US09538695B2

A series of electronic components formed using a carrier tape. The carrier tape is adapted to enable smoothly picking up even small-sized electronic components with a suction nozzle. The carrier tape has housing holes housing electronic components therein. The housing holes are arranged in the longitudinal direction. A top tape and a bottom tape are attached to the upper and lower surfaces of the carrier tape. Interval portions between the housing holes are provided with concave slots in their lower surfaces, thereby forming air flow paths. The air flow paths form air passages which enable smoothly picking up the small-sized electronic components using a suction nozzle.
US09538692B2

An integrated heat exchanger and power delivery system for high powered electronic modules is disclosed. In one embodiment, the system includes a coolant manifold. The system further includes a heat exchanger and power delivery module. The heat exchanger and power delivery module comprises a plurality of heat exchanger and power delivery elements that are coupled to the coolant manifold. The system furthermore includes a high powered electronic module, wherein the high powered module comprises an array of sub-modules. The array of sub-modules is disposed on the plurality of heat exchanger and power delivery elements. The plurality of heat exchanger and power delivery elements are configured to substantially simultaneously deliver power and extract heat away from the sub-modules.
US09538691B2

A power inverter includes a plurality of power modules stacked in an array. A plurality of coolant chambers are interleaved with the modules. Each of the chambers includes an inlet and an outlet interconnected by a coolant path configured to circulate coolant within the chamber. Fins project into the coolant path and are configured to alter shape based on a temperature of the coolant to alter a turbulence associated with the coolant.
US09538681B2

Disclosed is a mobile terminal, comprising: a display; a metal frame coupled to a rear surface of the display by an adhesive tape, and having a screw-coupling groove on a rear surface thereof; a front case coupled to the rear surface of the metal frame, and having a screw-coupling hole; a screw inserted into the screw-coupling groove and the screw-coupling hole on a rear surface of the front case; and a rear case coupled to the front case, and configured to cover the rear surface of the metal frame. Under such configuration, the rear surface of the display is coupled to the case. Accordingly, the size of a bezel portion disposed on a side surface of the mobile terminal can be prevented from increasing, and a display panel can be easily separated from the front case.
US09538680B2

The present application discloses a laminated busbar arrangement for use in a three-level power converter and a power converter. The laminated busbar arrangement comprises a first layer of busbar comprising a neutral-point sub busbar configured to make electrical connections between respective components in the three-level power converter and a neutral-point potential; a second layer of busbar comprising a plurality of sub busbars configured make electrical connections between the respective components in the three-level power converter and a positive direct current (DC) input, a negative DC input and an alternating current (AC) input/output in the three-level power converter, and between respective semiconductor switching components. The present application may effectively reduce stray inductance.
US09538679B1

A power transmission structure of a power supply unit includes a base plate. The base plate is provided with a plurality of spaced metallic plates. One end of each metallic plate is provided with a first connecting portion and the other end is provided with a second connecting portion to connect the components of the power supply unit respectively for power transmission. Thus, the present invention can take the place of conventional power cords, and the power transmission structure can be flattened to decrease the space occupied by the power transmission device, such that the required interior accommodation space of the power supply unit can be decreased effectively and the volume of the power supply unit can be reduced.
US09538678B2

A voltage controller has an electrically insulating supporting structure provided with a plurality of electrical connecting terminals. At least one of the terminals has a flexible blade of elongate shape which protrudes inside the structure where a distal end portion of the blade is connected to a circuit housed therein. The supporting structure has a protective formation with at least one strip which has a shape corresponding to that of the blade and which extends in superimposition on this blade.
US09538676B2

A protective cover includes a first housing configured to receive an electronic device therein, a second housing and a connecting assembly coupling the first housing with the second housing. The connecting assembly includes a first connector assembly including a first connecting shell rotatably coupled to the first housing and a first conducting member capable of coupled to the electronic device, and a second connector assembly including a second connecting shell rotatably coupled to the second housing and two second conducting members electrically coupled to the display screen respectively. When the first conducting member is electrically coupled to one second conducting member, the second housing is capable of rotating relative to the first housing about a first direction. When the second housing is capable of rotating relative to the first housing to a predefined position, the first conducting member is thus electrically coupled to the other second conducting member.
US09538673B2

An electronic device includes a housing, a mother board received in the housing, and a plurality of heat-generating members received in the housing. A dissipation area is formed in the housing, and a plurality of dissipation holes are defined in an outer surface of the dissipation area. Each dissipation hole is in a nanometer scale. The disclosure also supplies a method for manufacturing a housing of the electronic device.
US09538664B2

A wiring substrate includes a first wiring layer with a wiring pattern and a metal foil. A first insulating layer includes a first through hole having a first end facing the metal foil and a second end. A second wiring layer includes a first opening having a diameter smaller than the second end. A second insulating layer includes a second through hole having a third end facing the wiring pattern and a fourth end. A third wiring layer includes a second opening having a diameter smaller than the fourth end. A first via is filled in the first opening, the first through hole, and a first recess, in the metal foil, having a diameter greater than the first end. A second via is filled in the second opening, the second through hole, and a second recess, in the wiring pattern, having a diameter greater than the third end.
US09538663B2

