of multiplexing spectrum resources of cellular communication in D2D communication, the interference between the D2D transmission link and the cellular uplink transmission link may be inhibited by means of the design of the pre-coding vector of the UE signal transmission.
US09906281B2
A Multi-User-Multiple Input Multiple Output (MU-MIMO) transmission method performed by an Access Point (AP) in a Wireless Local Area Network (WLAN) system is provided. The method includes transmitting an MU-MIMO initiation message to a destination Station (STA) which is a target of a MU-MIMO transmission, the MU-MIMO initiation message informing that MU-MIMO transmission will be initiated, receiving a sounding frame transmitted by the destination STA as a response to the MU-MIMO initiation message and performing MU-MIMO transmission on data by beamforming based on channel information obtained from the sounding frame. The sounding frame includes precoded and virtualized channel information between the AP and the STA. A dimension of the virtualized channel information is lower than a dimension of channel information between the AP and the STA.
US09906276B2
A method and apparatus for near field communication (NFC) are provided. A reader searches for communication with another party according to a first communication method of transmitting a communication request signal or a reader searches for communication with another party according to a second communication method of performing wireless power transmission. When the reader receives a response signal from communication with another party, the reader performs communication with the other party.
US09906275B2
Embodiments disclosed herein may generate and transmit power waves that, as result of their physical waveform characteristics (e.g., frequency, amplitude, phase, gain, direction), converge at a predetermined location in a transmission field to generate a pocket of energy. Receivers associated with an electronic device being powered by the wireless charging system, may extract energy from these pockets of energy and then convert that energy into usable electric power for the electronic device associated with a receiver. The pockets of energy may manifest as a three-dimensional field (e.g., transmission field) where energy may be harvested by a receiver positioned within or nearby the pocket of energy.
US09906265B1
A system, apparatus, and related method for receiving and correlating Manchester encoded data signals includes a receiver for receiving 1090ES/ADS-B or other Manchester encoded signals. A sampler extracts and oversamples data strings from the received signals. Sample correlators compare the oversampled data strings to oversampled versions of each possible pattern for the extracted data string and determine a score indicating how closely the possible pattern (or its oversampled counterpart) matches the extracted data string (or its oversampled version) on a bitwise or symbolwise basis. The system outputs correlated and decoded data string most closely matching the extracted data string based on the set of determined scores.
US09906261B2
A radio frequency (RF) device based on a frequency band “Band 28” and a communication method thereof are provided by the disclosure. The device includes a first duplexer for transceiving a first band signal, a second duplexer for transceiving a second band signal, a processor for selecting a corresponding one of the duplexers to transceive a signal by the channel switch according to a frequency band of the signal. An overlapping band belongs to a first band, frequency test points belong to a second band, a sum of frequency of the first band and the second band fall in Band 28. The second duplexer suppresses the overlapping band, so as to meet the requirement of full band of Band 28.
US09906255B2
Apparatus and method for maintaining hardware history profiles for a software-based emulator. In one embodiment, the disclosed software-based emulator monitors the history of the actual hardware device in a secondary device history, the history of the emulated hardware is presented within a primary device history. However, the primary device history is linked to the secondary device history, and receives the device wear history therefrom. In another aspect of the present invention, wear-leveling strategies are disclosed for handling various update sizes. Unlike existing solutions which are optimized for a single SIM that receives small data updates; various embodiments of the present invention are suitable for handling varying data sizes.
US09906241B2
An apparatus for a turbo product codes includes a codeword generator and an interleaver. The codeword generator receives a data in a matrix, and generate a turbo product code (TPC) codeword including the data, row parities and column parities. The interleaver interleaves the TPC codeword by assigning at least one bit in at least one row-column intersection of the TPC codeword to at least one master code, and outputs the interleaved TPC codeword.
US09906235B2
Embodiments of the present disclosure include a microcontroller with a processor core, memory, and a plurality of peripheral devices including a differential digital delay line analog-to-digital converter (ADC). The ADC includes differential digital delay lines and circuit comprising a set of delay elements included in the differential digital delay lines configured to generate data representing an analog to digital conversion of an input. The microcontroller also includes a digital comparator coupled with an output of the ADC and an associated register, wherein at least one output of the digital comparator is configured to directly control another peripheral of the plurality of peripherals.
US09906231B2
A clock and data recovery (CDR) circuit is provided, and includes a sampling circuit, an error sampler, a phase detect circuit, and a phase adjust circuit. The sampling circuit generates a data signal according to an input data and a first clock signal, and generates an edge signal according to the input data and a second clock signal. The error sampler compares the input data with a reference voltage according to the first clock signal to generate a control signal. The phase detect circuit receives the control signal and generates a corrective signal according to the data signal and the edge signal. When the values of the control signal and the data signal are different, the phase detect circuit stops transmitting the corrective signal. The phase adjust circuit generates and adjusts the first and the second clock signal according to the corrective signal.
US09906230B2
The phase-lock loop (PLL) can include a variable frequency oscillator adjustable to control the phase of the output signal; a primary control subsystem including a phase detector and a connection between the output signal and the phase detector, the phase detector generating a primary control signal to adjust the variable frequency oscillator; and a secondary control subsystem having an analog-to-digital converter and a digital-to-analog converter connected in series to receive the primary control signal and generate a secondary control signal also connected to independently adjust the variable frequency oscillator.
US09906225B2
An integrated circuit comprising a field programmable gate array including a plurality of logic tiles physically organized in at least one row and at least one column and wherein each logic tile (i) is electrically coupled and physically adjacent to at least one other logic tile of the plurality of logic tiles and (ii) includes (a) logic circuitry, (b) memory, and (c) a configurable switch interconnect network which is electrically coupled to the memory, wherein the configurable switch interconnect network includes a plurality of switches electrically interconnected and organized into a plurality of switch matrices and wherein the plurality of switch matrices are arranged in a plurality of stages. In one embodiment, each logic tile of the plurality of logic tiles is capable of communicating, during operation, with at least one other logic tile of the plurality of logic tiles.
US09906224B1
The semiconductor device for fabricating an IC is provided. The semiconductor device includes a deep n-well (DNW), a first inverter, a second inverter, an electrical path, and a charge-dispelling device. The DNW is formed in a substrate. The first inverter is formed inside the DNW. The second inverter is formed in the substrate and outside the DNW. The electrical path is arranged between the first inverter and the second inverter. The charge-dispelling device is connected between the ground of the first inverter and the ground of the second inverter to develop a bypass path. The impedance of the bypass path is lower than the impedance of the electrical path.
US09906219B2
An energy bypass circuit for connection between an energy source and a capacitance has first and second relays, a switch, and a resistance. The relays are operable so as to have a first state in which the energy source is not connected to the capacitance, a second state in which the energy source is connected to the capacitance via the resistance, and a third state in which the energy source is connected to the capacitance not via the resistance. The switch is operable, when the relays are in the third state, to enable additional charge stored by the capacitance to discharge via the resistance.
US09906217B2
A semiconductor device includes: a depletion-type field-effect transistor including a gate terminal, a drain terminal and a source terminal; a group III-V heterojunction bipolar transistor including a base terminal, an emitter terminal electrically connected to the gate terminal and a collector terminal connected to same potential as that of the source terminal; a first resistor connected between the base terminal and the emitter terminal; and a second resistor connected between the base terminal and the collector terminal.
US09906216B2
This disclosure provides example methods, devices, and systems for a three-lead electronic switch system adapted to replace a mechanical switch. A device is disclosed that includes a sensor, a current limiting circuit, an output switching circuit comprising a first switching device and a second switching device, and a three lead interface circuit in communication with the output switching circuit and the current limiting circuit. The device includes an electronic switching circuit in communication with the sensor, the current limiting circuit, and the output switching circuit. The electronic switching circuit is configured to drive the first and second switching devices in complementary conduction states responsive to determining the output of the sensor relative to a threshold voltage. The output switching circuit includes a first terminal, a second terminal, and a return terminal that are configured to provide power to the electronic switching circuit while providing an indication of the conduction states.
US09906211B2
A circuit for compensation of baseline voltage wander operating at an input of an isolator is disclosed. The circuit can compensate electronically the frequency response of an isolation circuit (e.g., a transformer) by increasing the pass band in the low frequency region in order to minimize the baseline wander caused by low inductance windings. The compensation circuit can be used to inject a current ramp proportional to the amplitude and the duration of the pulse and inversely proportional to the open circuit inductance of the isolation circuit.
US09906205B2
A technique capable of maintaining the filter characteristics of a transmitting filter and a receiving filter by reducing the influences of heat from the power amplifier given to the transmitting filter and the receiving filter as small as possible in the case where the transmitting filter and the receiving filter are formed on the same semiconductor substrate together with the power amplifier in a mobile communication equipment typified by a mobile phone is provided. A high heat conductivity film HCF is provided on a passivation film PAS over the entire area of a semiconductor substrate 1S including an area AR1 on which an LDMOSFET is formed and an area AR2 on which a thin-film piezoelectric bulk wave resonator BAW is formed. The heat mainly generated in the LDMOSFET is efficiently dissipated in all directions by the high heat conductivity film HCF formed on the surface of the semiconductor substrate 1S.
US09906200B2
A power filter is provided, including a circuit board module, an insulating base, several connect terminals, and an inductor. The circuit board module includes a circuit board and several electronic components, wherein the circuit board forms several connect holes thereon and the electronic components are electrically connected to the circuit board. The connect terminals are fixed on the insulating base and each has a connecting part and a clamping part, wherein the connecting parts are joined with the connect holes of the circuit board. The inductor includes at least one wire with both terminals clamped by the clamping parts, and the wire is electrically connected to the circuit board module through the connecting parts.
US09906195B2
An amplifier including: an input terminal coupled to a first node; an output terminal coupled to a second node; and a transistor coupled between a first power source and a second power source, the transistor including: a gate electrode coupled to the first node; a drain electrode coupled to the second node; a source electrode coupled to a third node; and a bulk electrode coupled to a fourth node and configured to receive a bulk voltage to change a threshold voltage of the transistor.
US09906189B2
A method for increasing the power extraction capability out of Differential Power Processor (DPP) system, which consists of a chain of N serially connected PV elements and an array of N−1 gyrator-type converters which are current sourcing resonant Switched Capacitor Converters (SCCs), each of which being connected in parallel with two adjacent PV elements. Accordingly, local MPPT is continuously performed, by each gyrator-type converter, to one of its two connected PV elements by sinking or sourcing current to/from the neighboring PV element. Whenever a mismatch in the MPPs is detected, the gyrator-type converters are used to provide the difference in current that is required for each of the PV elements to operate at its MPP, such that the amount of power processed by each gyrator-type converter in the chain is linearly proportional to its location in the chain, with respect to the mismatched PV element.
US09906187B2
A window assembly can include an insulated glass unit, a mounting assembly moveably coupled to the insulated glass unit, and an electrical component secured to the mounting assembly. A method can include securing an electrical component to a mounting assembly, coupling the mounting assembly to an insulated glass unit, and installing the insulating glass unit in a frame. In an embodiment, after the window assembly is installed within the frame, the mounting assembly can be moved in a final position and securely fastened into position. In an embodiment, the pre-assembly can help to keep all components of a window assembly together during shipping and at the installation site to reduce the likelihood that components are separated or lost during shipping or at the installation site.
US09906184B2
A temperature detection element that detects a temperature of a detector is provided in a detector that detects a rotational position and/or a rotational speed of a rotor of a motor. An estimated value of a change of a wiring temperature is calculated based on a current supplied to the wiring of the motor. An estimated value of a change of the detector temperature is calculated based on the estimated value of the change of the wiring temperature. A difference between the detector temperature detected by the temperature detection element and the estimated value of the change of the detector temperature is set as an environmental temperature. The environmental temperature is added to the estimated value of the change of the wiring temperature, to estimate an absolute value of the wiring temperature. The wiring temperature is monitored based on the estimated absolute value of the wiring temperature.
US09906182B2
A three-phase switched reluctance motor torque ripple two-level suppression method. A first set of torque thresholds at rotor position interval [0°, θr/3]. A second set of torque thresholds at rotor position interval [θr/3, θr/2]. Power is supplied for excitation. The power supplied for excitation to phase A leads the power supplied for excitation to phase B by θr/3. Phase A is turned off, while phase B is turned on. An entire commutation process from phase A to phase B is divided. In rotor position interval [0°, θ1], phase A uses the second set of torque thresholds while phase B uses the first set. Critical position θ1 automatically appears in the commutation process. Total torque is controlled. In rotor position interval [θ1, θr/3], phase A uses the second set of torque thresholds, phase B uses the first set, and the total torque is controlled, suppressing torque ripples of a three-phase switched reluctance motor.
US09906181B2
A camera module having a voice coil motor driver, including a driving controller configured to compare a reference voltage and a negative feedback voltage to output a driving control signal, and a driver configured to drive a coil of the voice coil motor according to the driving control signal.
US09906177B2
A low-frequency band suppression enhanced anti-reversal power system stabilizer is presented by the invention. Currently the widely used PSS2B power system stabilizer needs lead elements above Order 2 to meet the phase compensation requirement of DC blocking signal of active power, thus quickly increasing high-frequency band gain, restricting allowable total setting gain of PSS, limiting low-band gain and reducing low-frequency band suppression ability of power system stabilizer. The invention will add generator speed signal ω (which is treated by DC blocking element and corrected by parallel proportional differential PD) and active power signal Pe (which is treated by DC blocking element and gained by gain factor Ks3) to get equivalent synthetic mechanical power of power system stabilizer. The actual active power signal gained by gain factor KS1 can meet the requirement of phase compensation through Order 1 lead and lag elements, thus increasing allowable total setting gain of PSS and improving the ability of low-frequency band oscillation suppression.
US09906175B2
Method of starting a three-phase sinusoidal BLDC motor, comprising: a) determining an initial position of the rotor; b) applying a first set of sinusoidal energizing signals to the windings, corresponding to a set of sinusoidal waveforms shifted apart by 120° and 240° sampled at a first angle (Φ1); and maintaining the energizing signals for allowing the rotor to move to a first angular position; c) while maintaining the energizing signals, monitoring two of the phase currents, and determining whether a predefined condition is satisfied, comprising testing whether a ratio of two total current values is equal to a predefined value, and if true, to repeat steps b) and c), but with second and further sinusoidal energizing signals sampled at a second or further angular position, selected from a limited group of discrete angular positions.
US09906169B1
A voltage converter system includes a first DC-AC voltage converter that converts a first DC voltage signal to a first AC voltage signal. A DC link converts the first AC voltage signal to a second DC voltage signal. A second DC-AC voltage converter converts the second DC voltage signal to a second AC voltage signal. In another configuration a DC-AC voltage converter converts a DC voltage signal to a first AC voltage signal. An AC-AC voltage converter converts the first AC voltage signal to a second, lower-frequency AC voltage signal. In yet another configuration a first voltage converter portion converts a DC voltage signal to pulses of DC voltage. A second voltage converter portion converts the pulses of DC voltage to a relatively low-frequency AC voltage signal. The voltage converter system is selectably configurable as a DC-AC voltage converter or an AC-DC voltage converter.
US09906157B2
A package assembly includes a main body, a power module and replaceable top cover. The main body has a hollow part. The power module is disposed within a hollow part of the main body and located beside the bottom part of the main body. At least one first pin is disposed on a surface of the power module. The at least one first pin is accommodated within the hollow part of the main body and partially protruded out of a first open end of the hollow part near a top part of the main body. The top cover is disposed in the hollow part of the main body, and includes at least one first opening corresponding to the at least one first pin. The at least one first pin is penetrated through the corresponding first opening and exposed outside the first open end of the hollow part.
US09906151B2
A switching power converter may include a power switch coupled to a primary winding of a transformer, and a primary controller configured to turn on and off the power switch, a synchronous rectifier switch coupled to a secondary winding of a transformer, and a synchronous rectifier controller configured to turn on and off the synchronous rectifier switch. The synchronous rectifier controller may monitor a voltage across the synchronous rectifier switch. The synchronous rectifier controller may detect a fault condition responsive to the voltage reaching a turn-off voltage threshold before a minimum on-time timer expires. The synchronous rectifier controller may detect a fault condition responsive to the synchronous rectifier switch being turned off at the same time, immediately after, or within a timing guardband after the minimum on-time timer expires. The synchronous rectifier controller may adaptively increase a minimum off-time period for the synchronous rectifier switch.
US09906141B2
In a DC-DC converter, a voltage at a connection point on the side of connection with a primary winding of a switching transistor is compared to a threshold voltage set within a variation range of the voltage at the connection point while the switching transistor is performing a switching operation, and, when the polarity by which the voltage was compared to the threshold voltage does not change during a detection period longer than the predetermined period of the drive signal for bringing the switching transistor under switching control, the switching transistor is determined as being operating in an active state with a danger of heat generation.
US09906139B2
A power supply module coupled with a primary winding of a power conversion module, the power supply module includes a plurality of power-controlling modules, a plurality of second switches, and a microprocessor. Each power-controlling module includes an auxiliary winding and a first switch electrically connected in series, and each auxiliary winding is magnetic coupled with the primary winding. Each second switch is electrically connected to one of the power-controlling units. The microprocessor is electrically connected to the first switches of the power-controlling modules and the second switches. The microprocessor places at least one first switch and one of the second switches in a conducting state to make the first switch in the conducting state and the second switch in the conducting state electrically connect in series and output an electric power to power the power conversion module.
US09906138B2
A power conversion apparatus including a flyback power conversion circuit, a control chip and a detection auxiliary circuit is provided. The flyback power conversion circuit receives and converts an input voltage into a DC output voltage. The control chip generates a PWM signal in response to a power supplying requirement to control the operation of the flyback power conversion circuit, wherein the control chip has a single multi-function detection pin. The detection auxiliary circuit assists the control chip to obtain a first detection voltage via the multi-function detection pin, such that the control chip performs a detection of an over temperature protection (OTP) and a detection of an over voltage protection (OVP) synchronously according to the first detection voltage. The first detection voltage is related to the DC output voltage or a thermal voltage of an environment temperature.
US09906131B1
A switched-mode power converter includes timing control feedback loop circuits to minimize or eliminate the potential difference across a high-power switch and a low-power switch during their transitions times. A first feedback circuit compares the measured voltage across the high-power switch at the moment the high-power switch closes with the input voltage to the high-power switch to control a low-to-high delay time. A second feedback circuit compares the measured voltage across the low-power switch at the moment the low-power switch closes with the input voltage to the low-power switch to control a high-to-low delay time. A third feedback circuit compares the measured voltage across the low-power switch at the moment the low-power switch opens. The output of the third feedback circuit is provided as inputs to the first and second feedback circuits. The third feedback circuit also controls the frequency of the power converter.
US09906124B2
A reference voltage generation circuit includes a voltage dividing circuit, a transistor, and a capacitor. The voltage dividing circuit divides a power-supply voltage into a specified level to generate a predetermined voltage. The transistor has a gate applied with the predetermined voltage and a drain outputting, as a reference voltage, a voltage obtained by adding the predetermined voltage and a threshold voltage of the transistor. The capacitor bypasses the gate and source of the transistor. Moreover, one end of the capacitor is connected to the gate of the transistor, and the other end of the capacitor is connected to the source of the transistor and ground. Furthermore, an electric charge output source which outputs an electric charge is connected to the drain of the transistor.
US09906123B2
Disclosed is a charge-pump and a dynamic charge-pump device including the same. By switching the plurality of voltage sources, the output voltage of the charge-pump can be compensated, and changed output voltage of the charge pump is utilized to adjust a voltage as power source or ground source of a loading circuit. A detection circuit may further be included in the charge-pump for detecting the voltage or current of the loading circuit, and the minimum output voltage of the charge pump may be chosen to adjust the voltage-drop of the loading circuit, and the variation of the voltage of the loading circuit can be brought back within a predetermined range, such that the operational efficiency of the loading circuit may not be influenced. Moreover, the adjustment may be performed according to the different operation modes of the loading circuit, and the power consumption can be decreased.
US09906118B2
A system for performing ozone water treatment comprises a voltage supply circuit and a plasma eductor reactor. The voltage supply circuit includes an H-bridge controller and driver, a transformer, and an output port. The H-bridge controller and driver are configured to switch the electrical polarity of a pair of terminals. A primary of the transformer is connected to the H-bridge driver and controller. A secondary of the transformer connects in parallel with a first capacitor and in series with an inductor and a second capacitor. The output port connects in parallel with the second capacitor. The plasma eductor reactor includes an electric field generator, a flow spreader, and a diffuser. The electric field generator includes a pair of electrodes that generate an electric field. The flow spreader supplies a stream of oxygen. The diffuser supplies a stream of water. The streams of water and oxygen pass through the electric field.