A method for manufacturing a combined wiring board includes providing a metal frame having an accommodation opening portion, positioning a wiring board in the accommodation opening portion of the metal frame, and subjecting the metal frame to plastic deformation such that a sidewall of the wiring board is connected to a sidewall of the metal frame inside the accommodation opening portion of the metal frame.
US09538661B2

An electronic device module includes a wiring board having a first surface including first and second electrodes formed thereon and a second surface opposite to the first surface, a supporting member attached to the second surface of the wiring board, a first electronic unit mounted on the first surface of the wiring board and electrically connected to the first electrode, and a second electronic unit mounted on the first surface of the wiring board and electrically connected to the second electrode. The wiring board includes a wiring extending from the first electronic unit to a position closer to the second electronic unit, and a reinforcement layer disposed between the first and second electronic units and apart from the wiring in a thickness direction of the wiring board.
US09538658B2

A compact transition structure includes a printed circuit board, wherein there is a rectangular region on one side of the printed circuit board and the rectangular region has a pair of long edges and a pair of short edges; a transition probe on the one side of the printed circuit board, wherein the transition probe extends into the rectangular region through a long edge of the rectangular region and has a terminal near a center of the rectangular region; and a coupler probe on the one side the printed circuit board, wherein the coupler probe extends into the rectangular region through a short edge of the rectangular region and has a terminal before the center of the rectangular region such that the coupler probe is electrically insulated from the transition probe.
US09538651B2

A printed wiring board includes an insulating layer, a first conductor layer embedded into a first surface of the insulating layer and including connecting portions to connect an electronic component, a second conductor layer projecting from a second surface of the insulating layer, a solder resist layer covering the first conductor layer and having an opening structure exposing the connecting portions, a barrier metal layer formed on the connecting portions such that the barrier layer is projecting from the first surface of the insulating layer, and metal posts formed on the barrier layer such that the metal posts are positioned on the connecting portions, respectively. Each metal post has width which is greater than width of a respective connecting portion, and the barrier metal layer includes a metal material which is different from a metal material forming the metal posts and a metal material forming the first conductor layer.
US09538645B2

A multilayer wiring substrate includes a number of insulating layers, each insulating layer including a glass ceramic. A number of internal conductor layers are formed between the insulating layers. Via conductors penetrate through the insulating layers and mutually connect the internal conductor layers in different layer locations. Surface conductor layers are formed on an outer surfaces in a lamination direction of the insulating layers. The insulating layers include outside insulating layers and inside insulating layers. A first aspect ratio representing an oblateness and sphericity of an external filler contained in the outside insulating layers is larger than a second aspect ratio representing an oblateness and sphericity of an internal filler contained in the inside insulating layers. A thermal expansion coefficient of the outside insulating layers is smaller than a thermal expansion coefficient of the inside insulating layers.
US09538643B2

A composite structure is provided. The structure is formed of rigid composite material in which non-metallic continuous fibers reinforce a polymer matrix. The continuous fibers are electrically conductive. The structure has electrodes electrically connected to the continuous fibers. The composite material contains one or more insulating barriers which electrically divide the structure so that a first portion of the material in electrical contact with one of the electrodes can be held at a different electrical potential to a second portion of the material in electrical contact with the other electrode. In use, an electrical unit can be provided to electrically bridge the first and second portions of the material such that electrical signals can be transmitted between the electrodes and the electrical unit via the continuous fibers.
US09538636B1

An apparatus having a plurality of insulating layers, a plurality of conductive layers and a plating is disclosed. The conductive layers may be separated by the insulating layers. A first pattern in a first of the conductive layers generally extends to an edge castellation. A second pattern in a second of the conductive layers may also extends to the edge castellation. The plating may be disposed in the edge castellation and connect the first pattern to the second pattern. The plating in the castellation may extend at most between a subset of the conductive layers.
US09538632B2

Tools and fixtures for assembling a printed circuit board (PCB), such as a main logic board (MLB), in a portable computer device are described. A connector assembly having an electrically conductive gasket mounted on an edge of the MLB is described. In addition, a keyboard assembly including a notched portion of the MLB for accommodating more than one type of keyboard is described. In addition, a PCB assembly having a bracket to support a weak region of the PCB during assembly is described.
US09538622B1

A multi-scene, multi-zone lighting device includes a support structure supporting multiple lighting zones, an ensemble of the zones defining a lighting scene. A master dimming control built into the support structure has a power input line and multiple dimmers. The zones are coupled to the dimmer output lines to receive a controlled setting from the corresponding dimmer. A remote control device communicates with the master dimming control, and has a memory for storing settings for the multiple zones and a user interface for a user to select a stored setting for each zone or a scene composed of multiple zones. Settings can be prestored or programmed by the user. The master dimming control includes a controller responsive to receiving the set of settings to set the controlled setting of the corresponding dimmer for each zone in the selected scene to conform the zones to the settings in the selected scene.
US09538618B2

A two-way load control system comprises a power device, such as a load control device for controlling an electrical load receiving power from an AC power source, and a controller adapted to be coupled in series between the source and the power device. The load control system may be installed without requiring any additional wires to be run, and is easily configured without the need for a computer or an advanced commissioning procedure. The power device receives both power and communication over two wires. The controller generates a phase-control voltage and transmits a forward digital message to the power device by encoding digital information in timing edges of the phase-control voltage. The power device transmits a reverse digital message to the controller via the power wiring.
US09538612B1

Photocontrol apparatus that controls a luminaire or other load such that the luminaire is switched on during nighttime hours and off during the daytime. The photocontrol consumes only microwatts of power in either the ON or the OFF state, unlike traditional relay- or triac-based photocontrols. The photocontrol does not require a voltage generating photo sensor to generate power for the photocontrol. A solar cell, semiconductor photo diode or photo diode string, cadmium sulfide cell, semiconductor ambient light sensor, etc., may be used as the sensor element. The photocontrol switches power to the load at the zero-crossing of an AC input voltage, which reduces inrush current and the switching currents caused by traditional photocontrols which may switch at any point on the AC input voltage waveform.
US09538608B2

Systems, apparatuses, and methods are provided that include alterable characteristics and such alterable characteristics may be coordinated. Such systems, apparatuses, and methods may include wearable apparatuses and such alterable characteristics may relate to illumination conditions. In one example, a wearable apparatus includes an illumination device that may be manually manipulated between two different illumination conditions. In another example, two wearable apparatuses may each include an illumination device and operation of the two illumination devices may be coordinated. In a further example, operation of an apparatus may be controlled by a third party or venue. Still another exemplary system may include a capturing device for capturing a characteristic of an object and controlling an output device of an apparatus to operate with the same characteristic as the captured characteristic.
US09538603B2

Controlling the color temperature of a composite light source including at least one discrete-spectrum light source is disclosed. For example, the color temperature of a composite light source including at least one discrete-spectrum light source may be determined and/or adjusted based on one or more of the ambient color temperature of a space, the actual temperature of the space, the relative brightness of the space, the occupancy of the space, a time clock, a demand response command (e.g., from an electrical utility), the absolute location of the composite light source, the location of the composite light source relative to other light sources, inputs from a camera or other external devices, the operation of appliances or other machines in the vicinity of the composite light source, media content being utilized in the vicinity of the composite light source, and/or other sensor inputs.
US09538601B1

A driver circuit for driving one or more loads in a controlled manner includes multiple operational modes. In one mode, bypass switching may be used to adjust a drive signal applied to the one or more loads. In another mode, a DC-DC converter may be used to adjust the drive signal applied to the one or more loads. In at least one embodiment, the driver circuit is a light emitting diode driver circuit.
US09538596B2

What is described is a lighting unit 10 with a plurality of lighting segments 30a, 30b. The lighting segments 30a, 30b are arranged on a strip 40 in spaced relation from each other. Each lighting segment 30a, 30b is connected to an electrical supply terminal 20. In order to obtain a lighting unit with a flexible electrical configuration, each lighting segment 30a, 30b comprises at least one LED element and at least one driver circuit 36 including a controllable, current limiting element for controlling a current through the LED element.
US09538591B2

Provided is a lighting apparatus using an LED as a lighting source. The lighting apparatus may distribute a current corresponding to a rectified voltage to a lighting unit and a secondary current circuit, perform primary light emission at low luminance, and reduce an optical deviation between LED groups through secondary light emission. Thus, the lighting apparatus can reduce an optical deviation corresponding to dimming and one cycle of rectified voltage.
US09538585B2

A microwave heating apparatus and a method for heating/browning a piece of food by means of microwaves are provided. The microwave heating apparatus comprises a cavity arranged to receive, in a substantially horizontal browning region, a piece of food to be browned. The microwave heating apparatus further comprises a microwave source for generating microwaves and a rotatable antenna arranged at the cavity bottom for supplying the generated microwaves. The antenna is configured to produce at least one radiating lobe pointing towards the browning region such that the intersection between the radiating lobe and the browning region forms a hot spot, thereby forming a ring-shaped heating pattern in the browning region under rotation of the antenna. The present invention is advantageous in that a microwave heating apparatus with an improved crisp function is provided.
US09538584B2

A tapping device and method using induction heat for melt comprises melting furnace made of steel; heating unit disposed in the upper part in the melting furnace and made of graphite material; induction coil wound around the heating unit; insulator disposed adjacent to the bottom surface of the lower part of the melting furnace; supporter disposed outside the insulator; and firebricks disposed on the bottom surface of melting furnace and outside the supporter.
US09538583B2

Embodiments of substrate supports with a heater are provided herein. In some embodiments, a substrate support may include a first member to distribute heat to a substrate when present above a first planar surface of the first member, a second member disposed beneath the first member, the second member including a plurality of resistive heating elements, wherein the plurality of resistive heating elements provide local temperature compensation to the first member to heat the substrate when present, a third member disposed beneath the second member, the third member including one or more base heating zones to provide a base temperature profile to the first member, and a fourth member disposed beneath the third member, the fourth member including a first set of electrical conductors coupled to each of the resistive heating elements.
US09538578B1