US09906111B2
A set of symmetrically segmented square prism Permanent Magnet (PM) halves in a 45-45-90 triangular prism and a rectangular square prism with predefined 45° stepped magnetizations are designed as Fine Elements (FEs), bringing finely adaptive mosaicking advantages for array arrangement. Optimized Halbach effect FE PM pole modules in cuboidal and isosceles trapezoidal prism shapes are invented to provide an augmented one-side-operating field. Simulation data show that typical dual layer FE PM arrays generate high-fidelity sinusoidal waveforms within air-gaps with peak field strengths of up to 1.2 Tesla. Featuring a pole width-to-thickness ratio ranging from 1 to 6, FE PM motor tracks with a series of scale, format, and sectional features are constructed in lightweight ferrous and/or nonferrous structures, which energize OEM and/or FE current carrying winding coils to implement linear and curvilinear motors with high power/force/torque density and low force ripple.
US09906106B1
An induction motor or generator assembly for converting either of an electrical input or rotating work input to a mechanical/rotating work or electrical output. An outer annular arrayed component is rotatable in a first direction and includes a plurality of magnets arranged in a circumferentially extending and inwardly facing fashion according to a first perimeter array, the outer component further incorporating a rotating shaft projecting from a central location. An inner concentrically arrayed and reverse rotating component exhibits a plurality of outwardly facing and circumferentially spaced array of coil-subassemblies opposing the magnetic elements, such that a gap separates the coil-subassemblies from the magnets. The coil sub-assemblies each include a plurality of concentrically arrayed coils configured within a platform support of the inner component. A plurality of stacked commutator segments each have a plurality of annular extending and individually insulated segments arranged in exteriorly facing manner.
US09906104B2
The invention relates to a method for balancing a component (1), in particular a rotor of an electric machine, using pins (11, 11′) which are introduced into prefabricated openings (5, 7, 9) in the component (1). The component (1) is balanced in that pins (11, 11′) of different lengths, cross-sectional areas, and cross-sectional shapes are fixed in corresponding openings (7, 9) in the component (1). Furthermore, the pins (11, 11′) can be assembled from multiple elements (13, 13′), and the method can be used to increase the balancing quality incrementally in one or more stages. The imbalance of the component (1) can be considerably reduced using said method, and simultaneously the weight, space requirements, and inertia of the component (1) can be reduced. In addition, the method can be automated.
US09906102B2
It is common in electric machines to use the housing as a heat sink to remove energy from the electric machine. In some applications, however, the housing receives energy from a hot element. For example, in an electronically controlled turbocharger, the very hot turbine housing radiates and conducts energy to the electric machine housing exacerbating the heating within the electric machine. To reduce the heat transfer into the electric machine, a gap is provided between the stator and the housing outside the stator. In one alternative, the gap is filled with an insulating material. In another embodiment, the gap is an air gap with the stator located within the housing by circumferential rings or axial rods in corresponding grooves. In yet another embodiment, coolant is provided to the gap at the top and drained away at the bottom under the action of gravity.
US09906088B2
It is an object of the present invention, to provide a rotor-holding structure of a rotating electrical machine for hybrid-vehicle, the structure being capable of ensuring a space is present between a stator and a rotor. A rotating electrical machine includes a stator and a rotor, the stator being fixed to a housing, and the rotor being disposed opposite to stator across a predetermined space, wherein the rotor has a rotor boss section, a rotor core, and a permanent magnet. The rotor boss section is rotatably attached to the housing through a bearing. The rotor core and the permanent magnet are attached to the rotor boss section. Multiple through-holes are provided at the respective corresponding locations of the housing and the rotor boss section. A supporting member is passed through each of the through-holes, thereby holding the rotor boss section.
US09906080B2
The disclosed technology relates to antenna configurations for wireless power transmission and supplemental visual signals. In some implementations, the disclosed technology includes a wireless power transmitter with boards that have multiple antennas physically coupled to the board. In some implementations, the antennas boards are arranged in a polygonal configuration (e.g., star shape). Additionally, in some implementations, the antennas can have different polarization configurations.
US09906078B2
A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam to produce light. An energy conversion device utilizes light energy from the heated graphite foam to perform a light energy consuming function. A device for producing light and a method of converting energy are also disclosed.
US09906072B2
A system includes a first power converter, a second power converter, a first battery having a time to end of discharge (EOD) and coupled to output a current to the first converter, a second battery having a time to EOD and coupled to output a current to the second converter, and a control circuit coupled to the first converter and the second converter. The control circuit is configured to monitor the times to EOD of the first battery and the second battery, and in response to the times to EOD of the first battery and the second battery not being substantially equal, control the first converter to adjust the current drawn from the first battery to change a rate of decrease of the time to EOD of the first battery. Other example systems and methods for substantially matching a time to EOD of a plurality of batteries are also disclosed.
US09906067B1
An apparatus, system and method to wirelessly charge and/or discharge a battery. In one embodiment, the apparatus includes a removable first magnetic core piecepart having a surrounding first metallic coil and configured to be coupled to and aligned with a second magnetic core piecepart having a surrounding second metallic coil to form a transformer. The apparatus also includes a battery metallically coupled to the first metallic coil and configured to be charged and discharged through an electrically isolating path of the transformer.
US09906053B2
An energy storage device capable of receiving energy using an energy input interface or charging an electronic device using an energy output interface. The energy storage device includes an adapter, an energy storage unit and a charger module. The adapter provides the charger module with an input current, and the charger module provides the energy storage unit with a first current. Otherwise, the charger module provides the electronic device with the input current. When the input current provided by the adapter is higher than a maximum safe current of the adapter, the energy storage unit provides the charger module with a second current. The charger module outputs energy to the electronic device according to the second current to assist the adapter to charge the electronic device. The second current is opposite to the first current.
US09906052B2
A power supply device includes a battery module in which batteries are connected in series; a negative electrode output terminal to which a negative electrode terminal of the battery module is connected; a positive electrode output terminal to which a positive electrode terminal of the battery module and a connection point between predetermined batteries are individually connected through discharging switches; an output voltage detecting circuit for detecting an output voltage; a charging current adjusting circuit for adjusting the charging current of the battery module; thermistors for detecting the state-of-charge of the battery module; and a control device for controlling the charge and discharge of the battery module, wherein the control device includes means for controlling the discharging switches, so that the output voltage is within a specific range, and means for controlling the charging current adjusting circuit on the basis of the state-of-charge of each battery of the battery module.
US09906043B2
The disclosure provides a power supply device including an input connector, a direct current (DC) processing unit, and an alternating current (AC) processing unit. The input connector obtains an AC power from an AC power supply and transmits the AC power to the DC processing unit and AC processing unit. The DC processing unit converts the AC power to a DC power, and converts the DC power to a plurality of DC voltages. The AC processing unit converts the AC power provided by the power supply to a plurality of AC voltages. An electronic device including the power supply device is also provided.
US09906041B2
The present disclosure pertains to distributed controllers configured to control a plurality of electrical generators in an electrical generation and distribution system. In one embodiment, a distributed controller consistent with the present disclosure may include a communication subsystem to obtain a first plurality of time-stamped electrical parameter measurements from a first node. A measurement analysis subsystem may compare the first plurality of time-stamped electrical parameter measurements and the second plurality of time-stamped electrical parameter measurements. The first node and the second node may be associated in an electrical island by a topology detection subsystem based on the correlation. A control subsystem may be configured to implement a control action based on the association of the first node and the second node in the electrical island.
US09906027B2
A method is provided for transferring electrical power. AC power is generated and guided at least partially underwater. The AC power is guided through a cable from a first end of the cable to a second end of the cable. A frequency of the AC power guided through the cable is adjusted in dependence of a length of the cable between the first end and the second end of the cable.
US09906019B2
A circuitry arrangement includes two-pole connectors for connecting a battery and a further voltage source. The plus pole of one connector and the minus pole of the other connector are directly connected to a plus pole and a minus pole of a DC voltage link. The plus and minus poles of the one connector are connected via a first parallel circuit of a switch and a diode and a first choke connected in series. The minus and plus poles of the other connector are connected via a second parallel circuit of a switch and a diode and a second choke connected in series. A connection between choke ends of the two parallel circuits is electrically conductive at least for alternating currents. The two chokes are magnetically coupled in that their winding senses on a common magnetic core are equal as viewed from the connection between the two parallel circuits.
US09906018B2
Disclosed are advances in the arts with novel methods and apparatus for detecting faulty connections in an electrical system. Exemplary preferred embodiments include monitoring techniques and systems for monitoring signals at one or more device loads and analyzing the monitored signals for determining fault conditions at the device loads and/or at the main transmission lines. The invention preferably provides the capability to test and monitor electrical interconnections without fully activating the host system.
US09906014B2
A circuit protection device with self fault detection function comprises a ground fault protection unit and a self fault detection unit, the ground fault protection unit can achieve the ground fault detection and protection function for AC power source power circuit and electrical appliance. The self fault detection unit is provided with two delay circuits which can achieve the fault detection at an early stage of power-on and periodically fault detection function. The ground fault protection circuit and the self fault detection unit can operate in time sharing, and achieve self fault detection without interruption of power supply. The self fault detection unit and the ground fault protection unit are separated from high impedance. Any fault occurred on any element in the self fault detection unit may not impair the protection ability of the ground fault protection unit.
US09906008B2
A bus bar connection device for a switchgear has a first bushing with an internal stem conductor whose end is a first connection surface at a nose of the bushing. The bus bar connection device has a second bushing with an internal stem conductor whose end is a second connection surface at a nose of the bushing. The first connection surface of the first bushing is placed opposite the second connection surface of the second bushing, the axis of the first bushing being identical to the axis of the second bushing. A connection element electrically connects the first connection surface with the second connection surface. A cylindrical insulation adapter surrounds the nose of the first bushing, the nose of the second bushing, and the connection element as one.
US09906000B2
A semiconductor laser apparatus is provided. The semiconductor laser apparatus includes a mode-locked semiconductor laser device and an external resonator including a dispersion compensation system, wherein the semiconductor laser apparatus is configured to generate self modulation, to introduce a negative group velocity dispersion into the external resonator, and to provide spectral filtering after the external resonator.
US09905996B2
An apparatus includes a laser diode, a heater arrangement, and a circuit. The laser diode is configured to facilitate heat assisted magnetic recording during a lasing state. The heater arrangement is positioned proximate the laser diode. The circuit electrically couples the laser diode and the heater arrangement in a parallel relationship. The circuit is configured to alternately operate the laser diode in a lasing state and a non-lasing state, and to activate the heater arrangement during the non-lasing state to warm a junction of the laser diode.
US09905994B2
The present invention relates to an optical fiber which can improve OSNR in an optical transmission system in which Raman amplification and an EDFA are combined. With respect to the optical fiber, a predetermined conditional formula is satisfied by an effective area Aeff1450 [μm2] at a wavelength of 1450 nm, a transmission loss α1450 [/km] at a wavelength of 1450 nm, and a transmission loss α1550_dB [dB/km] at a wavelength of 1550 nm. Further, with respect to the optical fiber, another predetermined conditional formula is satisfied by an effective area Aeff1550 [μm2] at a wavelength of 1550 nm, and a transmission loss α1550 [/km] at a wavelength of 1550 nm.
US09905986B2
The invention relates to an assembly tool for releasing a latch element of a plug that is latchingly connected to a jack, having a tool shaft and a head part arranged on the tool shaft. The head part includes two side walls disposed parallel to one another. The side walls are arranged on a profile top side of a bottom part. On a side of the side walls 5 opposite the profile top side of the bottom part, wall strips are arranged facing to one another and spaced from one another disposed parallel to the bottom part so that a receiving space for the plug is enclosed by the bottom part, the side walls and the wall strips, which space includes an opening formed between the wall strips. A cable connected to the plug can be introduced into the receiving space 8 through the opening.
US09905984B2
A windscreen wiper motor with a housing is disclosed. In the housing, an armature shaft with a commutator is arranged, which cooperates with carbon elements arranged in the region of a carbon holder plate in carbon holder elements, which carbon elements are connected via electrical connections, in the form of strands, in an electrically conducting manner with voltage supply lines. An electrical connection and a voltage supply line are in a fixed manner in their respective end region in respectively a clamping holder element, where the clamping holder element is part of the carbon holder element.
US09905975B2
A modular electrical connector with broad-side coupled signal conductors in a right angle intermediate portion and edge coupled end portions. Broadside coupling provides balanced pairs for very high frequency operation, while edge coupling provides a high density interconnection system at low cost. Each module has separately shielded signal conductor pairs. The shielding is shaped to avoid or suppress undesirable propagation modes within an enclosure formed by shielding per module. Lossy material is selectively placed within and outside the shielding per module to likewise avoid or suppress unwanted signal propagation.
US09905960B2
An electrical connector having an insulative housing having a mating cavity and a plurality of passageways, a plurality of electrical contacts received in the corresponding passageways and a sealing member received in the mating cavity. The insulative housing defines a front face and a mounting wall, the mating cavity is formed between the front face and the mounting wall. Each electrical contact has a contacting portion, a tail portion, and a main portion connecting the contacting portion with the tail portion, each main portion defines a plurality of barbs on both sides thereof. The sealing member has a base portion and at least one opening defined in the base portion for tail portions passing through. At least one electrical contact defines a wing on one side thereof, and the sealing member is restricted between the wing and the mounting wall.
US09905955B2
The terminal comprises a conductive contact plate, a conductive body, an extended part, and a lance. The conductive contact plate is elastic and makes contact with a counterpart terminal. The conductive body supports the conductive contact plate and comprises a side plate. The extended part comprises a folded part extending from the +Z-side end of the side plate and folded outward from the conductive body and an overlapped part extending from the leading end of the folded part and overlapping with the side plate. The lance is a member protruding from the overlapped part and having the shape of a cantilever beam.
US09905949B2
Disclosed is a fluid conduit (1) comprising a pipe (2) and a conduit connector (3) which is connected to the electrically conductive pipe (2). In order to be able to keep the risk associated with electricity being on the fluid line as low as possible with little effort, an electrical connecting element (9) which is electrically connected to the pipe (2) is provided in the region of the conduit connector (3).
US09905948B1
An electrical connector includes an insulative housing and a plurality of contacts. The insulative housing has a main portion defining a top wall, a bottom wall and a mating cavity, the bottom wall has a first segment, a second segment spaced apart from the first segment and a protrusion extending away from the mating cavity, the protrusion is located between the first segment and the second segment. Each contact has a retention portion, a contacting arm and a soldering tail, the contacts comprises a group of first contacts, a group of second contacts, a group of third contacts and a group of fourth contacts. A distance between the retention portion and the soldering tail of each fourth contact along a height direction is larger than a distance between the retention portion and the soldering tail of each second contact.
US09905936B2
An antenna array includes a plurality of antenna elements coupled in a common area and extending radially outward from the common area. At least one of the plurality of antenna elements includes a first antenna portion and a second antenna portion arranged in a configuration such that a gap is formed between the first antenna portion and the second antenna portion. The gap includes first spacing associated with a first operating frequency and a first operating wavelength, and a second spacing associated with a second operating frequency and a second operating wavelength. A proportion of the first spacing to the first wavelength is substantially equal to a proportion of the second spacing to the second wavelength, thereby providing a constant beamwidth over an operating frequency band. A method of arranging a plurality of antenna elements in an antenna array is also disclosed.
US09905935B2
An antenna device includes a transmission line for propagating high frequency signal, and a plurality of antenna elements connected to the transmission line. The transmission line includes a first plate-shaped conductor, a second plate-shaped conductor, and a third plate-shaped conductor electrically grounded, a first central conductor disposed between the first and second plate-shaped conductors, a second central conductor disposed between the second and third plate-shaped conductors, an electrically connecting member inserted in an inserting hole formed through the second plate-shaped conductor, to electrically connect the first and second central conductors together, and an electrically grounded conductor disposed adjacent to the electrically connecting member. At least one of the first and second central conductors is provided with a through hole formed adjacent to the electrically connecting member, thereby electrically connects together wiring patterns provided on both surfaces, respectively, of a dielectric substrate of the at least one of the first and second central conductors.
US09905916B2
An antenna for an implantable medical device with a broadened bandwidth including at least two strut-like first conducting members, wherein each adjacent pair of first conducting members is connected by a second conducting member, wherein the second conducting member has the basic form of an at least partial round and/or polygonal plate, or of at least a part of a sphere and/or polyhedron, or a cross (or X), or a star, wherein the second conducting member further includes at least one through going opening, wherein the basic form fully encircles the opening.
US09905914B2
Slot antennas built into metallic body panels utilize the vehicle body itself as an antenna radiator. Building the slot antennas directly into the metallic body panels converts the vehicle body from functioning as an RF shield into an RF antenna, which significantly improves mobile communication reception for a wide range of RF communication devices. Different types of slot antennas may be included for different communication channels utilized by different types of devices. Multi-band slot antennas are configured to receive multiple bands within a larger frequency channel. Dual-polarity antennas are configured to receive signals propagating in a dual-polarity mode. Multiple slot components may be configured as multi-band, dual-polarity antennas. Each slot antenna may be passive (without an RF pickup) or active with an RF pickup and coaxial cable connecting the antenna to an electronic device, such as receiver or amplifier located inside or otherwise interconnected with the vehicle.
US09905908B2
An antenna structure includes a dielectric layer, on one side thereof a patterned conductive layer, a proximity sensor and a capacitor are provided. The patterned conductive layer includes a first and a second conductive layer that together form a coupled-fed antenna and respectively have a first and a second feed terminal connected to a signal feed line and a ground signal line. The proximity sensor includes a peripheral circuit connected to the second feed terminal, and a capacitance to digital circuit. The capacitor is connected between the ground signal line and the second feed terminal. By integrating the coupled-fed antenna and the proximity sensor on one circuit substrate, a part of the antenna can be used as the proximity sensor's capacitor electrode to reduce the volume and manufacturing cost of the antenna, and the proximity sensor is not interfered by other parts of the antenna and thereby has increased sensitivity.
US09905901B1
Differing from conventional directional coupling device being implemented on a coin-like planar board, the present invention stacks a bottom substrate, at least one phase retarding unit, at least one reference ground unit, a coupled circuit layer, a main circuit layer, and a top substrate to form a miniature directional coupling device. Because this miniature directional coupling device not occupies too much circuit area when being applied in a mobile communication product, the miniature directional coupling device can meet the requirements of light weight and compact size demanded by high-technology mobile communications for the electronic components. It is worth explaining that, since the said phase retarding unit consists of many end-to-end connected transmission wires, engineers skilled in designing microwave circuit are able to carry out the modulation of coupling flatness of the miniature directional coupling device by changing a total length of the end-to-end connected transmission wires.
US09905898B2
A coaxial tunable band stop filter utilizes tuning elements, such as PIN diodes and varactor diodes, for electrically tuning a coaxial resonator to change the resonance frequency of the coaxial resonators. A voltage is applied to the tuning elements to change their capacitance, such that they electrically lengthen and shorten the coaxial resonator. The variable voltages work to change the center frequency across a bandwidth. When the resonators are electrically extended or shortened in length, the center frequency in the bandwidth is changed accordingly. The bandwidth for the coaxial tunable band stop filter is tunable to increase and decrease based on the position of the center frequency. A ninety degree transmission line is used for coupling the components of the filter. A digital control is used for manipulating the tuning elements.
US09905894B2
A lithium air battery including an anode for intercalating/deintercalating lithium ions; a cathode having oxygen as a cathode active material, a lithium ion conductive solid electrolyte membrane disposed between the anode and the cathode; and an electrolyte, wherein the electrolyte is disposed between the lithium ion conductive solid electrolyte membrane and the cathode, and wherein the electrolyte includes at least one compound selected from a compound represented by Formula 1 and a copolymer including a repeating unit represented by Formula 2 as an additive: wherein in Formulae 1 and 2, groups CY1, CY2, a, b, c, b, R1 to R18, and variables t, u, and v are defined in the specification.
US09905886B2
A non-aqueous liquid electrolyte for a secondary battery, containing: at least one selected from a carbonate compound having a halogen atom and a sulfur-containing ring compound; an aromatic ketone compound; an organic solvent; and an electrolyte salt, in which, with respect to 100 parts by mass of the organic solvent, the aromatic ketone compound is 0.001 to 10 parts by mass and the at least one selected from a carbonate compound having a halogen atom and a sulfur-containing ring compound is 0.001 to 10 parts by mass, and more than 50% by mass of the whole amount of the organic solvent is composed of a solvent with a melting point of 10° C. or less.