A configured mode of operation of a wireless sensor network can be established through a dynamic remote configuration process. The plug-and-play universal sensor interface enables the monitoring capabilities of the wireless sensor network to scale seamlessly with the dynamic nature of changing sensor application objectives. A system status module enables a user to view the sensor service to confirm the current configuration of the wireless sensor network.
US09538573B2

A method for performing an operation at a non-originating node of a connection includes receiving a request for the operation; determining information associated with the connection; and signaling, based on the information and the operation, an originating node to cause the originating node to perform call connection management on the connection. A non-originating node includes a plurality of ports with at least one connection thereon; and a controller communicatively coupled to the plurality of ports and operating a control plane, wherein, for an operation of call connection management on the at least one connection, the controller is configured to: determine information associated with the at least one connection on a link formed by a port; and signal, based on the information and the operation, an originating node of the at least one connection to perform the call connection management on the at least one connection.
US09538572B2

A device for wirelessly communicating between one or more mobile communication devices over a wireless network. A primary mobile communication device is configured to establish one or more connections to one or more secondary mobile communication devices. The primary mobile communication device is further configured to establish a first connection and a second connection to at least one of the secondary mobile communication devices. The first connection is a Bluetooth (BT) connection and the second connection is a Wireless Fidelity (WiFi) connection. The primary mobile device is also configured to establish a third connection to another secondary mobile communication device wherein the third connection is a WiFi connection. Additionally, the primary mobile communication device is configured to simultaneously maintain the BT connection and the WiFi connections during the bi-directional transmission of data between the primary mobile communication device and the secondary mobile communication devices.
US09538571B2

Wireless-conferencing radios communicate directly with each other without a bases station using a multiple access protocol, such as Time Division Multiple Access (TDMA). Wireless-conferencing radios can be formed into groups and larger mesh networks. Some groups of wireless-conferencing radios use frequencies in a cellular band to communicate.
US09538568B2

The present invention relates to a wireless communication system, and a method for peer to peer (P2P) group formation is disclosed. To this end, the method for P2P group formation may include transmitting, from a first wireless device to a second wireless device, a provision discovery request frame including connection capabilities of the first wireless device, and receiving, at the first wireless device, from the second wireless device, a provision discovery response frame including connection capabilities of the second wireless device. Here, the connection capabilities may include indicating at least one of: New in order to initiate a new group, Group Owner in order to become a group owner, and Client in order to become a client; and the first wireless device determines the group owner of a P2P group on the basis of the first connection capability and the second connection capability.
US09538561B2

Certain embodiments herein are directed to enabling service interoperability functionality for wireless fidelity (WiFi) Direct devices connected to a network via a wireless access point. A WiFi Direct device may identify various other WiFi Direct devices on a WiFi network for performing a requested service, such as printing content or displaying content to a screen. In so doing, the device may share information associated with an access point to which the device is connected with the other devices, which may also share information associated with an access point to which they are connected. In this way, WiFi Direct devices may discover their connectivity with respect to other devices to utilize a broader array of connection options for implementing a desired service, and hence, may leverage application programming interface (API) modules directed at providing service interoperability functionality between software applications and services requested by the software applications.
US09538556B2

A mobile station (MS) obtains a parameter, performs transmission of a preamble, and sets a counter incremented based on transmission of the preamble. The MS is able to indicate a random access problem corresponding to one transmission timing cell group in a case where the counter reaches the parameter +1 and the transmission of the preamble is performed on the one transmission timing cell group, where the one transmission timing cell group being one of the plurality of transmission timing cell groups, and the MS is able to not indicate a random access problem corresponding to another transmission timing cell group in a case where the counter reaches the parameter +1 and the transmission of the preamble is performed on the another transmission timing cell group, where the another transmission timing cell group being one of the plurality of transmission timing cell groups.
US09538544B2

An access network (AN) receives a call announcement message for transmission to an access terminal (AT). The AN initiates, in response to the received call announcement message, a physical-layer synchronization procedure for at least one channel between the AN and the AT, the physical-layer synchronization procedure associated with a transition of the access terminal to a dedicated channel state. The AN performs the initiation by sending a message to the AT. In response to the message, the AT monitors a downlink channel for receipt of the call announcement message. The AN then transmits the call announcement message on the downlink channel to the access terminal, and the AT receives the call announcement message due to the monitoring. The call announcement message is transmitted either (i) before the physical layer synchronization procedure completes or (ii) before a transmission of a reconfiguration complete message indicating completion of dedicated channel state transition.
US09538534B2

Provided is a communication control apparatus including a communication unit configured to receive, from a base station of a radio communication system, grant information that specifies a resource for relay within a frequency resource assigned to a radio communication system operated with a frequency division duplex scheme, the resource for relay being granted to be used for relay of traffic, and a relay control unit configured to relay the traffic with a time division duplex scheme on the resource for relay during a period that is associated with the grant information.
US09538533B2