US09905879B2
A fuel cell device includes a fuel cell body, a case and a pin having one end contacting a part of the fuel cell body. A through hole is formed in the case. The through hole penetrates the case from the outside to the inside. The pin is inserted in the through hole and provided with a sealing member formed on at least a part of an outer circumferential surface. The through hole has a constant inner diameter from a position inside the case to a border with the outside. In the through hole, an inner diameter between a portion of the constant inner diameter and the border with the outside is larger than the constant inner diameter. The pin has an opposite end located inside the through hole in a portion from an end of the portion of the constant inner diameter to the border with the outside.
US09905876B2
It was an object of the invention to provide, by use of new materials and membranes and with very little outlay, an inexpensive and long-lived redox flow cell which even in the event of a possible serious accident brings about little environmental pollution by its redox-active compounds.According to the invention, high molecular weight compounds such as redox-active polymers or oligomers are provided as redox-active components and a size-exclusion membrane (3) is provided as membrane for the separation of the high molecular weight redox-active components.
US09905863B2
A separator for fuel cell is used for a fuel cell and is placed to face a membrane electrode assembly. The separator includes a separator center area placed to face a power generation area of the membrane electrode assembly; a peripheral region extended from the separator center area toward an outer edge; a cooling medium supply manifold and a cooling medium discharge manifold provided in the peripheral region; a fluid flow path area extended from the cooling medium supply manifold through the separator center area to the cooling medium discharge manifold; a sealing gasket provided in the peripheral region and placed to surround the fluid flow path area; and a gasket for peel test provided outside of the fluid flow path area and configured to receive an external force applied as a test for evaluation of an adhesive state of the gasket. Evaluating the adhesive state of the gasket for peel test improves the yield of products in manufacture of the separators for fuel cell.
US09905859B2
The invention is a catalyst for solid polymer fuel cell having catalyst particles composed of platinum, cobalt and magnesium supported on a carbon powder carrier, in which a composition ratio (molar ratio) among platinum, cobalt and magnesium in the catalyst particles is Pt:Co:Mg=1:0.4 to 0.5:0.00070 to 0.00095. This catalyst is manufactured by supporting cobalt and magnesium on a platinum catalyst and then conducting a heat treatment and a treatment to be brought into contact with an oxidizing solution, the feature of the catalyst manufactured in this manner includes a peak position of a main peak appearing between 2θ=40° and 42° in X-ray diffraction analysis, and the peak position is shifted to from 41.0° to 41.5°.
US09905858B2
An improved platinum and method for manufacturing the improved platinum wherein the platinum having a fractal surface coating of platinum, platinum gray, with a increase in surface area of at least 5 times when compared to shiny platinum of the same geometry and also having improved resistance to physical stress when compared to platinum black having the same surface area. The process of electroplating the surface coating of platinum gray comprising plating at a moderate rate, for example at a rate that is faster than the rate necessary to produce shiny platinum and that is less than the rate necessary to produce platinum black. Platinum gray is applied to manufacture a fuel cell and a catalyst.
US09905857B1
This invention provides metal-foam electrodes for batteries and fuel cells. In some variations, an electrode includes a first metal layer disposed on a second metal layer, wherein the first metal layer comprises an electrically conductive, open-cell metal foam with an average cell diameter of about 25 μm or less. The structure also includes smaller pores between the cells. The electrode forms a one piece monolithic structure and allows thicker electrodes than are possible with current electrode-fabrication techniques. These electrodes are formed from an all-fluidic plating solution. The disclosed structures increase energy density in batteries and power density in fuel cells.
US09905855B2
A binder composition for a non-aqueous secondary battery electrode may comprise functional group-containing crosslinked resin microparticles produced by polymerizing: (A) at least one monomer selected from the group consisting of (a) a monomer having one ethylenically unsaturated group per molecule and also having a monofunctional or polyfunctional epoxy group, (b) a monomer having one ethylenically unsaturated group per molecule and also having a monofunctional or polyfunctional amide group, and (c) a monomer having one ethylenically unsaturated group per molecule and also having a monofunctional or polyfunctional hydroxy group; (B) at least one monomer selected from the group consisting of (d) a monomer having one ethylenically unsaturated group per molecule and also having an alkoxysilyl group and (e) a monomer having at least two ethylenically unsaturated groups per molecule; and (C) (k) a monomer which has an ethylenically unsaturated group and is different from the monomers (a) to (e).
US09905843B2
A negative electrode material includes a carbon material including boron. In a B1s spectrum of the carbon material which is measured by X-ray photoelectron spectroscopy, the ratio of the area of a peak that occurs at a binding energy of 187.0 eV or more and 188.5 eV or less to the total area of peaks that occur at a binding energy of 184.0 eV or more and 196.5 eV or less is 50% or more.
US09905841B2
Disclosed are a cathode active material and a lithium secondary battery including the same, and a method of manufacturing the cathode active material, the method including: (a) manufacturing a lithium metal oxide according to formula 1 below: Li1+zNiaMnbCo1−(a+b)O2 (1) wherein 0≦z≦0.1, 0.1≦a≦0.8, 0.1≦b≦0.8 and a+b<1; (b) dry mixing the lithium metal oxide, and a precursor including zirconium and fluorine; and (c) changing the precursor including zirconium and fluorine into ZrO2 and substituting some of oxygen (O) anions with F by heat-treatment after dry mixing of step (b), wherein the cathode active material is coated with ZrO2 and F.
US09905840B2
Provided are a cathode active material including polycrystalline lithium manganese oxide and a sodium-containing coating layer on a surface of the polycrystalline lithium manganese oxide, and a method preparing the same.Since the cathode active material according to an embodiment of the present invention may prevent direct contact between the polycrystalline lithium manganese oxide and an electrolyte solution by including the sodium-containing coating layer on the surface of the polycrystalline lithium manganese oxide, the cathode active material may prevent side reactions between the cathode active material and the electrolyte solution. In addition, since limitations, such as the Jahn-Teller distortion and the dissolution of Mn2+, may be addressed by structurally stabilizing the polycrystalline lithium manganese oxide, tap density, life characteristics, and charge and discharge capacity characteristics of a secondary battery may be improved.
US09905835B2
Disclosed is a secondary battery pack including a battery cell having an anode and a cathode terminal formed at one face having a sealed surplus portion and a protection circuit module (PCM) electrically connected to the battery cell via the anode and the cathode terminal, wherein the PCM includes a board having a protection circuit formed thereon, the board being provided with an anode terminal connection part and a cathode terminal connection part connected to the anode terminal and the cathode terminal, respectively, the board is coupled to the anode terminal and the cathode terminal of the battery cell via the anode terminal connection part and the cathode terminal connection part and is mounted to the sealed surplus portion of the battery cell, and the secondary battery pack further includes a frame mounted to the PCM and the battery cell so as to surround the PCM and the battery cell.
US09905827B2
An energy storage apparatus includes: an energy storage device including a flat electrode assembly in which electrodes are layered and a prismatic case in which the electrode assembly is housed; and a spacer arranged adjacently to the energy storage device in a first direction, wherein the spacer is formed such that a thickness size in the first direction of a center portion of the spacer in a second direction, which is a direction orthogonal to the first direction and is a direction parallel to a surface of the spacer that faces the energy storage device, is set larger than a thickness size in the first direction of other portions of the spacer arranged adjacently to the center portion of the spacer in the second direction, and a width of the center portion of the spacer in a third direction orthogonal to the first and second directions at a contact portion of the spacer with the energy storage device is set smaller than a width of the case in the third direction.
US09905812B2
The disclosure is related to a mask plate and its manufacturing method, and OLED device packaging method. The mask plate comprises a hollow region; a non-hollow region arranged around the hollow region; and a semi-hollow region in a strip form arranged in the hollow region, having a head portion and a tail portion respectively connecting with the non-hollow region. By way of the above manner, the disclosure may enhance the bending performance of the flexible OLED device package.
US09905801B2
An organic light-emitting display device includes: a substrate; a driving thin film transistor on the substrate; and a DAM at an outermost portion of the substrate, where the DAM includes an inorganic layer and includes a first metallic DAM. The first metallic DAM may include two or more metal layers spaced apart at a set interval.
US09905800B2
An organic light-emitting display apparatus includes an organic light-emitting device including a first electrode, an intermediate layer including a light-emitting layer, and a second electrode; an organic barrier layer on the second electrode of the organic light-emitting device and having a first side facing the organic light-emitting device and a second side facing in an opposite direction from the first side; a buffer layer contacting the second side of the organic barrier layer; and a first inorganic barrier layer on the second side of the organic barrier layer with the buffer layer therebetween, wherein a water vapor transmission rate of the buffer layer is greater than 10−2 g/(cm2·day).
US09905796B2
A display apparatus includes a first substrate; a display device including a display portion and located on the first substrate; a second substrate located above the display device; a sealing portion between the first substrate and the second substrate, and surrounding the display portion, the sealing portion bonding the first substrate and the second substrate; a circuit portion located between the sealing portion and the display portion; and one or more supplement members located between the circuit portion and the sealing portion so as to absorb an external shock delivered to the sealing portion.
US09905795B2
Disclosed are folding type display apparatuses. The folding type display apparatus comprises a flexible display section, and a plurality of housings, which includes a first housing having a space formed therein, and second and third housings bendably connected to both ends of the first housing. The display section is fixed to the second and third housings, and in a closed state of the second and third housings, a folding portion of the display section is housed in the space formed by the first housing, while in an open state of the second and third housings away from each other, the display section becomes flat, and the first housing functions as a leg protruding from flat surfaces of the second and third housings, so that the second and third housings are fixed to each other and the folding portion of the display section is supported, by a holding member for connecting these housings.
US09905794B2
A display device for a vehicle and an automobile including the same are disclosed. In one aspect, the display device includes a display unit that includes a first surface and a second surface located on an opposite side of the first surface. The first surface includes an active area having opposing sides and configured to generate an image and a plurality of inactive areas located on the opposing sides of the active area and bent with respect to the active area. The display device also includes a heat radiation member adjacent to the second surface of the display unit.
US09905789B2
Disclosed are a light-emitting composite film, its manufacture method, and a white light organic electroluminescent device. Said light-emitting composite film comprises a first light-emitting layer and a second light-emitting layer. The first light-emitting layer comprises polyfluorene or polyfluorene derivatives, and the second light-emitting layer comprises quantum dots. A variety of color gamut and an improved brightness of devices can be achieved by the light-emitting composite film.
US09905787B2
According to embodiments of the present invention, there are provided an array substrate, a method for manufacturing the same and a display device, capable of reducing production difficulty of the array substrate. The manufacturing process of the array substrate is simplified, and the production cost is reduced. The array substrate comprises thin film transistor in a top-gate, bottom-contact configuration which is located on a substrate. Regarding the thin film transistor, its gate electrode is connected to a gate line, its source electrode is connected to a data line, and its drain electrode is connected to a pixel electrode.
US09905786B2
An organometallic complex represented by Formula 1-1 or Formula 1-2 is provided: wherein in Formulae 1-1 and 1-2, descriptions of R1 to R7, X1, X2, Y1 to Y4, rings A, B, C, and a to e are understood by referring to the description provided herein. An organic light-emitting device includes a first electrode, a second electrode facing the first electrode, and an organic layer that is disposed between the first electrode and the second electrode and includes an emission layer, wherein the organic layer includes at least one organometallic complex represented by Formula 1-1 or Formula 1-2.
US09905775B2
The present invention provides an organic electroluminescent device having at least an anode, a hole transport layer, a luminous layer, an electron transport layer, and a cathode in this order, wherein the hole transport layer contains an arylamine compound having a specific structure, and the luminous layer contains an indenoindole derivative or a carbazole derivative having a specific structure. The organic EL device of the present invention is an organic EL device improved in luminous efficiency, driving voltage and durability.
US09905773B2
A compound represented by Formula 1. An organic electric element includes a first electrode, a second electrode, and an organic material layer between the first electrode and the second electrode. The organic material layer includes the compound represented by Formula 1. When the organic electric element includes the compound in the organic material layer, luminous efficiency, stability, and life span can be improved.
US09905758B2
The semiconductor device according to the present invention has an upper electrode, a first lower layer wiring that also functions as a lower electrode, an electrical resistance-changing film interposed between the upper electrode and the first lower layer wiring, a second lower layer wiring, and a contact plug, the contact plug connecting to the upper electrode and to the second lower layer wiring. The present invention yields a semiconductor device with which it is possible to dispose elements in high density while maintaining the reliability and manufacturing yield of the electrical resistance-changing element.
US09905757B2
A nonlinear memristor device with a three-layer selector includes a memristor in electrical series with a three-layer selector. The memristor comprises at least one electrically conducting layer and at least one electrically insulating layer. The three-layer selector comprises a three-layer structure selected from the group consisting of XN—XO—XN; XN—YO—ZN; XN—YO—XN; XO—XN—XO; XO—YN—XO; XO—YN—ZO; XO—YO—XO; XO—YO—ZO; XN—YN—ZN; and XN—YN—XN, X represents a compound-forming metal different from Y and Z.
US09905739B2
A semiconductor light emitting device may include a light emitting package. A light emitting package may include a light emitting stack including a sequential stack of a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer. An encapsulation layer may at least partially surround the second conductivity type semiconductor layer, and a wavelength conversion layer may cover the first conductivity type semiconductor layer. One or more of the encapsulation layer and the wavelength conversion layer may have a greater coefficient of thermal expansion (CTE) than a GaN-based compound semiconductor. The semiconductor light emitting device may include a stress applying structure that may apply a tensile stress to the light emitting stack. The light emitting stack may have reduced thermal droop at an operation temperature and improved luminous efficiency.
US09905738B2
Provided are a composition for an encapsulant having a viscosity of about 4,000 to about 9,500 mPa·s when measured using a Brookfield (DV-II+pro) spindle No. 52 at a torque of about 90% under atmospheric pressure at about 23° C., whereby maintaining a phosphor precipitation degree within about 18% when including a phosphor and allowed to stand at about 23° C. for greater than or equal to about 2 hours, and including at least one first siloxane compound having a silicon-bonded hydrogen (Si—H) and at least one second siloxane compound having a silicon-bonded alkenyl group (Si-Vi), an encapsulant obtained by curing the composition, and an electronic device including the encapsulant.
US09905733B2
A light-emitting device comprises a light-emitting semiconductor stack comprising a plurality of recesses and a mesa, each of the plurality of recesses comprising a bottom surface, and the mesa comprising an upper surface; a first electrode formed on the upper surface of the mesa; a plurality of second electrodes respectively formed on the bottom surface of the plurality of recesses; a first electrode pad formed on the light-emitting semiconductor stack and contacting with the first electrode; a second electrode pad formed on the light-emitting semiconductor stack and contacting with the plurality of second electrode; a first insulating layer comprising a plurality of passages to expose the plurality of second electrodes; and a second insulating layer comprising a plurality of spaces and formed on the first insulating layer, wherein the plurality of spaces is covered by the first electrode pad.
US09905731B2
A light emitting diode is disclosed that includes a silicon carbide substrate and a light emitting structure formed from the Group III nitride material system on the substrate. The diode has an area greater than 100,000 square microns and has a radiant flux at 20 milliamps current of at least 29 milliwatts at its dominant wavelength between 390 and 540 nanometers.
US09905727B2
A thin film device described herein includes a first thin film layer, a second film layer and a heterostructure within the second film layer. The first thin film layer is atop a substrate. The second thin film layer is grown from the first thin film layer through a patterned mask, having openings, under selective area growth (SAG) conditions. The second thin film layer is configured to be released from the first thin film layer by etching a trench. The etched trench may provide access to the patterned mask and the patterned mask may be eliminated with a wet etchant.
US09905726B2
A semiconductor epitaxial structure is provided. The semiconductor epitaxial structure includes a substrate, a doped semiconductor epitaxial layer, and a carbon nanotube layer. The doped semiconductor epitaxial layer is located on the substrate. The carbon nanotube layer is located between the substrate and the doped semiconductor epitaxial layer. The carbon nanotube layer can be a carbon nanotube film drawn from a carbon nanotube array and including a number of successive and oriented carbon nanotubes joined end-to-end by van der Waals attractive force therebetween.
US09905710B2
An embodiment of a solar cell is provided comprising a silicon substrate, on a first surface of which a texture structure including mountain portions and valley portions is formed, and an amorphous silicon layer provided on the first surface of the silicon substrate. The texture structure, in a cross section passing through the mountain portions and the valley portions, includes pairs of slant portions, each pair slanting to extend from a pair of neighboring ones of the mountain portions toward the valley portion therebetween while coming closer to each other. The valley portion located between the slant portions is in a round shape with a radius of curvature of 150 nm or smaller. The amorphous silicon layer includes an epitaxial growth area grown from the valley portion, the epitaxial growth area on the valley portion is thicker than that on a region other than the valley portion.
US09905708B2
A panel of the present invention includes a substrate, an electrode provided on the substrate, and a transparent conductive layer provided on the substrate along a side of the electrode. The electrode includes a contact region in contact with the transparent conductive layer and a non-contact region out of contact with the transparent conductive layer. Preferably, a part of the electrode is exposed through the transparent conductive layer. Preferably, the conductive layer is separated into one side and the other side of the electrode extending a predetermined direction.
US09905700B2
A highly integrated semiconductor device that holds data and includes a first semiconductor layer, a first gate insulating film over the first semiconductor layer, a first gate electrode over the first gate insulating film, a second semiconductor layer over the first gate electrode, a conductive layer over the second semiconductor layer, a second gate insulating film covering the second semiconductor layer and the conductive layer, and a second gate electrode covering at least part of a side surface of the second semiconductor layer with the second gate insulating film interposed therebetween. An end portion of the second semiconductor layer is substantially aligned with an end portion of the conductive layer.
US09905698B2
The embodiment of the disclosure provides a method for manufacturing a low temperature poly-silicon thin film transistor, comprising forming an interlayer dielectric layer, forming a photoresist layer on the interlayer dielectric layer, and conducting a first photoresist removing on the photoresist layer to expose the interlayer dielectric layer with a first area, etching the interlayer dielectric layer with the first area to form a first depression region, conducting a second photoresist removing on the photoresist layer to expose the interlayer dielectric layer with a second area, and etching the interlayer dielectric layer with the second area and the first depression region to form a second depression region in a step form at the periphery of the first depression region.
US09905697B2
A high-performance TFT substrate for a flat panel display includes a substrate, a first conductive layer on the substrate, a semiconductor layer positioned on the first conductive layer, and a second conductive layer positioned on the semiconductor layer. The first conductive layer defines a gate electrode. The second conductive layer defines a source electrode and a drain electrode spaced apart from the source electrode. The second conductive layer includes a first layer on the semiconductor layer and a second layer positioned on the first layer. The first layer can be made of metal oxide. The second layer can be made of aluminum or aluminum alloy.
US09905695B2
To provide a semiconductor device having a structure with which the device can be easily manufactured even if the size is decreased and which can suppress a decrease in electrical characteristics caused by the decrease in the size, and a manufacturing method thereof. A source electrode layer and a drain electrode layer are formed on an upper surface of an oxide semiconductor layer. A side surface of the oxide semiconductor layer and a side surface of the source electrode layer are provided on the same surface and are electrically connected to a first wiring. Further, a side surface of the oxide semiconductor layer and a side surface of the drain electrode layer are provided on the same surface and are electrically connected to a second wiring.
US09905694B2
Device structures for a fin-type field-effect transistor (FinFET) and methods for fabricating a device structure for a FinFET. A fin comprised of a semiconductor material having a first crystal structure is formed. A dielectric layer is formed that includes an opening aligned with the fin. A dummy gate structure is removed from the opening in the dielectric layer. After the dummy gate structure is removed, a section of the fin aligned with the opening is implanted with non-dopant ions to amorphize the first crystal structure of the semiconductor material of the fin. After the section of the fin is implanted, the section of the fin is annealed such that the semiconductor material in the section of the fin recrystallizes with a second crystal structure incorporating internal strain.
US09905679B2
A semiconductor device comprising a bipolar transistor and a method of making the same. The bipolar transistor includes a collector having a laterally extending drift region. The bipolar transistor also includes a base located above the collector. The bipolar transistor further includes an emitter located above the base. The bipolar transistor also includes a reduced surface field (RESURF) gate located above an upper surface of the laterally extending drift region for shaping an electric field within the collector. The bipolar transistor further includes a gap located between the reduced surface field gate and an extrinsic region of the base of the device, for electrically isolating the reduced surface field gate from the base. A lateral dimension Lgap of the gap is in the range 0.1 μm≦Lgap≦1.0 μm.
US09905677B2
A method for manufacturing a semiconductor device includes providing a substrate structure having a substrate and a cavity in the substrate, epitaxially growing a SiGe nanowire in the cavity, and removing a portion of the substrate surrounding the SiGe nanowire to substantially expose a surface of the SiGe nanowire. The method further includes oxidizing the exposed surface of the SiGe nanowire to form an oxide layer, removing the oxide layer by etching, and repeating the oxidizing and removing steps to form a suspended germanium nanowire in the cavity.
US09905676B2
Methods of forming an integrated circuit device are provided. The methods may include forming a gate structure on a substrate, forming a first etch mask on a sidewall of the gate structure, anisotropically etching the substrate using the gate structure and the first etch mask as an etch mask to form a preliminary recess in the substrate, forming a sacrificial layer in the preliminary recess, forming a second etch mask on the first etch mask, etching the sacrificial layer and the substrate beneath the sacrificial layer using the gate structure and the first and second etch masks as an etch mask to form a source/drain recess in the substrate, and forming a source/drain in the source/drain recess. A sidewall of the source/drain recess may be recessed toward the gate structure relative to an outer surface of the second etch mask.
US09905656B2
Provided is a semiconductor substrate including a seed layer disposed on a substrate, a buffer layer disposed on the seed layer, a plurality of nitride semiconductor layers disposed on the buffer layer, and at least one stress control layer between the plurality of nitride semiconductor layers. The buffer layer includes a plurality of step regions and at least one heterogeneous region. The plurality of step regions includes the same nitride semiconductor material. The heterogeneous region includes a different nitride semiconductor material from the step regions.
US09905655B2
Disclosed is a method for forming a semiconductor device and a semiconductor device. The method includes: in a SiC semiconductor body, forming crystal defects in a first semiconductor region by introducing non-doping particles into the semiconductor body; and forming a second semiconductor region such that there is a pn junction between the first semiconductor region and the second semiconductor region.
US09905650B2
Uniaxially strained nanowire structures are described. For example, a semiconductor device includes a plurality of vertically stacked uniaxially strained nanowires disposed above a substrate. Each of the uniaxially strained nanowires includes a discrete channel region disposed in the uniaxially strained nanowire. The discrete channel region has a current flow direction along the direction of the uniaxial strain. Source and drain regions are disposed in the nanowire, on either side of the discrete channel region. A gate electrode stack completely surrounds the discrete channel regions.
US09905649B2
A tensile strained silicon layer and a compressively strained silicon germanium layer are formed on a strain relaxed silicon germanium buffer layer substrate. A relaxed silicon layer is formed on the substrate and the compressively strained silicon germanium layer is formed on the relaxed silicon layer. The compressively strained silicon germanium layer can accordingly have approximately the same concentration of germanium as the underlying strain relaxed buffer layer substrate, which facilitates gate integration. The tensile strained silicon layer and the compressively strained silicon germanium layer can be configured as fins used in the fabrication silicon layer can be doped in situ to provide punch through stop regions adjoining the fins.
US09905647B2
A tunnel field-effect transistor device includes a p-type GaN source layer, an n-type GaN drain layer, and an interlayer interfaced between the source-layer and the drain layer. In one example, the interlayer includes an Indium Nitride (InN) layer. In one example, the interlayer includes a graded Indium gallium nitride layer and an InN layer. In one example, the interlayer may include a graded Indium gallium nitride (InxGa1-xN) layer and an Indium gallium nitride (InGaN) layer. In one example, the tunnel field-effect transistor device includes an in-line configuration. In one example, the tunnel field-effect transistor device includes a side-wall configuration.
US09905623B2
A thin film encapsulation unit including an inorganic layer, a first organic layer on the inorganic layer and including a light-blocking unit and a light-transmitting unit, and a reflection-preventing layer on the first organic layer.
US09905617B2
Provided is a light-emitting device that can display an image with a wide color gamut or a novel light-emitting element. The light-emitting device includes a plurality of light-emitting elements each of which includes an EL layer between a pair of electrodes. Light obtained from a first light-emitting element through a first color filter has, on chromaticity coordinates (x, y), a chromaticity x of greater than 0.680 and less than or equal to 0.720 and a chromaticity y of greater than or equal to 0.260 and less than or equal to 0.320. Light obtained from a second light-emitting element through a second color filter has, on chromaticity coordinates (x, y), a chromaticity x of greater than or equal to 0.130 and less than or equal to 0.250 and a chromaticity y of greater than 0.710 and less than or equal to 0.810. Light obtained from a third light-emitting element through a third color filter has, on chromaticity coordinates (x, y), a chromaticity x of greater than or equal to 0.120 and less than or equal to 0.170 and a chromaticity y of greater than or equal to 0.020 and less than 0.060.
US09905613B2
An electronic device includes a transistor. The transistor includes a body including a metal oxide; a gate electrode; and a gate insulating layer interposed between the body and the gate electrode, wherein the transistor is turned on or turned off by movement of oxygen vacancies in the body according to voltages applied to the gate electrode and the body.
US09905607B2
The present approach relates to the fabrication of radiation detectors. In certain embodiments, additive manufacture techniques, such as 3D metallic printing techniques are employed to fabricate one or more parts of a detector. In an example of one such printing embodiment, amorphous silicon may be initially disposed onto a substrate and a laser may be employed to melt some or all of the amorphous silicon so as to form crystalline silicon circuitry of a light imager panel. Such printing techniques may also be employed to fabricate other aspects of a radiation detector, such as a scintillator layer.
US09905603B1
A complementary metal oxide semiconductor (CMOS) image sensor includes a pixel array suitable for outputting a pixel signal corresponding to incident light; a row decoder suitable for selecting and controlling pixels in the pixel array by row lines; a tracking voltage generator suitable for generating a tracking voltage; a plurality of successive approximation register (SAR) analog-to-digital converters suitable for analog-to-digital converting a pixel signal by repeatedly performing N times (where N is a natural number representing desired resolution) a process of comparing the pixel signal generated by the pixel array with the tracking voltage generated by the tracking voltage generator and modulating the pixel signal; and a control unit suitable for controlling operations of the row decoder, the tracking voltage generator, and the plurality of SAR analog-to-digital converters.
US09905600B1
The present disclosure provides a method of manufacturing an image sensor device. The method includes: forming an etch stop layer on a first substrate; forming a light-sensing region comprising a light sensing quantum structure being able to detect a wavelength greater than about 1.5 um; forming a semiconductive substrate over the light-sensing region, the semiconductive substrate comprising an active component; forming an isolation structure extended through the light-sensing region; selectively removing the first substrate to expose the etch stop layer; and thinning the etch stop layer thereby exposing the light-sensing region.
US09905595B2
A photoelectric sensor includes a current division control circuit that sequentially sets a reference voltage for each current divider circuit along one of the arrangement directions of photodiodes so that the reference voltage for the current divider circuit is equal to or larger than the voltage value of the reference voltage set for a current divider circuit in the preceding stage, and sets one common control voltage for all of the current divider circuits, the common control voltage falling within a range that includes all of the reference voltages.
US09905589B2
An object is to provide a novel separation method or a novel manufacturing method of a device. In the case where a bond of M-O—W (M is a given element) is divided by application of physical force, a liquid is absorbed into the gap, whereby the bond becomes bonds of M-OH HO—W with a longer bond distance and the detachment can be promoted accordingly. In the detachment, a roller such as a drum roller can be used. Part of the roller surface may have adhesiveness. For example, an adhesive tape or the like may be put on part of the roller surface. By rotating the roller, the layer to be separated is wound and detached from the substrate having an insulating surface.
US09905588B2
A display panel and a method for manufacturing the display panel are discussed. The display panel includes a substrate; an active layer on the substrate; and a passivation layer on the active layer, wherein the active layer includes a channel part, a first electrode connection part and a second electrode connection part on opposite sides of the channel part in a first direction, and a first taper part and a second taper part on opposite sides of the channel part in a second direction crossing the first direction, and wherein a carrier concentration of each of the first taper part and the second taper part is different from those of the channel part, the first electrode connection part and the second electrode connection part.
US09905583B2
The present invention provides an array substrate and a manufacturing method thereof, and a display apparatus. The array substrate comprises a gate layer, a gate insulating layer, an active layer, a source and drain layer, a scanning line and a signal line formed on a substrate, the signal line is provided in a same layer as the gate layer, the scanning line is provided in a same layer as the source and drain layer, the gate insulating layer is provided between the gate layer, the signal line and the active layer. The array substrate further comprises a first through hole and a second through hole penetrating through the gate insulating layer, the signal line is connected to the source and drain layer via the first through hole, and the scanning line is connected to the gate layer via the second through hole.
US09905582B2
A display device in which the current load of wirings are distributed and display variations due to voltage drop are suppressed. An active matrix display device of the invention comprises a first current input terminal, a second current input terminal, and a plurality of current supply lines extending parallel to each other. Each current supply line is connected to a plurality of driving transistors in a line. One end of each current supply line is connected to the first current input terminal via a first wiring intersecting with the current supply lines, and the other end thereof is connected to the second current input terminal via a second wiring intersecting with the current supply lines. Accordingly, a current is supplied to each current supply line from both the first and the second current input terminals. The first and the second current input terminals are provided separately from each other.
US09905571B2
According to one embodiment, a memory device includes first and second fin type stacked structures each includes first to i-th memory strings (i is a natural number except 1) that are stacked in a first direction, the first and second fin type stacked structures which extend in a second direction and which are adjacent in a third direction, a first portion connected to one end in the second direction of the first fin type stacked structure, a width in the third direction of the first portion being greater than a width in the third direction of the first fin type stacked structure, and a second portion connected to one end in the second direction of the second fin type stacked structure, a width in the third direction of the second portion being greater than a width in the third direction of the second fin type stacked structure.
US09905570B2
A semiconductor device includes a peripheral circuit region on a substrate, a polysilicon layer on the peripheral circuit region, a memory cell array region on the polysilicon layer and overlapping the peripheral circuit region, the peripheral circuit region being under the memory cell array region, an upper interconnection layer on the memory cell array region, and a vertical contact through the memory cell array region and the polysilicon layer, the vertical contact connecting the upper interconnection layer to the peripheral circuit region.
US09905564B2
Semiconductor memory cells, array and methods of operating are disclosed. In one instance, a memory cell includes a bi-stable floating body transistor and an access device; wherein the bi-stable floating body transistor and the access device are electrically connected in series.
US09905553B1
An IC includes logic cells, selected from a standard cell library, and fill cells, configured for compatibility with the standard logic cells. The fill cells contain structures configured to obtain in-line data via non-contact electrical measurements (“NCEM”). The IC includes such NCEM-enabled fill cells configured to enable detection and/or measurement of a variety of open-circuit and short-circuit failure modes, including at least one via-open-related failure mode, one AACNT-short-related failure mode, one GATECNT-short-related failure mode, and one metal-short-related failure mode.
US09905541B2
A semiconductor module includes upper arms and lower arms for three phases, heat sinks, a main circuit side bus bar, an output terminal side bus bar, a control terminal, and a resin mold portion. The output terminal side bus bar includes U-phase to W-phase wiring layers disposed opposite to each other via an insulating layer and U to W terminals electrically connecting each of the U-phase to W-phase wiring layer and a load. A stacked layer number of the U-phase to W-phase wiring layer is set to be an even number.
US09905534B2
A multi-chip semiconductor device includes a plate-shaped first semiconductor chip having a first connection portion in which a first semiconductor chip electrode is formed on a first main surface of the first semiconductor chip or on a first side surface vertical to the first main surface, and a plate-shaped second semiconductor chip having a second connection portion in which a second semiconductor chip electrode is formed on a second side surface vertical to a second main surface of the second semiconductor chip. Each of the first and second connection portions includes at least an inclined surface that is inclined with respect to each of the first and second main surfaces. The first connection portion and the second connection portion are connected to each other such that the first main surface of the first semiconductor chip and the second main surface of the second semiconductor chip are vertical to each other.
US09905527B1
A semiconductor die assembly in accordance with an embodiment of the present technology includes first and second semiconductor dies spaced apart from one another. The first semiconductor die has a major surface with non-overlapping first and second regions. The semiconductor die assembly further includes an array of first pillars extending heightwise from the first region of the major surface of the first semiconductor die toward the second semiconductor die. Similarly, the semiconductor die assembly includes an array of second pillars extending heightwise from the second region of the major surface of the first semiconductor die toward the second semiconductor die. The first and second pillars have different lateral densities and different average widths. The latter difference at least partially offsets an effect of the former difference on relative metal deposition rates of an electrochemical plating process used to form the first and second pillars.
US09905525B1
A semiconductor wafer has an edge support ring around a perimeter of the semiconductor wafer and conductive layer formed over a surface of the semiconductor wafer within the edge support ring. A first stencil is disposed over the edge support ring with first openings aligned with the conductive layer. The first stencil includes a horizontal portion over the edge support ring, and a step-down portion extending the first openings to the conductive layer formed over the surface of the semiconductor wafer. The horizontal portion may have a notch with the edge support ring disposed within the notch. A plurality of bumps is dispersed over the first stencil to occupy the first openings over the conductive layer. A second stencil is disposed over the edge support ring with second openings aligned with the conductive layer to deposit a flux material in the second openings over the conductive layer.
US09905523B2
Two microelectronic components (110, 120), e.g. a die and an interposer, are bonded to each other. One of the components' contact pads (110C) include metal, and the other component has silicon (410) which reacts with the metal to form metal silicide (504). Then a hole (510) is made through one of the components to reach the metal silicide and possibly even the unreacted metal (110C) of the other component. The hole is filled with a conductor (130), possibly metal, to provide a conductive via that can be electrically coupled to contact pads (120C.B) attachable to other circuit elements or microelectronic components, e.g. to a printed circuit board.
US09905521B2
Methods for manufacturing semiconductor light-emitting devices and semiconductor light-emitting devices having a high radiating performance and can include a metallic laminate substrate, a semiconductor light-emitting chip and a transparent resin. The metallic laminate substrate can include a cavity so as to be able to accurately mount the light-emitting chip, and also can structures to efficiently radiate heat generated from the light-emitting chip. The transparent resin to encapsulate the semiconductor light-emitting chip in the cavity can include various wavelength converting materials. Additionally, the light-emitting devices can be manufactured in manufacturing processes similar to conventional light-emitting devices. Thus, the disclosed subject matter can provide semiconductor light-emitting devices having a high radiating performance and a high alignment accuracy, which can emit various color lights including a substantially white color tone, and therefore can be used as a light source for lighting units such as a vehicle headlight, general light, a stage lighting, etc.
US09905517B2
Signal transmission characteristics of a semiconductor device are improved. A plurality of wirings of a wiring substrate on which a semiconductor chip is mounted include a first wiring and a second wiring that constitute a differential pair for use in transmitting a differential signal. Moreover, the first wiring and the second wiring respectively have first portions that extend in parallel with each other with a first clearance and second portions that are formed on the same wiring layer as the first portions, and extend in parallel with each other with a second clearance and third portions that are installed between the first portions and the second portions and designed to detour in such directions as to allow the mutual clearance to become greater than the first clearance and the second clearance.
US09905516B2
A metal oxide layer is in contact with an interlayer insulating layer covering a transistor, and has a stacked-layer structure including a first metal oxide layer having an amorphous structure and a second metal oxide layer having a polycrystalline structure. In the first metal oxide layer, there are no crystal grain boundaries, and grid intervals are wide as compared to those in a metal oxide layer in a crystalline state; thus, the first metal oxide layer easily traps moisture between the lattices. In the second metal oxide layer having a polycrystalline structure, crystal parts other than crystal grain boundary portions have dense structures and extremely low moisture permeability. Thus, the structure in which the metal oxide layer including the first metal oxide layer and the second metal oxide layer is in contact with the interlayer insulating layer can effectively prevent moisture permeation into the transistor.
US09905514B2
A semiconductor device structure comprises stacked tiers each comprising a conductive structure and an insulating structure longitudinally adjacent the conductive structure, at least one staircase structure having steps comprising lateral ends of the stacked tiers, and an opening laterally adjacent a first side of the at least one staircase structure and extending through the stacked tiers and continuously across an entire length of the at least one staircase structure. Conductive structures of the stacked tiers laterally extend from the steps of the at least one staircase structure completely across a second side of the at least one staircase structure opposing the first side to form continuous conductive paths laterally extending completely across the stacked tiers. Additional semiconductor device structures, methods of forming semiconductor device structures, and electronic systems are also described.
US09905487B1
Improved processes for manufacturing semiconductor wafers, chips, or dies utilize in-line data obtained from non-contact electrical measurements (“NCEM”) of fill cells that contain structures configured to target/expose a variety of open-circuit, short-circuit, leakage, and/or excessive resistance failure modes. Such processes include evaluating one or more Designs of Experiments (“DOEs”), each comprised of multiple NCEM-enabled fill cells, in at least two variants, targeted to the same failure mode. Such DOEs include multiple means/steps for enabling non-contact (NC) detection of V0 via opens.
US09905486B2
In a method for manufacturing an organic EL display device, an underlying film is formed on each of a plurality of crystal oscillators of a film thickness measuring device. A crystal oscillator to be used for thickness measurement of the thin film is selected from the plurality of crystal oscillators with the underlying film formed thereon. The thin film is formed on the selected crystal oscillator and the substrate of the organic EL display device. A thickness of the thin film formed on the substrate of the organic EL display device is measured on the basis of a thickness of the thin film formed on the selected crystal oscillator, while forming the thin film. The crystal oscillator used for thickness measurement of the thin film is changed for another crystal oscillator on the basis of the thickness of the thin film formed on the selected crystal oscillator.
US09905478B2
Integrated circuits are disclosed in which the strain properties of adjacent pFETs and nFETs are independently adjustable. The pFETs include compressive-strained SiGe on a silicon substrate, while the nFETs include tensile-strained silicon on a strain-relaxed SiGe substrate. Adjacent n-type and p-type FinFETs are separated by electrically insulating regions formed by a damascene process. During formation of the insulating regions, the SiGe substrate supporting the n-type devices is permitted to relax elastically, thereby limiting defect formation in the crystal lattice of the SiGe substrate.
US09905457B2
A method for forming an interconnect structure includes forming a patterned layer over a substrate, the patterned layer having an opening therein. A dielectric material is filled in the opening. The dielectric material has a precursor and a solvent, the solvent having a boiling point temperature greater than a precursor cross-linking temperature. A thermal treatment is performed on the dielectric material to form a dielectric layer.
US09905456B1
In a method for manufacturing a semiconductor device, a first interlayer dielectric layer is formed over a substrate. First recesses are formed in the first interlayer dielectric layer. First metal wirings are formed in the first recesses. A first etch-resistance layer is formed in a surface of the first interlayer dielectric layer between the first metal wirings but not on upper surfaces of the first metal wirings. A first insulating layer is formed on the first etch-resistance layer and the upper surfaces of the first metal wirings.
US09905451B2
As a semiconductor-related-member processing sheet which can stably achieve to enhance the removability of the semiconductor-related-member processing sheet and to suppress the reliability degradation of members comprising chips manufactured from a semiconductor-related member using the semiconductor-related-member processing sheet, there is provided a semiconductor-related-member processing sheet, comprising a base material and a pressure sensitive adhesive layer provided on or above one surface of the base material, wherein the pressure sensitive adhesive layer comprises one or more types of energy ray polymerizable compounds having an energy ray polymerizable functional group, wherein at least one type of the energy ray polymerizable compounds is a polymerizable branched polymer that is a polymer having a branched structure, wherein a contact angle on a measurement target surface is 40° or less when measured using a water droplet under an environment of 25° C. and a relative humidity of 50%.
US09905448B2
When a transport start condition, which includes at least a condition that the controller is receiving a closed state signal, is satisfied, a controller allows a transport operation by an article transport device, and suspends the transport operation by the article transport device when the controller stops continually receiving the closed state signal after the transport operation by the article transport device is started, and further, allows the transport operation by the article transport device to continue while the controller is receiving the closed state signal after the transport operation by the article transport device is started, even if an object to be detected is detected by a monitoring detector.