The embodiment of the present invention relates to the technical field of wireless communication, and particularly to a method and a device for resource allocation, which are used to solve the problem existing in the prior art that, when an inter-neighborhood interference coordination method is used to reduce interference, it often results in a low resource utilization rate in neighborhoods or a limitation on the transmission power, which wastes the hardware resources in a base station and increases power consumption. The method in the embodiment of the present invention comprises: at least two frequency sub-bands are determined in a carrier bandwidth, wherein the central frequencies of frequency sub-bands are different, and there is an overlapping area in the frequency domain between at least two frequency sub-bands from all frequency sub-bands; the determined frequency sub-bands are allocated to individual neighborhoods in a deployment area, and the frequency sub-band allocated to a neighborhood is used as the system bandwidth of that neighborhood. By using the method in the embodiment of the present invention, the inter-neighborhood interference in common uplink channels and common downlink channels is decreased effectively, and thus the limitation on transmission power in those neighborhoods is reduced, which increases the available signal transmission power in the neighborhoods to a certain extent and at the same time reduces the hardware costs of the base station and power consumption, without increasing the costs for network deployment.
US09538518B2

The present invention relates to a wireless communication system, and more particularly, to a method for detecting a downlink control channel in a wireless communication system and to an apparatus for same. The method by which a terminal receives downlink control information in a wireless communication system, according to one example of the present invention, includes the steps of: receiving information elements, including information for setting a plurality of downlink subframe sets and information for representing a downlink control channel type for each of the plurality of downlink subframe sets, from a base station; determining the resource location to which the control is mapped in a specific downlink subframe set according to the type of the control channel; and monitoring a control channel corresponding to the control channel type at the resource location of the downlink subframe belonging to the specific downlink subframe set and receiving the downlink control information transmitted through the control channel.
US09538513B2

A virtual broadband transmitting unit includes a stream generator to generate a multiplicity of data streams from an incoming media datastream, and a transmission manager to control the upload of the multiplicity of data streams along a multiplicity of transmission channels to at least one wireless communication network. A virtual broadband receiver includes means to receive a multiplicity of media data streams from a multiplicity of data connections, and an assembly engine to assemble the data streams into a single media stream.
US09538510B2

A wireless communications system including a base station, a relay device, and a terminal device. The terminal device is operable to receive from the base station an allocation of uplink resources for transmitting uplink data to the relay device, and to transmit uplink data to the relay device using the uplink resources allocated to the terminal device. The relay device is operable to receive the transmitted uplink data from the terminal device on the allocated resources, to receive an allocation of uplink resources for relaying the received uplink data to the base station, and to transmit the received uplink data to the base station using the uplink resources allocated to the relay device.
US09538508B2

A method of transmitting, by a user equipment, control information in a communication system. The method according to one embodiment includes multiplying transmission information corresponding to the control information by a frequency direction sequence, of which length corresponds to a number of subcarriers in a resource block, to generate a first output signal; multiplying the first output signal by a time direction sequence, of which length corresponds to a number of symbols used for transmission of the control information in a transmission unit, to generate a second output signal; and transmitting the second output signal in the transmission unit.
US09538499B2

Methods, devices and systems for generating enhanced location information on or about a mobile device. A mobile device may be configured to determine an initial location value, compute an initial location accuracy value, compare the initial location accuracy value to a threshold value, and establish a communications group with a plurality of transceivers in response to determining that the initial location accuracy value exceeds the threshold value. In response to establishing the communications group, the mobile device may receive location information from the transceivers, use the received location information to determine a trilateration position value, and compute a trilateration variance value. The mobile device may then determine a final location value based on a combination of the initial location value, initial location accuracy value, trilateration position value, and trilateration variance value, and use the final location value to provide an enhanced location based service.
US09538498B2

Methods, devices and systems for generating enhanced location information on or about a mobile device may include improved dead reckoning solutions in which the mobile device performs location determination calculations with the aid of network components or global positioning systems (GPS). The network aided location information may be provided to the processor and utilized in measuring the accuracy of sensor based location calculations. The mobile device may utilize local sensors to obtain a set of combined sensor output location information, which may seed execution of dead reckoning To ensure that most accurate location information is provide to the enhanced location based service, the dead reckoning location information may be compared to a current best estimate. Results of the comparison may be passed to the enhanced location based service and the methods, systems, and devices may reiterate the location determination.
US09538495B2

A system and method for estimating a location of a wireless device receiving signals from plural nodes of a communications network. A wireless device may be directed to transmit a first signal having one or more predetermined parameters. At one or more location measurement units (“LMU”) an uplink time of arrival (“TOA”) measurement between the wireless device and one or more of the plural nodes or LMUs may be determined as a function of the first signal transmitted from the wireless device. Downlink signal measurements of signals received by the wireless device may be collected, and a location of the wireless device determined as a function of the uplink TOA measurements and the collected downlink signal measurements.
US09538494B2

Techniques for locating a mobile device using a time distance of arrival (TDOA) method with disturbance scrutiny are provided. In an aspect, for respective combinations of three base station devices of a number of base station devices greater than or equal to three, intersections in hyperbolic curves, generated using a closed form function with input values based on differences of distances from the device to pairs of base station devices of the respective combinations of three base station devices, are determined. The intersection points are then tested for robustness against measurement errors associated with the input values and a subset of the intersection points that are associated with a degree of resistance to the measurement errors are selected to estimate a location of the device.
US09538490B2