US09905443B2
Apparatus for improving temperature uniformity across a substrate are provided herein. In some embodiments, a deposition ring for use in a substrate processing system to process a substrate may include an annular body having a first surface, an opposing second surface, and a central opening passing through the first and second surfaces, wherein the second surface is configured to be disposed over a substrate support having a support surface to support a substrate having a given width, and wherein the opening is sized to expose a predominant portion of the support surface; and wherein the first surface includes at least one reflective portion configured to reflect heat energy toward a central axis of the annular body, wherein the at least one reflective portion has a surface area that is about 5 to about 50 percent of a total surface area of the first surface.
US09905442B2
Disclosed is a heat treatment apparatus including: a heating unit that heats an inside of a processing chamber that accommodates a plurality of workpieces; a temperature drop rate model storing unit that stores a temperature drop rate model; and a heat treatment performing unit that sets the temperature drop rate model stored in the temperature drop model storing unit and sets the inside of the processing chamber to the temperature and the time represented in the temperature drop rate model. The temperature drop rate model storing unit stores a plurality of temperature drop rate models, each of which has a different temperature drop rate. The processing chamber is divided into a plurality of zones, and the temperature drop rate mode is set for each of the zones. The heat treatment performing unit sets different temperature drop rate models in a plurality of zones to heat the plurality of workpieces.
US09905440B1
An electronic device and a method of making an electronic device. As non-limiting examples, various aspects of this disclosure provide methods of making an electronic device, and electronic devices made thereby, that comprise forming first and second encapsulating materials, followed by further processing and the removal of the entire second encapsulating material.
US09905432B2
The method for manufacturing comprises an ion implantation process of implanting a p-type impurity into a semiconductor layer mainly made of a group III nitride by ion implantation; a first heating process of heating the semiconductor layer at a first temperature in a first atmospheric gas including ammonia (NH3) after the ion implantation process; and a second heating process of heating the semiconductor layer, after the first heating process, at a second temperature that is lower than the first temperature in a second atmospheric gas including oxygen (O2).
US09905430B1
A method for forming a semiconductor structure includes following steps. A substrate is provided, and a semiconductor layer is formed on the substrate. Next, a SiN-rich pre-oxide layer is formed on the semiconductor layer. After forming the SiN-rich pre-oxide layer, an anneal treatment is performed to partially transfer the SiN-rich pre-oxide layer to form a SiN layer and a SiO layer. And the SiO layer is formed the on the SiN layer. Subsequently, a planarization process is performed to remove a portion of the SiO layer to expose the SiN layer.
US09905429B2
The performances of a semiconductor device are improved. In a method for manufacturing a semiconductor device, a first insulation film, a conductive film, a silicon-containing second insulation film, and a third film formed of silicon are sequentially formed at the surface of a control gate electrode. Then, the third film is etched back to leave the third film at the side surface of the control gate electrode via the first insulation film, the conductive film, and the second insulation film, thereby to form a spacer. Then, the conductive film is etched back to form a memory gate electrode formed of the conductive film between the spacer and the control gate electrode, and between the spacer and the semiconductor substrate.
US09905426B2
A device includes a semiconductor substrate, and a Device Isolation (DI) region extending from a top surface of the semiconductor substrate into the semiconductor substrate. A gate dielectric is disposed over an active region of the semiconductor substrate, wherein the gate dielectric extends over the DI region. A gate electrode is disposed over the gate dielectric, wherein a notch of the gate electrode overlaps a portion of the DI region.
US09905424B1
Methods of forming self-aligned non-mandrel cuts during the fabrication of an interconnect structure. A first dielectric hardmask layer is formed on a metal hardmask layer. A plurality of mandrels are formed on the first dielectric hardmask layer, and a plurality of spacers are formed on the first dielectric hardmask layer. The spacers are located adjacent to the mandrels. A first sacrificial layer is formed that fills spaces between the spacers, and a second dielectric hardmask layer is formed on the first sacrificial layer, the spacers, and the mandrels. A plurality of sections of a second sacrificial layer are formed on the second dielectric hardmask layer and cover the second dielectric hardmask layer over a plurality of areas that are used to form the non-mandrel cuts.
US09905423B2
Methods for depositing nanolaminate protective layers over a core layer to enable deposition of high quality conformal films over the core layer for use in advanced multiple patterning schemes are provided. In certain embodiments, the methods involve depositing a thin silicon oxide or titanium oxide film using plasma-based atomic layer deposition techniques with a low high frequency radio frequency (HFRF) plasma power, followed by depositing a conformal titanium oxide film or spacer with a high HFRF plasma power.
US09905422B2
A 2D material hard mask includes hydrogen, oxygen, and a 2D material layer having a layered crystalline structure. The 2D material layer may be a material layer including one of a carbon structure (for example, a graphene sheet) and a non-carbon structure.
US09905421B2
A multi-gate finFET structure and formation thereof. The multi-gate finFET structure has a first gate structure that includes an inner side and an outer side. Adjacent to the first gate structure is a second gate structure. The inner side of the first gate structure faces, at least in part, the second gate structure. A stress-inducing material fills a fin cut trench that is adjacent to the outer side of the first gate structure. An epitaxial semiconductor layer fills, at least in part, an area between the first gate structure and the second gate structure.
US09905420B2
Methods of forming silicon germanium tin (SixGe1-xSny) films are disclosed. Exemplary methods include growing films including silicon, germanium and tin in an epitaxial chemical vapor deposition reactor. Exemplary methods are suitable for high volume manufacturing. Also disclosed are structures and devices including silicon germanium tin films.
US09905411B2
Method for processing a semiconductor-wafer having a front surface, back surface, and chamfered-portion composed of a chamfered surface on the front surface side, a chamfered surface on the back surface side, and an end face at a peripheral end, including: mirror-polishing of each portion of the chamfered surface on the front surface side, the chamfered surface on the back surface side, the end face, and an outermost peripheral-portion on the front or back surface adjacent to the chamfered surface; wherein the end face mirror-polishing and mirror-polishing of the outermost peripheral-portion on the front or back surface are performed in one step, after step of mirror-polishing the chamfered surface on the front surface side and step of mirror-polishing the chamfered surface on the back surface side; roll-off amount of the outermost peripheral-portion on the front or back surface is adjusted by one step-performed mirror-polishing of the end face and outermost peripheral-portion.
US09905407B2
The disclosure features mass spectrometry systems and methods that include an ion source, an ion trap, a detector subsystem featuring first and second detector elements, and a controller electrically connected to the ion source, the ion trap, and the detector subsystem and configured so that during operation of the system, the controller: applies an electrical signal to the ion source to generate positively and negatively charged particles from sample particles in the system; applies an electrical signal to the ion trap to eject a plurality of particles from the ion trap through a common aperture of the ion trap, and determines information about the sample particles based on first and second electrical signals generated by the ejected particles.
US09905400B2
A gas distribution plate for a plasma reactor has a dielectric front plate and a dielectric back plate bonded together, with gas injection orifices extending through the front plate and gas supply channels in the surface of front plate facing the back plate. The back plate is joined to a heat reflective plate, or the back plate itself is formed of a heat reflective material, such as Beryllium Oxide.
US09905398B1
An apparatus may include a shaft and a base, where the base is affixed to a first end portion of the shaft, the base comprising a first end and a second end. The apparatus may further include a first end effector, where the first end effector is rotatably coupled to the first end of the base, wherein the first end effector is rotatable from a first closed position to a first open position. The apparatus may include a second end effector, where the second end effector is rotatably coupled to the second end of the base, wherein the second end effector is rotatable from a second closed position to a second open position. The apparatus may also include a spring, including a first spring end coupled to the first end effector, and a second spring end, coupled to the second end effector.
US09905395B2
Methods for structuring objects with a particle beam apparatus are disclosed.
US09905389B2
A method of manufacturing an article with integral active electronic component includes using an additive manufacturing process to: a) form a non-electrically conductive substrate; b) form a non-electrically conductive perforated layer having an aperture; c) form electrically conductive anode and cathode elements spaced in the aperture; d) deposit a conductive electrical connection to each of the elements suitable for imparting an electrical potential difference between the elements; and e) form a non-electrically conductive sealing layer atop the perforated layer so as to retain and seal the aperture in the perforated layer.
US09905386B2
Some embodiments of the present disclosure relate to a relay capable of preventing a chattering phenomenon, and capable of solving an unbalanced contact state occurring when contacts come in contact with each other.The relay may include: a stationary contact having a first stationary contact and a second stationary contact; a movable contact moveable to a first position to contact the first stationary contact, and a second position to be separated from the first stationary contact; a conductive connector configured to always electrically connect the movable contact with the second stationary contact; and a driving mechanism configured to provide a driving force to the movable contact such that the movable contact is moveable to the first position or the second position.
US09905381B1
A luminous keyboard includes plural keys, a membrane switch circuit board and a light-emitting element. The membrane switch circuit board includes an upper wiring plate, a lower wiring plate, a conductor line pattern, a separation layer and an etched line pattern. The lower wiring plate includes a wiring plate opening. The conductor line pattern is arranged between the upper wiring plate and the lower wiring plate. The etched line pattern is arranged between the separation layer and the lower wiring plate. The etched line pattern is exposed through the wiring plate opening. The light-emitting element is electrically connected with the etched line pattern through the wiring plate opening in order to acquire electric power. Consequently, it is not necessary to install the illumination circuit board to provide the electric power to the light-emitting element.
US09905380B2
A magnetic key includes a keycap, a base plate, a membrane circuit member, a frame, a first magnetic element, a second magnetic element, and a third magnetic element. The frame includes a first concave structure, a second concave structure and an opening. An accommodation space is defined by the frame and a first protrusion structure and a second protrusion structure of the base plate. The first magnetic element is received within the first concave structure. The second magnetic element is received within the second concave structure. The third magnetic element is disposed under the keycap and accommodated within the accommodation space. In response to a first magnetic force between the first and third magnetic elements and a second magnetic force between the second and third magnetic elements, the keycap is protruded out of the opening.
US09905379B2
A pin assembly is for a charging ram assembly of an electrical switching apparatus. The charging ram assembly has a biasing element, a ram member structured to bias the biasing element, and a plate member. The pin assembly includes a pin member structured to extend through the biasing element and the plate member, the pin member having an end portion; a first collar member and a second collar member coupled to the end portion; and a securing apparatus including a retaining member coupled to the first collar member and the second collar member in order to prevent the pin member from moving with respect to the first collar member and the second collar member.
US09905373B2
Provided is a supercapacitor having an anode, a cathode, a porous separator/electrolyte, wherein at least one of electrodes contains an integral 3D graphene-carbon hybrid foam composed of multiple pores and pore walls, wherein the pore walls contain single-layer or few-layer graphene sheets chemically bonded by a carbon material having a carbon material-to-graphene weight ratio from 1/100 to 1/2, wherein the few-layer graphene sheets have 2-10 layers of stacked graphene planes having an inter-plane spacing d002 from 0.3354 nm to 0.40 nm and the graphene sheets contain a pristine graphene material having essentially zero % of non-carbon elements, or a non-pristine graphene material having 0.01% to 25% by weight of non-carbon elements wherein said non-pristine graphene is selected from graphene oxide, reduced graphene oxide, graphene fluoride, graphene chloride, graphene bromide, graphene iodide, hydrogenated graphene, nitrogenated graphene, doped graphene, chemically functionalized graphene, or a combination thereof.
US09905365B2
Composite electronic including coil, capacitor and intermediate parts, wherein coil part includes coil-conductor and magnetic-layer, capacitor part includes internal electrodes and dielectric-layer, which contains SrO—TiO2 or ZnO—TiO2 based oxide, intermediate part between coil and capacitor parts, intermediate part includes intermediate material layer, which contains ZnO, TiO2 and boron, ZnO contained in intermediate material layer 50-85 parts by mole and TiO2 contained the intermediate material layer 15-50 parts by mole when total content of ZnO and TiO2 in intermediate material layer is 100 parts by mole, content boron in intermediate material layer is 0.1-5.0 parts by weight of B2O3 when total of ZnO and TiO2 in intermediate material layer set to 100 parts by weight, part of ZnO and TiO2 intermediate material layer constitute ZnO—TiO2 compound, which in intermediate material layer is 50 wt % or more when total weight of ZnO and TiO2 in intermediate material layer is set to 100 wt %.
US09905360B2
Transmitter coils (1, 1a . . . 1f) for contactless energy transmission systems (8) include a winding (2) with a number of turns of at least one conductor. Such winding (2) occupies ring area (3) between an outer larger unequilateral rectangle (4) and an inner smaller unequilateral rectangle (5). This ring area (3) is wider on the longer side (x1) of the outer rectangle (4) than it is on shorter side (x2). Transmitters (6) with such transmitter coils (1, 1a . . . 1f) may include a number of conductors and a number of power supplies (7, 7a, 7b) that may be switched and/or controlled independently of each other. Energy transmission systems (8) with such transmitter coils (1a . . . 1f)/such transmitters (6) as well as receiver coils (10) installed in motor vehicles (9), are also disclosed.
US09905356B2
The present application relates to magnetic components employed in switching power supplies. The application provides a gapped magnetic core (20) construction in which the gap is distributed by placing gaps between the legs (23) of the core and the top and bottom sections (21, 22). The application also provides a bobbin construction having a reduced footprint for inductor and transformers.
US09905354B2
An electrical device includes a core structure having a first core section, a second core section, and a third core section. The electrical device further includes a first coil electrically coupled to the first core section and the second core section to form a choke and a primary winding of a transformer. The choke is configured to reduce common mode noise for an electrical signal received by the electrical device, and the primary winding of the transformer is configured to induce a magnetic field on the third core section. The electrical device also includes a second coil electrically coupled to the third core section, which forms a secondary winding of the transformer and receives electromagnetic energy from the magnetic field induced by the primary winding of the transformer.
US09905346B2
A magnet chuck includes, for example, four permanent magnets of a first permanent magnet through a fourth permanent magnet, serving as an attracting and retaining member for attracting and retaining a workpiece. In the first permanent magnet and the third permanent magnet, the magnetic polarity of a workpiece magnetic attracting surface facing the workpiece is of an N-polarity. On the other hand, in the second permanent magnet and the fourth permanent magnet, the magnetic polarity of a workpiece magnetic attracting surface is of an S-polarity. More specifically, in this case, combinations of the N-pole and the S-pole on the workpiece magnet attracting surface are formed in two pairs, and the N-pole and the S-pole, which are of different polarities, are adjacent to one another.
US09905344B2
The invention relates to a method for producing a grain-orientated electric steel which is coated with a phosphate layer and in which there is applied to the electric steel a phosphate solution which contains a colloid component and at least one colloid stabilizer (A) and/or at least one pickling inhibitor (B), the phosphate solution containing at least one compound which has chromium in the oxidation stage III (chromium (III) compound).Grain-orientated electric steel produced with the method according to the invention is distinguished by excellent optical properties and a high tensile stress.
US09905336B2
A steel wire as an armoring wire for a power cable for transmitting electrical power, where the steel wire has a steel core and a non-magnetic coating. The coating has a thickness in the range of 0.2 mm to 3.0 mm and selected from metals or alloys having a melting point below 700° C.
US09905334B2
A method of using a down-hole cable apparatus includes placing the down-hole cable apparatus in an operational position. The down-hole cable apparatus includes a metal tube, at least one conductor positioned within the metal tube, an armor shell positioned exterior of the metal tube and the at least one conductor, and a polymer material abutting the metal tube. The polymer material has at least one additive andremains substantially inert during a recrystallization process. The down-hole cable apparatus is subjected to an operational catalyst, during which time the polymer material having the at least one additive remains substantially inert. The inertia prevents linear separation of at least one of the at least one conductor and the armor shell from the metal.
US09905333B2
A transparent conductive film includes a metal oxide, a metal, and an epoxy, wherein a refractive index of the metal may be lower than that of the epoxy.
US09905332B2
The present invention relates to a multilayer conductive transparent electrode comprising: a substrate layer (1), a conductive layer (2) comprising at least one optionally substituted polythiophene conductive polymer, and the conductive layer (2) being in direct contact with the substrate layer (1) and the conductive layer (2) also comprising at least one hydrophobic adhesive polymer which has chemical compatibility with the optionally substituted polythiophene conductive polymer, such that said multilayer conductive transparent electrode has a coefficient of haze of less than or equal to 3%. The invention also relates to the process for manufacturing such a multilayer conductive transparent electrode.
US09905329B2
A insulated electric wire having an insulating layer containing a fluororesin, the insulated electric wire having a high flexibility with the heat resistance of the fluororesin maintained. The insulated electric wire is obtained by covering a conductor with an insulating layer containing a copolymer of a monomer expressed by a Formula (1) and a monomer expressed by a Formula (2). It is preferable that a copolymerization ratio of the monomer expressed by Formula (2) in the copolymer is at least 10 mass %. Note that Rf represents a perfluoroalkyl group including one or more ether bonds in its structure.
US09905324B2
A method of fabricating a metal nanowire dispersion solution includes heating a first solution including a metal compound, a catalyst, an organic protection agent and menstruum, thereby forming metal nanowires in the first solution, performing a first cleaning process providing a first solvent into the metal nanowire, thereby separating the organic protection agent surrounding the metal nanowires from the metal nanowires, separating the metal nanowires from the first solution by vacuum-filtering, and dispersing the separated metal nanowires in a dispersion solvent.
US09905316B2
A memory includes a plurality of columns and a redundant column. The memory includes a plurality of multiplexers corresponding to the plurality of columns. Depending upon the location of a defect, the multiplexers are configured to select for their corresponding column or an immediately-subsequent column to their corresponding column.
US09905315B1
An error-resilient memory device includes sets of memory blocks and redundant memory blocks for storing a set of data bits. A memory block includes a set of memory cells, each memory cell is adjacent to at least two other memory cells, and a memory block is formed by a matrix of the set of memory cells. In a row-folded implementation, a word line is connected to each memory cell, and a set of bit lines is connected to the corresponding set of memory cells. In a column-folded implementation, a bit line is connected to each memory cell, and a set of word lines is connected to the corresponding set of memory cells. A redundant memory block is used to store the set of data bits when the memory block includes a fault.
US09905314B2
A storage module and method for datapath bypass are disclosed. In one embodiment, a storage module begins to perform a read operation that reads a set of code words from the memory and attempts to perform an error detection and correction operation on one of the read code words. In response to determining that the code word has an uncorrectable error, the storage module reads the other code words in the set but bypasses the error detection and correction operation on those other code words. The code word that had the uncorrectable error and the other code words are re-read, wherein at least the code word with the uncorrectable error is re-read with a different read condition. The storage module then attempts to perform the error detection and correction operation on the re-read code words. Other embodiments are provided.
US09905311B2
A shift register circuit has a plurality of unit circuits that are cascade-connected to one another and that output received pulse signals as output signals in accordance with a clock signal, the shift register circuit sequentially outputting the output signals from the plurality of respective unit circuits. The output circuits each include a double-gate transistor having first gate electrode that controls conductivity between the drain electrode and the source electrode, and a second gate electrode formed through an insulating layer and disposed to face the first gate electrode across a semiconductor layer between the drain electrode and the source electrode. The shift register circuit applies a prescribed voltage to the second gate electrode in accordance with a voltage applied to the first gate electrode.
US09905308B2
An e-fuse device includes a transferring circuit, a detecting-and-outputting circuit, and a fusing circuit. The transferring circuit transfers an input signal to a data node. The detecting-and-outputting circuit generates an output signal according to the logic level of the data node. The fusing circuit includes an e-fuse cell, a first transistor, a second transistor, and a switch element. The e-fuse cell is coupled between a high-voltage node supplied with the high voltage or a ground and a first node. The first transistor is coupled between the first node and a second node and is controlled by the output signal. The second transistor is coupled between the second node and the ground and is controlled by a fusing signal. The switch element is coupled between the first node and the data node and is controlled by a switch signal.
US09905302B2
A plurality of flash memory wordlines of a flash storage device are divided into a plurality of wordline groups based on read error counts associated with the wordlines and a plurality of read level offsets. Each wordline group is associated with one of a plurality of read level offsets determined while dividing the plurality of flash memory wordlines, and associations between the plurality of read level offsets and the plurality of wordline groups are stored for use in connection with read levels to read the flash memory wordlines of the respective wordline groups.
US09905300B2
A memory device comprising a memory array comprising a plurality of memory cells, two or more fuses coupled to the memory array, wherein each of the two or more fuses contains trim data for the memory array and a mode register for selecting one of the two or more fuses to be enabled.
US09905299B2
A nonvolatile memory device includes a memory cell array including a plurality of memory cells, a row decoder circuit connected to the memory cell array through a plurality of word lines; and a page buffer circuit connected to the memory cell array through bit lines. The row decoder circuit applies read voltages to a selected word line during a read operation. During a read operation performed with respect to each of N logical pages (N being a positive integer) of memory cells connected to the selected word line, the row decoder circuit applies a read voltage from among adjacent N read voltages to the selected word line without applying read voltages other than the adjacent N read voltages to the selected word line. The adjacent N read voltages include a second highest read voltage among the read voltages.
US09905297B2
A method of controlling a memory device includes receiving an address value that indicates a range of addresses within the memory device, each address within the range of addresses corresponding to storage locations within each of two distinct storage dice within the memory device. The address value is stored within a programmable register within the memory device.
US09905295B2
A configurable impeder is provided. The configurable impeder comprises of multiple CESs. Each of the CESs is capable of being configured into one of a plurality of impedance states. Further, a programing circuit is provided. The programing circuit provides a plurality of programing signals in dependence of an input signal. Each programing signal configures an impedance state of a respective CES from the plurality of CESs.
US09905294B1
Method and apparatus for managing data in a data storage device. In some embodiments, a non-volatile cache memory stores a sequence of pages from a host device. A non-volatile main memory has a plurality of n-level cells arranged on m separate integrated circuit dies each simultaneously accessible during programming and read operations using an associated transfer circuit, where m and n are plural numbers. A control circuit writes first and second pages from the sequence of pages to a selected set of the n-level cells coupled to a common word line on a selected integrated circuit die. The second page is separated from the first page in the sequence of pages by a logical offset comprising a plurality of intervening pages in the sequence of pages. The logical offset is selected responsive to the m number of integrated circuit dies and a delay time associated with the transfer circuits.
US09905281B2
Provided herein are a data input/output circuit and a semiconductor memory system having the same. The data input/output circuit may be coupled to an input/output line. The data input/output circuit may include a data input unit and a data output unit. The data input unit may deliver input data, inputted through the input/output line, to a page buffer during a data input period. The data output unit may deliver output data, outputted from the page buffer, to the input/output line during a data output period. The data input unit may include a signal reception unit coupled to the input/output line and configured to receive the input data from the input/output line; and a data delivery unit configured to deliver the input data inputted to the signal reception unit to the page buffer during the data input period.
US09905279B2
Systems, circuits, and methods are disclosed for charge sharing. In one such example system, a first line is configured to be driven to a first voltage representative of data to be placed on the first line and then precharged to a first precharge voltage. A second line is configured to be driven to a second voltage representative of data to be placed on the second line and then precharged to a second precharge voltage. A charge sharing device is coupled between the first line and the second line. The charge sharing device is configured to selectively allow charge from the first line to flow to the second line after the first and second lines are driven to the respective first and second voltages representative of data to be placed on the respective lines.
US09905277B2
A memory system comprises a memory controller and a memory device having one or more memory ranks and multiple memory electrically connected to the one or more memory ranks. The memory controller includes at least one analysis module and at least one switching determination module. The analysis module analyzes states of multiple memory control commands corresponding to a particular memory rank to generate a control parameter. The switching determination module determines whether at least one switching command is sent according to the control parameter, a current operation mode of the particular memory rank, and an operation state of the particular memory rank. When the memory device receives a first switching command of the at least one command, the particular rank and at least one part of the memory internal circuits are switched from the normal voltage operation mode to the low voltage operation mode.
US09905276B2
Examples of the present disclosure provide apparatuses and methods related to performing a loop structure for operations performed in memory. An example apparatus might include an array of memory cells. An example apparatus might also include a plurality of sensing components coupled to the array and comprising a first group of sensing components coupled to a controller via a first number of control lines and a second group of sensing components coupled to the controller via a second number of control lines wherein the controller is configured to activate at least one of the first number of control lines and the second number of control lines.
US09905274B1
An information handling system includes a hard disk drive, a handle in physical communication with the hard disk drive, and a first flexible heat sink component. The first flexible heat sink component includes a first surface contact portion, a first main portion, and a first plurality of fins. The first surface contact portion is in physical communication with the hard disk drive. The first main portion is in physical communication with the handle. The first fins extend away from the first main portion. The first fins flex downward toward the hard disk drive when the first fins are placed in physical communication with a cover of a storage sled, and the first fins fit within a space between the cover and the hard disk.
US09905272B2
Provided is a video capture system including: an information processing terminal; and an image pickup apparatus configured to be capable of communicating with the information processing terminal and capture a video in response to an instruction from the information processing terminal. The information processing terminal includes: a stop instruction unit configured to instruct the image pickup apparatus to stop capturing the video; a display still image acquisition unit configured to acquire a plurality of display still images in response to a stop instruction from the stop instruction unit, in which the plurality of display still images are extracted from the video captured by the image pickup apparatus; and a display unit configured to display a list of the plurality of display still images acquired by the display still image acquisition unit.
US09905260B2
Method for manufacturing an optical information recording medium includes: preparing a substrate material where a first guide groove has been formed on a first side of the substrate material; forming a second guide groove by applying an energy-curable resin material between a second side of the substrate material opposite to the first side and a stamper and subsequently curing the energy-curable resin material to form a substrate; providing at least one recording layer and a cover layer on a first side of the substrate where the first guide groove has been formed, while holding the substrate with the stamper left unremoved from the substrate to protect the second guide groove; and exposing the second guide groove by removing the stamper and providing at least one recording layer and a cover layer on a second side of the substrate where the second guide groove has been formed.
US09905255B1
A slider of a magnetic recording head comprises a ground pad and a plurality of electrical bond pads coupled to bias sources. A component of the slider is coupled between first and second bond pads. A first heater of the slider is coupled between the first bond pad and the ground pad. A second heater of the slider is coupled between the second bond pad and the ground pad. A first diode is disposed on the slider and coupled in series with the first heater. A second diode is disposed on the slider and coupled in series with the second heater.
US09905254B1
A slider of a magnetic recording head includes a ground pad and a plurality of electrical bond pads coupled to bias sources. The plurality of electrical bond pads includes a plurality of shared bond pads. A first component of the slider is coupled to a first bond pad and one of the shared bond pads. The slider includes one or more additional components each coupled to a respective pair of the shared bond pads. A first ground-coupled component of the slider is coupled between one of the shared bond pads and the ground pad. A first diode is disposed on the slider and coupled in series with the first ground-coupled component. A first Zener diode can be disposed on the slider and coupled between the first diode and the ground pad for enhanced ground noise immunity of the powered devices.
US09905250B2
A voice detection method which makes it possible to detect the presence of voice signals in an noisy acoustic signal x(t) from a microphone, including the following consecutive steps: calculating a detection function FD(τ) based on calculating a difference function D(τ) varying in accordance with the shift τ on an integration window with length W starting at the time t0, with: a step of adapting the threshold in said current interval, in accordance with values calculated from the acoustic signal x(t) established in said current interval; searching for the minimum of the detection function FD(τ) and comparing the minimum with a threshold, for (τ) varying in a predetermined time interval referred to as current interval so as to detect the possible presence of a fundamental frequency F0 that is characteristic of a voice signal in said current interval.
US09905245B2
According to one embodiment, an electronic device includes a receiver and a hardware processor. The receiver is configured to receive an audio signal. The hardware processor is configured to enable a first function comprising separating the audio signal into a voice signal and a background sound signal and emphasizing or suppressing either the voice signal or the background sound signal and enable a second function comprising giving an acoustic effect to the audio signal. The hardware processor is further configured to receive an user operation to turn on either the first function or the second function and restrict the second function, if the first function is turned on.
US09905239B2
Provided are methods of decoding speech from the brain of a subject. The methods include detecting speech production signals from electrodes operably coupled to the speech motor cortex of a subject while the subject produces or imagines producing a speech sound. The methods further include deriving a speech production signal pattern from the detected speech production signals, and correlating the speech production signal pattern with a reference speech production signal pattern to decode speech from the brain of the subject. Speech communication systems and devices for practicing the subject methods are also provided.
US09905225B2
A voice recognition processing apparatus includes a voice acquirer, a first voice recognizer, a second voice recognizer, a sorter, a storage device, and a processor. The voice acquirer acquires a voice uttered by a user and outputs voice information. The first voice recognizer converts the voice information into first information. The second voice recognizer converts the voice information into second information. The sorter sorts third information and fourth information from the second information. The storage device stores the first information, the third information, and the fourth information. The processor performs processing based on the first information, the third information, and the fourth information. If there are one or two pieces of missing information in the first information, the third information, and the fourth information, the processor complements the missing information by using information stored in the storage device and performs processing.
US09905222B2
Systems for improving or generating a spoken language understanding system using a multitask learning method for intent or call-type classification. The multitask learning method aims at training tasks in parallel while using a shared representation. A computing device automatically re-uses the existing labeled data from various applications, which are similar but may have different call-types, intents or intent distributions to improve the performance. An automated intent mapping algorithm operates across applications. In one aspect, active learning is employed to selectively sample the data to be re-used.
US09905220B2
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for multilingual prosody generation. In some implementations, data indicating a set of linguistic features corresponding to a text is obtained. Data indicating the linguistic features and data indicating the language of the text are provided as input to a neural network that has been trained to provide output indicating prosody information for multiple languages. The neural network can be a neural network having been trained using speech in multiple languages. Output indicating prosody information for the linguistic features is received from the neural network. Audio data representing the text is generated using the output of the neural network.
US09905217B2
A noise-canceling device includes a processing circuit configured to detect vibrational noise sound waves near a listener's ear using a vibration sensor, generate a vibrational noise-canceling signal, and control operation of a speaker to provide a desired sound signal and the vibrational noise-canceling signal to at least partially cancel the vibrational noise sound waves.
US09905216B2
A noise cancelling headset includes first and second earpieces, each earpiece including a respective feedback microphone, a respective feed-forward microphone, and a respective output driver. A first feedback filter receives an input from at least the first feedback microphone and produces a first filtered feedback signal. A first feed-forward filter receives an input from at least the first feed-forward microphone and produces a first filtered feed-forward signal. A first summer combines the first filtered feedback signal and the first filtered feed-forward signal and produces a first output signal. An output interface provides the first output signal as an output from the headset.
US09905213B2
A musical instrument, having; at least one solar panel which corresponds to the body of the musical instrument, where the at least one solar panel is outwardly facing the sun; a battery to store solar energy; a power control board; an amplifier; an interactive display for monitoring a plurality of levels corresponding to a variety of components of the musical instrument; a strap connected to the musical instrument; the strap has at least one solar panel; at least one speaker for emitting sound; a bridge; a port; a stand, where the stand has at least one solar panel; and a carrying case; where the carrying case has at least one solar panel.
US09905210B2
An apparatus for facilitating control of midi-sequence generation is disclosed. The apparatus may include a midi-sequence module configured for generating midi-sequences. Further, the apparatus may also include a foot-operated switch configured to operate the midi-sequence module. Additionally, the apparatus may include a docking station configured to connect the apparatus to a mobile device. Accordingly, the midi-sequence module may be controlled through the mobile device. Further, in some embodiments the midi-sequence module may be included in the mobile device instead of the apparatus. Accordingly, the apparatus may include a switch port configured to electrically couple the foot-operated switch with the mobile device in order to control the midi-sequence module included in the mobile device.
US09905207B2
The invention relates to a device for producing musical data, which includes a glove equipped with touch sensors and a terminal device. In the glove there are touch sensors in at least two rows the format of a selected musical scale, which touch sensors are arranged to be pushed with a finger of the other hand, connection means for connecting the touch sensors to a selected terminal device in order to produce musical data according to the format. The touch sensors are arranged in such a way that in an order from the index finger to the little finger, the tips of the fingers correspond to the consecutive notes of a first octave C, D, E, F, so that the semitone E-F is located between the ring finger and the little finger.
US09905199B2
A processor for use in an electronic device is provided. The electronic device is capable of displaying and the processor has capability of switching a refresh rate for refreshing a display panel of the display device. The processor comprises: a refresh rate selection controller and a display controller. The refresh rate selection controller is configured to dynamically select one from a plurality refresh rates. The display controller is configured to control a driving device to refresh the display panel with the selected refresh rate and determine whether to adjust a data transmission rate over an interface between the processor and the driving device according to the selected refresh rate.
US09905197B2
A vehicle display device includes an image processing electronic control unit that converts a portion of each image of plural images into respective strip images in which plural pixels are arrayed along a direction of vehicle travel; an optical fiber woven fabric in which plural optical fibers are woven, with end portions of the plural optical fibers arrayed along the direction of vehicle travel; and plural light sources arrayed such that light emitted from each of the plural light sources is incident at an end portion of at least one of the optical fibers; wherein the image processing electronic control unit controls the plural light sources for each of the strip images so as to emit light according to a pixel value of each pixel in the strip images.
US09905195B2
The image processing method includes following steps. Determine an image display space of an CIELCH color space corresponding to an original color space. Convert a plurality of first pixel data of the original color space to a plurality of second pixel data of the CIELCH color space. Perform an image adjustment process to the second pixel data of the CIELCH color space to obtain a plurality of third pixel data of the CIELCH color space, wherein the third pixel data is restricted within the image display space. Convert the third pixel data of the CIELCH color space to a plurality of fourth pixel data of the original color space to set an image displayed by a display apparatus.
US09905190B2
A driving circuit applied to a LCD apparatus is disclosed. The driving circuit includes a channel data line, a reference voltage generation unit, an external storage capacitor, a comparing unit, a switching unit, and an operation unit. The channel data line transmits a data. The reference voltage generation unit generates a reference voltage. A terminal of the external storage capacitor is coupled to ground. The comparing unit compares the reference voltage and a capacitor voltage and outputs a compared result. The switching unit is coupled to another terminal of the external storage capacitor and the channel data line. The operation unit is coupled to the comparing unit, the channel data line, and the switching unit to receive the compared result and a MSB of the data to operate, and to selectively switch on the switching unit.
US09905188B2
Provided is a gate driving circuit including driving stages which provide a plurality of pixels of a display panel with gate signals, wherein any one of the driving stages includes a thin film transistor including a first control electrode, an activation part overlapping the first control electrode, an input electrode overlapping the activation part, an output electrode overlapping the activation part, and a second electrode disposed on the first control electrode and the activation part; and a capacitor including a first electrode disposed on the layer on which the first control electrode is disposed, a second electrode, which overlaps at least a portion of the first electrode and is disposed on the layer on which the input electrode is disposed, and a third electrode which overlaps the first and second electrodes and is electrically connected to the first electrode.
US09905181B2
The present disclosure discloses a scan driving circuit on an array substrate which includes a multi-stage cascade circuit, each stage of the cascade circuit inputs a clock signal corresponding to a current stage, and outputs an current stage scanning signal and a current stage cascade signal, different stages of the cascade circuit are connected with each other via a cascade signal; a plurality of cancellation circuits, each cancellation circuit is corresponding to one stage of the cascade circuit, the cancellation circuit corresponding to the current stage cascade circuit inputs a clock signal corresponding to an adjacent stage cascade circuit, and outputs a cancellation signal to offset a part of the current stage scanning signal outputted from the current stage cascade circuit, so that the scanning signals outputted from two adjacent stages of the cascade circuit are not overlapped. An array substrate is also disclosed in the present disclosure.
US09905180B2
A gate driving circuit for providing a scan signal to a LCD panel is disclosed. The gate driving circuit includes at least one positive level shifter, at least one negative level shifter, a pair of P-type transistor and an N-type transistor. The positive level shifter is utilized for shifting up agate control signal to generate a positive control signal. The negative level shifter is utilized for shifting down the gate control signal to generate a negative control signal. The pair of transistors is utilized for outputting a positive power voltage or a negative power voltage as the scan signal according to the positive control signal and the negative control signal. The positive power voltage minus the positive control signal is less than six volts. The negative control signal minus the negative power voltage is less than six volts.
US09905179B2
A shift register, a driving method, a gate driving circuit and a display device. The shift register comprises an input terminal (STV_IN), a reset terminal (STV_RES), a trigger terminal (CLK_IN), an output terminal (STV_OUT), an input module connected to the input terminal (STV_IN) and the reset terminal (STV_RES) and configured to deliver a signal received from the input terminal (STV_IN) or a signal received from the reset terminal (STV_RES) to an output module under the control of an external signal (U2D, D2U); a trigger module connected to the input terminal (STV_IN), the reset terminal (STV_RES) and the trigger terminal (CLK_IN) and configured to deliver a signal received from the trigger terminal (CLK_IN) to the output module when a signal is received from the input terminal (STV_IN) or from the reset terminal (STV_RES); and the output module connected to the input module, the trigger module and the output terminal (STV_OUT) and configured to flip a signal outputted from the output terminal (STV_OUT) between an output state and a reset state according to a signal from the input module under the trigger of the signal from the trigger module. The trigger signal is filtered out when no signal is inputted by setting the trigger module or the trigger unit, such that remaining circuits keep in a steady state holding state, which is benefit for reducing of power consumption.
US09905178B2
A row common electrode drive circuit and a column common electrode drive circuit control an effective value of a voltage to be applied to common electrodes along rows in which pixels are arrayed and an effective value of a voltage to be applied to the common electrodes along columns in which the pixels are arrayed.
US09905160B2
An organic light emitting diode display is disclosed. The organic light emitting diode display includes a display panel including a plurality of pixels, a plurality of sensing units configured to integrate current information of the pixels through a plurality of sensing channels connected to sensing lines of the display panel and output a first sensing value, a reference sensing unit configured to integrate previously set reference current information and output a reference sensing value, a calculation block configured to calculate the first sensing value and the reference sensing value, remove a common noise component from the first sensing value, and output a second sensing value, and an analog-to-digital converter configured to convert the second sensing value into a digital sensing value.
US09905156B2
A high-precision display device is capable of suppressing a leak current and operating at a low power consumption. The display device comprises a source power supply for providing a pixel electric potential to each pixel placed on a substrate through a first thin-film transistor; a gate power supply for controlling conductive and nonconductive states of the first thin-film transistor; and a second thin-film transistor disposed between the first thin-film transistor and the gate power supply, the second thin-film transistor being controllable independently of the first thin-film transistor.
US09905147B2
A display device is provided. The display device comprises a display comprising a plurality of pixels arranged in a display plane. The display device is configured to determine a virtual plane at which a long-sighted user of the display device who is looking at the display sees sharp. Further, the display device is configured to determine a first contiguous group of pixels of the display which are located within a first optical path from a first virtual pixel of the virtual plane to an eye of the long-sighted user, and to determine a second contiguous group of pixels of the display which are located within a second optical path from a second virtual pixel of the virtual plane to the eye of the long-sighted user.
US09905140B2
A fuel pump sign (50) comprising a fuel type indicator panel (52) for indicating the type of fuel supplied by a pump, and a pump availability indicator panel (54) for indicating whether the pump is available for use. Also disclosed is a method of use of a display panel having a plurality of display areas as a fuel pump sign for indicating whether or not a fuel pump is available for use. The method of use comprises displaying an indication of a fuel type supplied by the pump on a first display area of the display panel, and displaying an indication of whether or not the pump is available for use on a second display area of the display panel.
US09905124B2
There is provided a wireless communication system for a marine propulsor, comprising: a transmitter; a receiver; and a waveguide, arranged to convey an electromagnetic data signal between the transmitter and the receiver; wherein the waveguide comprises an electrically non-conductive solid or liquid medium for propagating the electromagnetic data signal.
US09905119B2
A fire alarm control and monitoring system is disclosed. In some embodiments, the fire alarm and control system may include a plurality of fire alarm control panels connected together through a communication network. In some embodiments, the fire alarm control panels may communicate using a token passing protocol yet be arranged in a tree network topology.
US09905113B2
A method and system that allows healthcare providers, hospitals, skilled nursing facilities and other persons to monitor disabled, elderly or other high-risk individuals to prevent or reduce falls and/or mitigate the impact of a fall by delivering automated notification of “at risk” behavior and falls by such an individual being monitored where assistance is required.
US09905105B1
A wireless sensing device and a method for operating a wireless sensing device are described herein. The wireless sensing device includes a battery power supply and a processor that transmits detected physiological parameters from the sensing device to a monitoring device. when the battery level within the sensing device falls below a minimum threshold, the processor of the sensing device reserves a portion of the battery charge to power an indicator to increase the noticeability of the sensing device. The sensing device can also include an RFID tag that is written to by the processor when the state of charge on the battery falls below the minimum threshold. The RFID tag allows RFID detectors to sense the presence of the sensing device without requiring additional battery power.