A method of performing uplink synchronization in a wireless communication system includes transmitting a random access preamble which is randomly selected from a set of random access preambles, receiving a random access response, the random access response comprising a random access preamble identifier corresponding to the random access preamble and a time alignment value for uplink synchronization, starting a time alignment timer after applying the time alignment value, starting a contention resolution timer after receiving the random access response, wherein contention resolution is not successful when the contention resolution timer is expired, and stopping the time alignment timer when the contention resolution timer is expired.
US09538483B2

Systems and methods are described for jointly optimizing communications in a multi-user network to maximize the weighted sum-rate of its data links. For example, embodiments seek to maximize overall link transmit rates, while minimizing link interference and/or noise in general multi-in multi-out (MIMO) interference networks having multiple interfering data links, each with one or more antennas at the transmitter and receiver. Novel algorithmic approaches, including an “iterative minimax” approach and a “dual link” approach, are described for solving the weighted sum-rate maximization in a manner that converges quickly and reliably on an optimal point. Some embodiments implement these approaches in a centralized transmission controller, while others implement these approaches in a distributed fashion.
US09538480B2

A method and system for setting an initial dedicated physical control channel (DPCCH) power of a secondary carrier after a transmission gap are disclosed. According to one aspect, a method includes determining a filtered DPCCH power of first carrier. The method further includes determining a power offset. The method also includes calculating the initial DPCCH power of the secondary carrier by adding the determined filtered DPCCH power of the first carrier to the determined power offset.
US09538479B2

Provided is a method and apparatus for executing an uplink channel power control in dual connectivity configuration when power is limited. An appropriate power controlling method may be determined based on a priority, and may be applied to a UE that has dual connectivity with a Master eNB (MeNB) and a Secondary eNB (SeNB) in a network.
US09538466B2

A communication system includes a base station and a mobile terminal device. The base station includes a detection information notifying unit. The detection information notifying unit notifies, using a predetermined control channel, the mobile terminal device of detection information that includes a power-saving time that indicates a time that elapses before the base station enters a power-saving state. The mobile terminal device includes a detecting unit and a region information notifying unit. The detecting unit, when being notified of the detection information by the detection information notifying unit, detects a region in which a mobile terminal device is not capable of communicating with any base station based on the power-saving time included in the detection information. The region information notifying unit notifies a given base station of information on the region detected by the detecting unit.
US09538463B2

A wireless communications device is provided with a storage unit and a processor. The storage unit is configured to store signal strengths and throughputs of a plurality of Access Points (APs) which the wireless communications device was previously or is currently connected to. The processor is configured to update the stored signal strength and throughput of the currently connected AP, and scan for available APs nearby in response to detecting a low-throughput condition of the currently connected AP.
US09538459B1

Systems and methods for adaptively scanning for one or more beacon devices based at least in part on user activity are provided. More particularly, a user device can scan for one or more beacon devices at a first scan rate. The user device can detect a trigger event based at least in part on data indicative of an activity level, such as data indicative of a status of a display, data determined from one or more motion sensors, a number of beacon devices detected by the mobile device during a time period, data indicative of prior interactions with beacon device information, or data indicative of a charging status of a battery associated with the mobile device. The trigger event can signify a change in an activity level associated with the user device. Responsive to the trigger event, the user device can adjust the scan rate from the first scan rate to a second scan rate.
US09538456B2

A method is provided for performing, at a wireless device, data transmission in a wireless communication system. The wireless device receives a configuration including a plurality of virtual cell groups, each of the virtual cell groups including two or more serving cells which share an identical virtual cell identification (ID). The wireless device also receives discovery signals scrambled with the identical virtual cell ID and system information including a physical random access channel (PRACH) configuration, from master cells of each of the virtual cell groups. The wireless device selects a cell based on the discovery signals and system information, and performs a random access channel (RACH) procedure and data transmission by using the virtual cell ID of the selected cell.
US09538455B2

Described herein are various aspects related to determining whether to read system information of a network entity. A user equipment (UE) can receive system information transmitted by a network entity. The UE can analyze one or more parameters of the system information to determine whether system information for the network entity has changed when a value tag broadcasted in the system information is equivalent to a stored value tag for the network entity; thus the UE can utilize more than just the value tag, such as system information size, system information scheduling, a value tag in master information, and/or the like, at least in instance where the value tag may be the same in different transmissions of the system information. The UE can process the system information for the network entity based at least in part on determining that the system information for the network entity has changed.
US09538454B2

It is provided an apparatus, including base station means adapted to provide a base station functionality for a first user equipment attached to a first network and a second user equipment attached to a second network different from the first network; access barring broadcasting means adapted to broadcast, via the base station means, a first EAB parameter including a first category indication for extended access barring related to the first network and a second category indication for extended access barring related to the second network.
US09538451B2

A wireless communication device includes a communication unit that performs communication, a finding unit that finds another wireless communication device by using a first frame, a phase determining unit that determines whether the wireless communication device is in a first phase or in a second phase when information concerning the other wireless communication device is obtained that is found, a communication mode setting unit that sets a communication mode for sending or receiving a second frame and an action frame in accordance with a determination result, and a group forming unit that sends or receives the second frame and the action frame in accordance with the set communication mode. The second frame includes schedule information concerning a bandwidth used for communication with the other wireless communication device, and the action frame is used for forming a group with the other wireless communication device.
US09538446B1