US09905102B2
An open scattered light smoke detector for detecting smoke may include a light transmitter for emitting light, a light receiver spectrally matched to the light transmitter, and a control unit configured to repeatedly actuate the light transmitter, with a pulsed signal sequence, to emit corresponding light pulses, evaluate temporally a signal sequence received by the light receiver, and output a fire alarm if a received signal strength exceeds a minimum value for the smoke concentration. The control unit may be configured to switch the detector from a normal operating mode into a service mode if a phase angle between an emitted and received signal sequence, as determined on the detector side, increases by a minimum angular value which, in terms of the travel time, corresponds technically to an increase in the optical path length from the light transmitter to the light receiver of more than some predefined distance.
US09905099B2
A proximity sensor comprises a magnet which generates a magnetic field and a magnetic field sensor. The magnetic field sensor includes a radio and an antenna which can transmit an output signal on a plurality of output frequencies. A microprocessor is programmed with a plurality of data protocols. Each of the output frequencies operates on at least one of the data protocols. There is a dip switch which is actuated to provide a code to the microprocessor. A data protocol is implemented by the microprocessor based on the code. There is a MEMS oscillator programmed to a discrete frequency based on the data protocol implemented by the microprocessor. The MEMS oscillator provides the discrete frequency to the radio. The radio is provided with single phase-locked loop which generates the output signal based on the discrete frequency. The single phase-locked loop may be a ×32 multiplier.
US09905096B2
In a monitoring apparatus, a monitoring area is scanned by an area sensor device to detect objects. Moving objects are identified among the detected objects, and, among the identified moving objects, a moving object which is the closest to a priority monitoring object which is preset in the monitoring area is set as a tracking target. The object which is set to be tracked is automatically tracked by a camera device. As a result, even if there are present a plurality of moving objects in the monitoring area, tracking targets are switched from one to another, so that it is possible to set a moving object desired by an observer.
US09905094B1
A stabilizer and status alert device for a refuse can includes a base configured to support the refuse can in an upright position, a retaining feature configured to releasably couple the refuse can to the base, and an alert system configured to deliver a status notification to a user device in response to the refuse can be uncoupled from the base.
US09905088B2
A wearable device providing responsive visual feedback is provided. The wearable device includes a wearable device housing, at least one lighting element associated with the housing for providing, visual feedback, a processor disposed within the wearable device housing, the processor operatively connected to the at least one lighting element, a plurality of sensors operatively connected to the processor, wherein the processor is programmed to determine a mode of operation using sensed data from the plurality of sensor, and wherein the processor is programmed to control the at least one lighting element to convey visual feedback based on the mode of operation determined by the processor.
US09905085B1
Embodiments of the method for authenticating may include causing an automated teller machine to replace a card verification value with an updated card verification value during a first transaction at the automated teller machine when a re-write condition is present, such as a request from an account holder, a determination that the security of the card was compromised during a prior transaction, a predetermined time interval has lapsed, a predetermined number of transactions have occurred since a previous time the card verification value was rewritten, and according to a predetermined geographical parameter. The updated card verification value may be stored as a current value in a verification value database. The method may include receiving a card verification request related to a second transaction, and authenticating, using verification logic, the second transaction by determining whether the card verification value for the second transaction matches the current value stored in the database.
US09905082B2
Systems and methods for monitoring live events are generally described. A live event management system may be configured to track in-play activities during a live event and to provide live event information to data consumers. The management system may be configured to provide an event timeline in real time or substantially real time that may facilitate reliable in-play wagering using accurate and up-to-date information. The event timeline may be used as a reference to review, manage, and monitor live events, wagers, and wager activity. The management system may be configured as an “end-to-end” wagering solution capable of, among other things, receiving wagers (or “bets”) from bettors, managing and processing event information, and presenting wagers received from bettors to bookmakers.
US09905081B2
The gaming system disclosed herein changes the focal point of a display device at different points in time to assist the player in focusing on different simultaneously or concurrently played games at different points in time. Specifically, the gaming system displays a plurality of simultaneously or concurrently played games on a display device. In response to a designated event occurring in association with a specific one of the plurality of simultaneously or concurrently played games, the gaming system changes the focal point of the display device to draw the player's focus or attention to that specific one of the simultaneously or concurrently played games. Put differently, the gaming system dynamically allocates and/or indicates different portions of a display device to different simultaneously or concurrently played games at different points in time to account for different events occurring in such simultaneously or concurrently played games.
US09905080B2
A gaming system including a multiple player persistent game, such as an ongoing community game. This ongoing community game includes a community game matrix which is continuously displayed to at least each of the players. The community game matrix includes a plurality of displayed positions which may be associated with an award or an award opportunity. In operation, at least each of the players playing the gaming devices of the gaming system are associated with a displayed participant that moves (either randomly or based on the player's control) to different of the displayed positions of the community game matrix. If a player moves their associated participant to a displayed position that is associated with an award or an award opportunity, the gaming system provides the player any associated award or enables the player to participate in any associated award opportunity to potentially win an award.
US09905076B2
A system and method for providing matching of bets for an online skill game includes a display device for displaying the game and a computer coupled to the display device. The computer is configured to analyze a skill level of a first player based on the playing history of the first player, to analyze a skill level of a second player based on the playing history of the second player, to generate an initial proposal for a fair match between the first player and the second player based on the analyzed skill levels, and to communicate the initial proposal either one of the first player or the second player, and wherein either the first player or the second player accepts or rejects the initial proposal by communicating the acceptance or rejection to the computer.
US09905072B2
Systems and methods for vending devices having ad-watching as consideration are described. In some implementations, a vending apparatus includes a dispensing portion operable to dispense a product (e.g. electricity) to a user; a communication portion operable to provide a communicable content (e.g. an advertisement) to the user; and a control system operatively coupled to the dispensing portion and the communication portion. The control system receives a signal indicative of a consent by the user to receive or review the communicable content at least partially in exchange for the product, and after receipt of the signal, causes the communication portion to provide the communicable content to the user and causes the dispensing portion to dispense the product to the user. In further implementations, the apparatus may include a monitoring system operable to determine whether the user is receiving or reviewing the communicable content.
US09905071B2
In order to improve the ability to feed paper currency from a deposit unit and to reduce the height of the device, this paper currency handling device (100) has a paper currency recognition unit (170) and a paper currency storage unit (200) (which does not include a deposit unit (120) and a withdrawal unit (140)) accommodated within a chassis section (112) of a vault (110), so that deposited paper currency is transported to the paper currency storage unit (200) and withdrawn paper currency is transported from the paper currency storage unit (200) as the paper currency passes through the chassis section (112). When the paper currency (B) is fed to a feed path unit (124) connecting the deposit unit (120) and an upstream deposit path (181), the vanes (129) of impellers (128) make contact with the paper currency (B) retained in the deposit unit (120), with the contact being on the feed path unit (124) side.
US09905069B1
A method and a system are disclosed for processing a banknote. The method includes providing a banknote having at least one photonically active security feature, the banknote being moved along a conveyance path; illuminating the at least one security feature with light from a stimulus source; identifying a location of the at least one security feature by detecting an emission from the security feature; directing an excitation source at the identified location; illuminating the at least security feature with light from the excitation source; and detecting a further emission from the photonically active security feature in response to the light from the excitation source. Further the process includes the step of analyzing the shape and size of each object within an image during the search phase to determine if the object has the expected physical attributes of the real feature.
US09905065B2
A radio control for electric devices may include: a containment body provided with at least one button, at least one electronic transmitter configured to transmit a unique code in a direction of the electric devices, and a microprocessor to which generated signals are sent, by pressing the at least one button, that is configured to control the at least one transmitter, and that is configured to determine the unique code. Each time the at least one button is pressed, the unique code may be transmitted by the at least one electronic transmitter at least once at a first frequency and then may be retransmitted at least once at a second frequency different than the first frequency.
US09905062B2
The work machine includes a controller including a first storage unit capable of storing work machine information and capable of rewriting the stored work machine information, and a processing unit configured to collect the work machine information, and when trigger information for causing the first storage unit to start storing the work machine information occurs, the processing unit causes at least a portion of the collected work machine information to be stored to the first storage unit. The first storage unit stores header information. At a time when the trigger information occurs, the processing unit generates the work machine data from the collected work machine information in accordance with the header information and stores the work machine data to the first storage unit.
US09905055B2
Techniques are disclosed for automatically determining and implementing fare validation rules based on analysis of rejected transactions from one or more fare validators. In some embodiments, a server or other monitoring system can monitor rejected transactions, determine a common characteristic among all the rejected transactions, and create a validation rule change that would permit the use of fare media having the common characteristic. In some embodiments, the validation rule change may be reviewed and/or modified by a transit agent or other human supervisor. Accordingly, among other benefits, validation rule changes can be automatically created and quickly implemented where a number of rejected transactions indicate previous validation rules may be incorrect.
US09905054B2
Techniques for controlling patch-usage in image synthesis are described. In implementations, a curve is fitted to a set of sorted matching errors that correspond to potential source-to-target patch assignments between a source image and a target image. Then, an error budget is determined using the curve. In an example, the error budget is usable to identify feasible patch assignments from the potential source-to-target patch assignments. Using the error budget along with uniform patch-usage enforcement, source patches from the source image are assigned to target patches in the target image. Then, at least one of the assigned source patches is assigned to an additional target patch based on the error budget. Subsequently, an image is synthesized based on the source patches assigned to the target patches.
US09905053B2
An information processing device includes: circuitry configured to: obtain a captured image including position identification information identifying a position at which a virtual abject representing a target to be placed is to be displayed; generate a composite image in which the virtual object is combined at a position on the captured image, the position identified by the position identification information; receive an operation causing the virtual object included in the composite image, to operate; and control display depicting operation of the virtual object based on display setting information including specification information defining specifications of the target to be placed, in response to the operation receiving unit receiving the operation causing the virtual object to operate.
US09905038B2
A computing system, driver and method for inserting an extra visual effect into a rendering pipeline of an application are provided. In one embodiment, the method includes: 1) loading into a driver a state machine that is customized for a particular application being rendered at a rendering pipeline; 2) identifying a point in the rendering pipeline to insert an extra visual effect using the state machine; and 3) inserting the extra visual effect into the rendering pipeline at the point.
US09905036B2
A graphics processing unit includes a shader configured to perform one operation among tessellation and texturing. The shader generates level-of-detail (LOD) using geometry information for the tessellation or texturing and adjusts the LOD using non-geometry information for the tessellation or texturing.
US09905032B2
In scenarios involving the capturing of an environment, it may be desirable to remove temporary objects (e.g., vehicles depicted in captured images of a street) in furtherance of individual privacy and/or an unobstructed rendering of the environment. However, techniques involving the evaluation of visual images to identify and remove objects may be imprecise, e.g., failing to identify and remove some objects while incorrectly omitting portions of the images that do not depict such objects. However, such capturing scenarios often involve capturing a lidar point cloud, which may identify the presence and shapes of objects with higher precision. The lidar data may also enable a movement classification of respective objects differentiating moving and stationary objects, which may facilitate an accurate removal of the objects from the rendering of the environment (e.g., identifying the object in a first image may guide the identification of the object in sequentially adjacent images).
US09905031B2
A method for processing image data includes obtaining at least two captured images, where focal points of the obtained captured images are different; obtaining a focus-capture parameter, and fusing the captured images according to the focus-capture parameter to obtain a fused image; and performing joint coding on the fused image, and outputting an image; where when registration, mapping, cutting, and fusion are performed on the captured images according to the focus-capture parameter, a mask image is corrected through analysis of motion information of the captured images, and images are selected; and the corrected mask image includes a sequence number of a captured image selected at each pixel in the connected motion object region after the captured images are marked with sequence numbers. The method is used to implement high-efficiency and high-quality image processing.
US09905024B2
An object recognition device includes: a storage unit that stores image information corresponding to respective shapes of a plurality of objects, and a control unit that groups a plurality of signals detected by a distance detection unit to acquire position information of at least one of the plurality of objects, sets a first object of the plurality of objects based on the acquired position information, sets an interference area based on position information of the first object, acquires position information and image information of a second object of the plurality of objects located in the interference area, and corrects the acquired position information of the second object based on the image information of the second object and the image information stored in the storage unit.
US09905018B2
An imaging apparatus acquires an image including a still image and a moving image, tracks a position of the object within an image capturing area of the image, records a luminance change within a region of the object being tracked, detects a point having a luminance change amount equal to or greater than a threshold, as a specular reflection area, calculates an object correction value, which is a color correction value of the object, based on color information of the specular reflection area, and corrects color overlap of the image based on the object correction value.
US09905009B2
A surveillance system 1, which is an example of a surveillance system to which the present invention is applied, includes a surveillance region storage means 2 and an image analyzing means 3. Also, the surveillance system 1 includes an effective area information storage means 4 and an object criterion information storage means 5. A detection subject can be detected efficiently by setting a first step criterion of whether or not a portion of an object in an image is included in a range of a surveillance region and a predetermined second step criterion and determining whether or not these criteria are met.
US09905005B2
Methods, systems and platforms for digital imaging of multiple regions of an array, and detection and counting of the labeled features thereon, are described.
US09904996B2
A method in which a digital picture of the tip of a dental scaler tool and other uniquely identifying characteristics is used to measure the extent of wear on the tool. Unique characteristics of the dental scaler tool, such as color and shape of the grip, narrow a set of reference images to a subset of likely matching tip reference images. A digital contour of the worn tip is isolated. Characteristics of the physical shape of each available tips have been stored in a digital library of reference images. The same tip shape characteristics are developed for the tip contour that were stored for each reference image. The digital profile of the worn tip and a matching, selected reference image of the tip from a library of digitally overlaid. An accurate measurement of the extent of wear of the insert tip is made and displayed.
US09904988B2
In an image processing method, first, one point is designated on input image data as a start point of a retrieval line by external input. Subsequently, one point, which is different from the start point, is designated on the input image data as an endpoint of the retrieval line by the external input. Subsequently, a cumulative line profile of the retrieval line is prepared by calculating a cumulative sum of luminance values on the retrieval line. Subsequently, an edge position on the retrieval line is calculated based on the cumulative line profile of the retrieval line.
US09904978B2
The present invention relates to pairing an anatomy representation with live images. In order to provide an enhanced and more flexible pairing of an anatomy representation with live images, for pairing an anatomy representation with live images, reference projected-anatomy image data of a device in a spatial relation to the anatomy is provided (100), wherein the image data comprises at least a first and second image showing the device from different viewing angles. Further, an anatomy representation with an anatomy frame of reference is provided (200). The anatomy representation is brought (300) into spatial coherence with the at least first and second image of the reference projected anatomy image data. A three-dimensional model of the device within the anatomy frame of reference is computed (400) from the projected anatomy image data. At least one live image is provided (500) containing the device. The model and the at least one live image are registered (600) based on the device information contained in the live image. The anatomy representation is brought (700) into spatial correspondence with the at least one live image based on the registering of the model and the at least one live image. The registered anatomy is combined (800) with the at least one live image.
US09904973B2
Methods, systems, and computer-readable media for application-specific virtualized graphics processing are disclosed. A virtual compute instance is provisioned from a provider network. The provider network comprises a plurality of computing devices configured to implement a plurality of virtual compute instances with multi-tenancy. A virtual GPU is attached to the virtual compute instance. The virtual GPU is selected based at least in part on requirements of an application. The virtual GPU is implemented using a physical GPU, and the physical GPU is accessible to the virtual compute instance over a network. The application is executed using the virtual GPU on the virtual compute instance.
US09904964B1
Disclosed is a process and system for solving the problem of presenting users aligned travel products from disparate or aligned sources in a single user interface. The system packages travel products by alignment or combination from disparate or un-aligned data sources, driven by the system capability to utilize a configurable logic instruction system incorporated into a database and user interface management platform, which configured to align individual travel product element data types and attributes as well as bundled travel product data types and attributes. In various embodiments configurable logic instructions are created for individual target airlines to capture the explicit and implicit mechanisms by which an individual airline present travel products to users by the user interface. For a plurality of airlines, travel product packages and associated configurable logic instructions are imported into a common database template structure which is configured to allow member airlines to market travel products other than just tickets and seats from other carriers by communicating product types and attributes mapped in the database from disparate data sources to users in a single interface.
US09904960B2
A computer system may generate a lineage graph for a data processing system. The lineage graph may contain one or more nodes, and it may identify the flow of data through the data processing system. The computer system may determine that a first node in the lineage graph defunct. The computer system may then generate a report for the data processing system and provide the report to a user. The report may include an explanation of why the first node is defunct. The computer system may insert an indication that the first node is defunct into metadata for the first node. The indication may also include the explanation of why the first node is defunct.
US09904959B2
The subject disclosure relates to systems and methods for creating and managing a descriptor repository. In certain aspects, a method of the subject technology includes steps for receiving a descriptor label for a merchant, receiving a plurality of descriptor definitions for the descriptor label, and storing the plurality of descriptor definitions in a database. In certain aspects, a method of the subject technology can further include steps for receiving relevance indications for one or more of the descriptor definitions, and associating one or more of the descriptor definitions with the descriptor label based on the one or more relevance indications.
US09904943B1
Using various embodiments, methods and systems for displaying information associated with a smart object are described. In one embodiment, a system receives Smart Object Identification Data (SOI) and Smart Object Metric Data (SOMD) of a set of smart objects transmitted from a smart object manager in a three dimensional environment. The system determines that the user has requested Brand Related Detailed Information (BRDI) associated with at least one smart object and generate a list of smart object associated Brand Identification Data (BID) from the set of smart objects, and sort them based on the received SOMD related to each smart object within the set of smart objects. The system retrieves BRDI of a smart object with the highest quantifier of SOMD out of the set of smart objects and transmit the BRDI along with the sorted list of smart object BID to the user.
US09904941B2
Certain embodiments involve providing advertisements in response to navigation on an electronic device. On a mobile or other electronic device navigation may be controlled by moving a focus indicator amongst a group of displayed items. Certain embodiments provide an advertisement break between navigation items. When a user crosses the advertisement break by navigating the focus indicator from an item on one side of the advertisement break to an item on the other side, an advertisement is presented to the user.
US09904939B2
A system for targeting advertising can include a communications interface and a processor. The communications interface can receive data associated with times of use of applications. The processor can be communicatively coupled to the communications interface and can categorize the applications by genres. The categorization is within a time of use group and is based on at least part of the retrieved data. The processor can also determine priority values associated with the genres based on levels of use of the applications during a period of time associated with the time of use group. The processor can also identify a current time and determine an advertisement according to at least one genre of the genres. The at least one genre can be associated with a highest priority value of the determined priority values. The period associated with the time of use group can correspond to the identified current time.
US09904936B2
A method for identifying elements of a webpage is provided. The method includes accessing, by an electronic device, a document object model (DOM) of the webpage. Changes applied to properties of a plurality of elements of the webpage across different media queries for different viewports are then analyzed using the DOM. The different viewports are of different sizes. Based on analyzing, ranking score is determined for each element. Elements having ranking score greater than a predefined threshold are identified as representative elements of the webpage.
US09904931B2
High volume data processing systems and methods are provided to enable ultra-low latency processing and distribution of data. The systems and methods can be implemented to service primary trading houses where microsecond delays can significantly impact performance and value. According to one aspect, the systems and methods are configured to process data from a variety of market data sources in a variety of formats, while maintaining target latencies of less than 1 microsecond. A matrix of FPGA nodes is configured to provide ultra-low latencies while enabling deterministic and distributed processing. In some embodiments, the matrix can be configured to provide consistent latencies even during microburst conditions. Further book building operations (determination of current holdings and assets) can occur under ultra-low latency timing, providing for near instantaneous risk management, management, and execution processes, even under micro-burst conditions. In further embodiments, a FPGA matrix provides a readily expandable and convertible processing platform.
US09904922B2
A computing system includes at least one processor and at least one module operable by the at least one processor to calculate a tail of a first dataset by determining elements of the first dataset that fall outside of a specified percentile, and determine locations of the first dataset at which elements of the first dataset that fall outside of the specified percentile are located. The at least one module may be operable to calculate a tail of a second dataset by populating a data structure with elements of the second dataset that correspond to the locations of the first dataset, and determining, using the data structure, elements of the second dataset that fall outside of the specified percentile. The at least one module may be operable to output an indication of at least one of the tail of the first dataset or the tail of the second dataset.