Directing station roaming in a cloud-managed Wi-Fi network. Management messages are received from a controller that is located remotely from the Wi-Fi communication network by an access point. When an RSSI (received signal strength indication) value between the station and the access point falls below a threshold, the access point (i.e., controller access point) determines which neighboring access point would be a best fit for a hand-off, with limited real-time input form the cloud-based Wi-Fi controller. One of the two or more of the plurality of access points is selected for handing-off the station based on the RSSI values received from the interrogation. Responsive to the selection, a message is sent to the selected access point instructing the one of the at least one of the plurality of access points to respond to messages from the station.
US09538429B2

A device may receive information regarding a communication session associated with a user device and may determine, based on the received information, a type of communication session associated with the communication session. The device may determine, based on the determined type of communication session, handover parameters associated with the communication session and may transmit the handover parameters to the user device. The device may receive information associated with the signal information for one or more other devices and may initiate, based on the received information, a handover operation associated with the user device.
US09538425B2

A method and apparatus for controlling an optimization of handover procedures between universal terrestrial radio access (UTRA) release 6 (R6) cells and UTRA release 7 (R7) cells are disclosed. When a wireless transmit/receive unit (WTRU) is moving between an R6 cell and an R7 cell, or between R7 cells, a handover is initiated from a source Node-B to a target Node-B. In the R7 cell, the enhanced medium access control (MAC) functionality including flexible radio link control (RLC) protocol data unit (PDU) size and high speed MAC (MAC-hs) segmentation and multiplexing of different priority queues are supported. After the handover, a MAC layer and/or an RLC layer are reconfigured or reset based on functionality supported by the target Node-B.
US09538420B2

A wireless transmit/receive unit (WTRU) configured to operate in an IEEE 802.11 network may receive a MAC header with two or three address fields and a MAC frame version indicator. The MAC header may have at least one bit that indicates a presence of a third address field in the MAC header. The WTRU may determine a time interval for MAC frame transmissions by multiplying a duration value in a first message field by a multiplier value in a second message field.
US09538418B2

Some demonstrative embodiments include devices, systems and/or methods of communicating Wireless Local Area Network (WLAN) offloading information between cellular managers. For example, a first cellular manager of a first cellular network may send to a second cellular manager of a second cellular network one or more WLAN offload parameters corresponding to Radio Access Network (RAN) assisted WLAN interworking information, which is sent to one or more User Equipment (UE) in the first cellular network.
US09538414B2

Each of the nodes included in an ad-hoc network determines whether an identifier indicative of high-priority data is included in data received from another node. When the identifier is included in the received data, each of the nodes determines whether the subject node is a device that relays the received data to a destination. When determining that the subject node is a device that relays the received data to the destination, each of the nodes transmits the received data to the destination. When determining that the subject node is not a device that relays the received data to the destination, each of the nodes suppresses data transmission to the nodes included in the ad-hoc network.
US09538412B2

Techniques for radio resource measurement (RRM) that support directionality, as well as scheduled media access techniques are described. For instance, a measurement request may be transmitted from a first device to a second device. This measurement request directs the second device to take one or more measurements of a wireless channel. Various characteristics for the one or more measurements may be included in the measurement request. For example, the measurement request may indicate at least one directional parameter and at least one timing parameter for the one or more measurements. In response to the request, the first device receives a measure report that includes measured values for each of the one or more measurements.
US09538411B2

There is provided a method for transferring a status report in a wireless communication system, the method comprising: configuring a Packet Data Convergence Protocol (PDCP) status report used by a PDCP layer located above a Radio Link Control (RLC) layer, the PDCP status report including an indicator indicating a count value of a first non-received service data unit (SDU); and transferring the configured PDCP status report to a lower layer. The indicator may be first missing sequence number count (FMS COUNT) value which contains the count value of the first non-received PDCP SDU.
US09538410B2

The present invention relates to a method for user equipment transmitting an uplink signal in a time division duplex (TDD) wireless communication system, according to one embodiment. The method comprises: detecting a downlink control signal; and transmitting the uplink signal on the basis of uplink-related control information which is included in the downlink control signal that is detected, wherein a transmission power value is reported on the basis of an indicator, which indicates reporting of the transmission power value of the uplink signal at a specific time.
US09538402B2

A method includes configuring one or more network nodes in a radio access network using information to be used by the one or more network nodes to determine whether an event detected by the one or more network nodes and associated with the radio access network should be reported. Another method includes configuring a network node in a radio access network using information to be used by the network node to determine whether an event detected by the network node and associated with the radio access network should be reported. Responsive to the configuring, the network node may or may not report the event. Apparatus, computer programs, computer program products, and communication systems are also disclosed.
US09538400B2