US09904920B1
A computer-implemented method and system for authenticating identification of a customer during interaction with a company representative. Data is received and stored relating to the customer at a computer. The data includes one or more identification attributes associated with the customer and one or more authentication data attributes associated with the customer. An interaction is commenced between the customer and the company representative. Captured is one or more identification attributes and authentication data attributes relating to customer from the interaction between the customer and the company representative. The customer is identified by matching a captured identification attribute with a stored identification attribute. The customer is authenticated by matching a captured authentication data attribute with a like stored authentication data attribute associated with the identified customer.
US09904919B2
Apparatuses, methods, and systems pertaining to the verification of portable consumer devices are disclosed. In one implementation, a verification token is coupled to a computer by a USB connection so as to use the computer's networking facilities. The verification token reads identification information from a user's portable consumer device (e.g., credit card) and sends the information to a validation entry over a communications network using the computer's networking facilities. The validation entity applies one or more validation tests to the information that it receives from the verification token. If a selected number of tests are passed, the validation entity sends a device verification value to the verification token, and optionally to a payment processing network. The verification token may enter the device verification value into a CVV field of a web page appearing on the computer's display, or may display the value to the user using the computer's display.
US09904916B2
A system and method comprising receiving a request to access a first set of details associated with a first transaction conducted by a user, the request including first information that corresponds to a first asset under the control of the user, determining an identity of the user based at least in part on the first information, and identifying a second transaction likely to be associated with the user, the second transaction being associated with second information that corresponds to a second asset different than the first asset. The system and method further including requesting confirmation from the user that the second asset is under the control of the user, and, upon receiving the confirmation, associating the first and second transactions with the first and second information.
US09904906B2
A mobile terminal capable of transmitting and receiving messages and a data processing method thereof for retrieving data from a database and transmitting the data to a network in a message efficiently are provided. The method includes displaying at least one first message; extracting at least one first keyword from the first message; determining whether an attach request event occurs; searching, when the attach request event occurs, a database for a first data corresponding to the extracted at least one first keyword; displaying, according to a result of the search, at least one of the first data and a first icon representing the first data; and transmitting a second message including the first data.
US09904899B2
Certain example embodiments relate to techniques for executing business processes in a distributed computer system (e.g., cloud-based) environment. A representation of the business process is decomposed into executable components. The executable components each have assigned thereto process and sequence identifiers, and each is classified as having an executable component types. The executable component types including integration, task, and data flow types. The integration flow type represents activities to be performed in connection with external computer systems, the task flow type represents human-interactive activities, and the data flow type represents activities to be performed on data relevant to the business process. The executable components are deployed to nodes in the distributed computing environment such that the executable components are performed in sequence identifier order using processing resources of the respective nodes to which they are deployed, except executable components with the same sequence identifiers are performed in parallel on different nodes.
US09904895B2
A guest monitoring and identification system is shown. The system comprises an RFID carried by a guest and includes therein programmed predetermined data identifying a guest. An activating transmitter transmits a monitoring signal over a designated area to be traversed by a guest having the RFID. A receiver receives from the RFID a transmitted data signal containing the programmed predetermined data identifying the guest. A guest identification and service information processor receives the transmitted data signal. The processor interprets the programmed predetermined data identifying a guest and generates data/information signals providing the name and service profile for an identified guest. A communication device communicates to service staff the name and service profile for an identified guest.
US09904888B2
The present disclosure is generally directed to a method and computing device for determining whether a mark is genuine. According to various implementations, a computing device (or logic circuitry thereof) uses unintentionally-produced artifacts within a genuine mark to define an identifiable electronic signature, extracts certain attributes of the signature (such as deviation from the mean value for each band of the signature), and assigns numerical values to the extracted attributes in order to create a hash identifier that is significantly smaller than the electronic signature itself. The hash identifier is then used as an index for a database of electronic signatures (of genuine marks) to enhance the ease and speed with which numerous genuine signatures can be searched (e.g., in a database) and compared with signatures (of candidate marks.
US09904884B2
Various methods and systems are provided for diagnosing a rotating device. In one example, a system includes a rotating device and a RFID circuit coupled to the rotating device. The RFID circuit includes a RFID chip, an antenna, and a mechanical link designed to change impedance with a changing input from the rotating device.
US09904877B2
A printing apparatus includes: a transport unit that arranges and is able to transport a plurality of continuous paper pieces in parallel; a printing unit of which a print head reciprocates in a direction intersecting with a transport direction of the plurality of continuous paper pieces and which is configured to be able to perform printing on the plurality of continuous paper pieces separately; a reception unit that is able to receive a plurality of print jobs; and a control unit that controls operations of the transport unit and the printing unit based on the plurality of print jobs received by the reception unit.
US09904875B2
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for image processing using deep neural networks. One of the methods includes receiving data characterizing an input image; processing the data characterizing the input image using a deep neural network to generate an alternative representation of the input image, wherein the deep neural network comprises a plurality of subnetworks, wherein the subnetworks are arranged in a sequence from lowest to highest, and wherein processing the data characterizing the input image using the deep neural network comprises processing the data through each of the subnetworks in the sequence; and processing the alternative representation of the input image through an output layer to generate an output from the input image.
US09904869B2
Shape features in natural images influence emotions aroused in human beings. An in-depth statistical analysis helps to understand the relationship between shapes and emotions. Through experimental results on the International Affective Picture System (IAPS) dataset, evidence is presented as to the significance of roundness-angularity and simplicity-complexity on predicting emotional content in images. Shape features are combined with other state-of-the-art features to show a gain in prediction and classification accuracy. Emotions are modeled from a dimensional perspective in order to predict valence and arousal ratings, which have advantages over modeling the traditional discrete emotional categories. Images are distinguished vis-a-vis strong emotional content from emotionally neutral images with high accuracy. All of the methods and steps disclosed herein are implemented on a programmed digital computer, which may be a stand-alone machine or integrated into another piece of equipment such as a digital still or video camera including, in all embodiments, portable devices such as smart phones.
US09904860B2
A vehicle exterior environment recognition apparatus includes a computer configured to serve as a vehicle identifier, a candidate identifier, an overexposure identifier, a movement amount deriving unit, a moving overexposure identifier, an overexposure range setting unit, and a lamp determiner. The candidate identifier identifies a light-emission source candidate. The overexposure identifier identifies an overexposed light-emission source candidate. The movement amount deriving unit derives an amount of movement of the overexposed light-emission source candidate. The moving overexposure identifier identifies a moving overexposed light-emission source, when the amount of movement is equal to or greater than a threshold. The overexposure range setting unit sets an overexposure range with respect to the moving overexposed light-emission source. The lamp determiner determines whether the identified light-emission source candidate is a lighted lamp, based on different conditions between the light-emission source candidate in the overexposure range and that in a range other than the overexposure range.
US09904859B2
Imaging system and method, the system including a main detection unit, an auxiliary detection unit, an image processor, and a controller. The main detection unit includes a light source that emits light pulses and a gated image sensor that receives reflections of the light pulses reflected from a selected depth of field in the environment and converts the reflections into a reflection-based image. The auxiliary detection unit includes a thermal sensor that detects infrared radiation emitted from the environment and generates an emission-based image. The image processor processes and detects at least one region of interest in the acquired reflection-based image and/or acquired emission-based image. The controller adaptively controls at least one detection characteristic of a detection unit based on information obtained from the other detection unit. The image processor detects at least one object of interest in the acquired reflection-based image and/or acquired emission-based image.
US09904855B2
Systems and methods are disclosed to provide an Advanced Warning System (AWS) for a driver of a vehicle, by capturing traffic scene types from a single camera video; generating real-time monocular SFM and 2D object detection from the single camera video; detecting a ground plane from the real-time monocular SFM and the 2D object detection; performing dense 3D estimation from the real-time monocular SFM and the 2D object detection; generating a joint 3D object localization from the ground plane and dense 3D estimation; and communicating a situation that requires caution to the driver.
US09904852B2
A system for object detection and tracking includes technologies to, among other things, detect and track moving objects, such as pedestrians and/or vehicles, in a real-world environment, handle static and dynamic occlusions, and continue tracking moving objects across the fields of view of multiple different cameras.
US09904847B2
Methods, systems, and computer program products are provided for the recognition of input of multiple objects into a computing device, wherein the computing device has a processor and at least one application for recognizing the input under control of the processor. The application is configured to determine at least one geometrical feature of a plurality of elements of the input, and compare the determined at least one geometrical feature with at least one pre-determined geometrical threshold to determine a positive or negative result. If the comparison yields a negative result, the application considers the elements as belonging to one object in the recognition of the input. If the comparison yields a positive result, the application considers the elements as belonging to multiple objects in the recognition of the input.
US09904845B2
A system, method, and computer program product for estimating human body pose are described. According to one aspect, a human figure silhouette is segmented from a depth image of a human actor. Contour points are sampled along the human figure silhouette. Inner Distance Shape Context (IDSC) descriptors of the sample contour points are determined and compared to IDSC descriptors of the feature points in an IDSC gallery for similarity. For each of the feature points, the sample contour point with the IDSC descriptor that is most similar to an IDSC of the feature point is identified as that feature point in the depth image. An estimated pose of a human model is estimated based on the detected feature points and kinematic constraints of the human model.
US09904844B1
In multilevel clustering for a face recognition process, the first stage clustering is performed on each computing node, using the first x vector coefficients. From the resulting k clusters created in the first stage, a limited number of clusters are selected on which the second stage clustering is performed, using the next y vector coefficients. The search for a matching image is then limited to these selected clusters. Computational costs are reduced at the first stage clustering by using just the first x vector coefficients. Computational costs for the second stage clustering are also reduced by performing the second stage only with the limited number of clusters on a limited number of computing nodes. In this manner, the overall computational costs in the face recognition process is significantly reduced while maintaining a desired level of accuracy.
US09904835B1
A computer-implemented method that includes: accessing data encoding a fingerprint slap scan image, the fingerprint slap scan image including fingerprints of a number of fingers from a subject's hand; performing a radon transform of the fingerprint slap scan image to generate a sinogram, the sinogram represented on a grid having a lateral span axis and a projection angle axis; automatically identifying patterns of segments on the sinogram as finger lines, each finger lines corresponding to a particular finger present on the fingerprint slap scan image; and based on identified finger lines on the sinogram, automatically determining whether one or more fingers are missing on the fingerprint slap scan image.
US09904811B2
Tamper-proof electronic packages and fabrication methods are provided including an enclosure enclosing, at least in part, at least one electronic component within a secure volume, a two-phase dielectric fluid within the secure volume, and a tamper-respondent detector. The tamper-respondent detector monitors, at least in part, temperature and pressure of the two-phase dielectric fluid. In operation, the two-phase dielectric fluid deviates from an established saturation line of the two-phase dielectric fluid within the secure volume with an intrusion event into the secure volume, and the tamper-respondent detector detects, from the monitoring of the temperature and pressure of the two-phase dielectric fluid, the deviation from the established saturation line, and thereby occurrence of the intrusion event.
US09904790B2
A method and system for recording data including content in a recording medium on a computer apparatus. First encrypted data, obtained by encrypting the data using a medium key created for each recording medium, is recorded in a recording medium. Second encrypted data, obtained by encrypting the medium key using a public key, is recorded in the recording medium. A private key corresponding to the public key is not recorded in the recording medium.
US09904787B2
Identifying stored security vulnerabilities in computer software applications by providing via a first interface of a computer software application during execution of the computer software application, test data having a characteristic of a malicious payload, where an interaction performed with the first interface resulted in data being written to a location within a persistent data store, and where an interaction performed with a second interface of the computer software application resulted in data being read from the location within the persistent data store, and identifying a stored security vulnerability associated with the computer software application if the test data are written to the persistent data store at the location.
US09904784B2
A kernel-level security agent is described herein. The kernel-level security agent is configured to observe events, filter the observed events using configurable filters, route the filtered events to one or more event consumers, and utilize the one or more event consumers to take action based at least on one of the filtered events. In some implementations, the kernel-level security agent detects a first action associated with malicious code, gathers data about the malicious code, and in response to detecting subsequent action(s) of the malicious code, performs a preventative action. The kernel-level security agent may also deceive an adversary associated with malicious code. Further, the kernel-level security agent may utilize a model representing chains of execution activities and may take action based on those chains of execution activities.
US09904771B2
Provided herein are various systems and methods for improved report interaction and generation. A computing system receives selection of an exam for display on a display device, either from a user or as automatically determined by a computing device. The computing system may then determine an exam characteristic associated with the exam, such as an exam type. A data structure storing associations between exam characteristics and respective report packages, each of the report packages comprising a parent report and one or more child reports, may be accessed in order to select a report package associated with the determined exam characteristic. The child reports of the selected report package, which are configured to receive input from a user of the computing system that is usable in automatically generating content of the parent report of the selected report package, may be selectively displayed on the one or more displays.
US09904765B2
A medical device operates in conjunction with a medical device controller. The medical device can include a low-power processor that monitors the states of the medical device. The low-power processor can determine to wake data processors and memory in the medical device based on the states. The data processors can further determine the current versions of executable code and configuration information associated with the data processors by polling a network server or a medical device controller to determine whether at least one update to the current versions is available. If an update is available, the medical device can receive the at least one update from the network server or medical device controller, and deploy it to the appropriate data processor. After deployment the medical device controller can activate the at least one update at a clinically appropriate time.
US09904763B2
The invention provides methods for identifying rare variants near a structural variation in a genetic sequence, for example, in a nucleic acid sample taken from a subject. The invention additionally includes methods for aligning reads (e.g., nucleic acid reads) to a reference sequence construct accounting for the structural variation, methods for building a reference sequence construct accounting for the structural variation or the structural variation and the rare variant, and systems that use the alignment methods to identify rare variants. The method is scalable, and can be used to align millions of reads to a construct thousands of bases long, or longer.
US09904749B2
A method of emulating a circuit design using an emulator is presented. The method includes allocating one or more spare routing resources to one or more field programmable gate array (FPGA) routing sockets when compiling a plurality of FPGAs disposed in the emulator in preparation for emulating the circuit design, and using the one or more spare routing resources to provide one or more routings among the FPGAs in response to one or more changes made to the circuit design.
US09904740B1
Network of networks (NoN) structure reconstruction employs compressed sensing with multivariate time series data and graph partitioning to reconstruct a node-to-node connection structure of an NoN. The NoN structure reconstruction includes determining an adjacency matrix of the NoN from the multivariate time series data using the compressed sensing. Partitioning a graph representing the determined adjacency matrix into subgraphs provides the reconstruction of the node-to-node connection structure.
US09904736B2
Systems and methods for rendering automatic annotation for electronic books with external information provided by an information database. A computer implemented method is used to automatically determine key terms and match the key terms with correct information from external information sources for presentation at an e-book page. The key terms can be detected based on a TF-IDF based content analysis process. The detected key terms can be processed by a disambiguation process to select the pertinent definition for multi-sense terms according to one or more selected information sources. Hyperlinks can be embedded in the key terms for direct and convenient link to the matching external information in response to user interactions.
US09904726B2
An apparatus and computer implemented method that include obtaining, into a computer, text of a patent, automatically finding and extracting, using the computer, a set of claim text from the patent text, identifying, using the computer, text of independent claims from the set of claim text, displaying in a first row on a computer monitor the text of the independent claims, automatically determining a plurality of preliminary scope-concept phrases from the text of the independent claims, displaying in a second row on the computer monitor the text of the plurality of preliminary scope-concept phrases, eliciting and receiving user input to specify a first one of the plurality of preliminary scope-concepts phrases, and highlighting each occurrence of the specified first one of the plurality of preliminary scope-concept phrases in a plurality of the independent claims displayed in the first row. A scope concept builder tool is also provided.
US09904719B2
A content management system synchronizes content items across client computing systems connected by a network. The content management system provides a first party web application to the user. The first party application receives input from the user to create a dependency on another piece of information on a content item in the content management system. The input from the user contains a formula defining the relations between the information source and the created dependency. The value of the dependency is then dependent on the information in the referenced content item and changes based on updates to that content item. The user may also create dependencies with synchronized third party content items.
US09904715B1
Data objects stored in a data store include data attribute(s) and associated value(s) for the attributes. Data analysis tools (DATs) stored in a data store are associated with reference data attritbute(s). The data objects are identified by one or more DATs based on each reference data attribute(s) of a corresponding DAT matching one of the data attribute(s) of the corresponding data object(s) and independent of the value for the data attribute(s). The DATs generate an additional data object as a function of the identified data object, and the additional data object is stored in the data store.
US09904707B1
In one embodiment, a method includes receiving a request to execute a database statement in satisfaction of a time constraint. The method further includes determining a pattern of the database statement. Additionally, the method includes comparing the pattern to pattern metadata associated with cached samples of the distributed database. Also, the method includes, responsive to a determination that the comparing has resulted in one or more matches, selecting a target sample and causing the database statement to be executed on the target sample. The method further includes, responsive to a determination that the target sample resolves the database statement in satisfaction of the time constraint, returning a resulting dataset to a requestor. Moreover, the method includes, responsive to a determination that the target sample does not resolve the database statement in satisfaction of the time constraint, causing a new real-time sampling of the distributed database to be executed.
US09904706B2
Staging data record changes from a faster storage medium to a slower storage medium using data query rewriting is provided. In response to receiving a data query corresponding to a particular data record, it is determined whether the data query is one of a transactional data query or an analytical data query. In response to determining that the data query is a transactional data query, the transactional data query is rewritten to apply transactional delta changes to the particular data record on a storage-class memory of a computer. In response to determining that the data query is an analytical data query, the analytical data query is rewritten to select and reconcile each data record corresponding to the particular data record stored on the storage-class memory with the particular data record stored on a persistent data storage device of the computer.
US09904702B2
A query builder provided according to an aspect of the present invention facilitates users to conveniently generate database queries directed to database servers storing data elements organized according to attributes. In an embodiment, configuration data indicating a comparison predicate to be used for each combination of an attribute and a conditional operation is maintained. A user may then provide as inputs a first attribute, a first conditional operation and a first value. In response, the query builder examines the configuration data to determine a first comparison predicate specified for the combination of the first attribute and the first conditional operation. The query builder incorporates the first value in the first comparison predicate to construct a second comparison predicate and then forms a first database query with the second comparison predicate.
US09904700B2
A method for transmitting data from a mobile unit to a backend system includes, when connectivity is present between the mobile unit and the backend system: receiving, by the mobile unit, a master index from the backend system, deleting, by the mobile unit, data of the local database which are contained in the master database based on a comparison of a local index with the master index and updating the local index, transmitting, by the mobile unit, data stored in the local database which are not yet contained in the master database, receiving and storing a new master index from the backend system, and deleting the transmitted data of the local database based on a comparison of the updated local index with the new master index and further updating the local index.
US09904691B2
An information processing device includes a creating unit that creates correspondence information that, based on reproduction history information representing a date and time of reproduction of content information and photographing history information representing a date and time of photographing of image information, associates the content information with the image information.
US09904686B2
A method and terminal for creating a new folder on a touch screen device are provided. One method includes: creating a new folder at any vacant position on a current interface after a touch screen device detects that an object on the current interface is selected and dragged to a specific area and released, and saving the object in the new folder. Another method includes: creating a new folder at any vacant position on a current interface after the touch screen device detects that at least two objects on the current interface are successively selected and within a preset time range, dragged in succession to a specific area and released; and saving the at least two objects in the new folder.
US09904684B2
Information from multiple databases is retrieved and stored on a database storage system. Multiple point-in-time copies are obtained for each database. A point-in-time copy retrieves data changed in the database since the retrieval of a previous point-in-time copy. A virtual database (VDB) is created by creating a set of files in the data storage system. Each file in the set of files created for a VDB is linked to the database blocks on the database storage system associated with a point-in-time copy of the source database. The set of files associated with the VDB are mounted on a database server allowing the database server to read from and write to the set of files. Workflows based on VDBs allow various usage scenarios based on databases to be implemented efficiently, for example, testing and development, backup and recovery, and data warehouse building.
US09904676B2
Methods, apparatuses, and computer program products are described herein that are configured to express a time in an output text. In some example embodiments, a method is provided that comprises identifying a time period to be described linguistically in an output text. The method of this embodiment may also include identifying a communicative context for the output text. The method of this embodiment may also include determining one or more temporal reference frames that are applicable to the time period and a domain defined by the communicative context. The method of this embodiment may also include generating a phrase specification that linguistically describes the time period based on the descriptor that is defined by a temporal reference frame of the one or more temporal reference frames. In some examples, the descriptor specifies a time window that is inclusive of at least a portion of the time period to be described linguistically.