A radio communication system includes a base station and a mobile station communicating with the base station. The base station includes a selection unit and a first transmitting unit. The selection unit selects an item of identification information for identifying a data series from a plurality of data series corresponding to resources used to transmit a signal that the mobile station uses to measure reception quality. The first transmitting unit transmits the item of identification information. The mobile station includes a receiving unit, a measurement unit, and a second transmitting unit. The receiving unit receives the item of identification information that the first transmitting unit has transmitted. The measurement unit measures the reception quality using a signal of the data series identified by the item of identification information. The second transmitting unit transmits information indicating the reception quality that the measurement unit has measured to the base station.
US09538399B2

A wireless communication apparatus includes: a first antenna; a second antenna; a variable phase shifting unit that changes a phase of a high frequency signal to be received or transmitted via the first antenna and the second antenna; and a phase-information table storage unit that stores a phase information table in which phase information is associated with each of a plurality of communication terminals as communication partners. When communicating with one communication terminal out of the plurality of communication terminals via the first antenna and the second antenna, the variable phase shifting unit changes a phase of a high frequency signal on the basis of phase information stored in the phase information table in association with the one communication terminal.
US09538393B2

To provide a mobile terminal test apparatus and a mobile terminal test method capable of setting the setting items more easily and more accurately than in the related art and testing mobile terminals. A mobile terminal test apparatus 10 includes a registered item display screen control unit 32 that performs a display control operation of displaying a registered item display screen including registered items, a history display screen control unit 33 that performs a display control operation of displaying a history display screen for displaying the history of the setting items set in the past and test parameter values, and a setting item display processing unit 35 that performs at least one of a process related to the display order of the setting items and a process related to the deletion of the setting items.
US09538375B2

Provided is a method for configuring wireless connection settings, a wireless communications apparatus, and a display method, the method being executed by the wireless communications apparatus and including: (a) receiving a first radio signal which includes second configuration information; (b) receiving authentication information for use in authenticating a first device from a second device, the authentication information being uniquely associated with the first device; (c) retaining the authentication information; (d) establishing the wireless connection with the first device, using the second configuration information; (e) transmitting a second radio signal which includes the authentication information, to the first device through the wireless connection established; (f) receiving a third radio signal which includes response information to the authentication information; and (g) transmitting the first configuration information to the first device if the response information indicates that the first device has been successfully authenticated.
US09538373B2

An MME negotiates security in case of idle state mobility for a UE from a first network to a LTE network. The UE sends its security capabilities including non-access stratum (NAS) security capabilities supported by the UE to the LTE network. The MME selects a NAS security algorithm, in accordance with the NAS security capabilities of the UE, and sends the selected NAS security algorithm to the UE, sharing the NAS security algorithm between the UE and the LTE network when the UE moves from the first network to the LTE network. The MME also derives, in accordance with the selected NAS security algorithm, a NAS protection key from an authentication vector-related key so as to security communication between the UE and the LTE network.
US09538361B2

The invention provides a solution for registering a terminal having a packet-switched and circuit-switched functionality in a packet-switched service domain, such as the IMS over a circuit-switched access domain. In particular it is proposed to send a packet-switched registration message packed in a circuit-switched transport bearer (USSD) to a circuit node (HLR, MSC, dispatcher) which selects an adapter node (IA) being responsible for performing a registration in the packet-switched service domain on behalf of the user using the information provided with the packet-switched registration message and by deriving and adding additional information.
US09538360B2

An apparatus is provided that includes a processor configured to maintain a first implicit registration set for a first apparatus, where the first implicit registration set includes a first identity unique to the first apparatus and a shared identity. The processor is also configured to maintain a second implicit registration set for a second apparatus, where the second implicit registration set includes a second identity unique to the second apparatus and the shared identity. In this regard, the first and second implicit registration sets may be maintained to enable registration of the first and second apparatuses with a network such that each of the first and second apparatuses are configured to receive communication requests to the respective first and second identities, and such that both of the first and second apparatuses are configured to receive communication requests to the shared identity.
US09538357B2

The disclosure provides a method and an apparatus for processing Device-to-Device (D2D) device identity. The method includes that: a D2D device transmits a temporary D2D identity request; the D2D device receives temporary D2D identity authorization information corresponding to the temporary D2D identity request, and acquires a temporary D2D identity; and the D2D device broadcasts the received temporary D2D identity, wherein the temporary D2D identity is configured to discover the D2D device by a discovering D2D device in a D2D discovery process. By the disclosure, the security of communication among the D2D devices is improved.
US09538356B2

The disclosure relates to a method, system and apparatus for extending Bluetooth low energy (BLE) technology to conserve energy in multi-mode wireless devices. In one embodiment, the disclosure relates to a device comprising a first module configured for radio communication at a non-BLE communication mode; a second module to communicate at a BLE communication mode; and a controller for controlling the first and the second communication modules, the controller configured to direct the BLE communication mode to at least one of advertise or scan for information relating to the non-BLE communication mode.
US09538355B2

A targeted discovery between a first device and a second device in a network, in particular, a WHDI network, provides discovery for an identified device or a group of identified devices. The targeted discovery determines an identifier for a second device or a group of devices that the second device belongs to, and sends a device discovery message to the second device using the identifier for the second device when the second device is configured to respond to the device discovery message if the device discovery message includes the identifier for the second device. The first device receives a response to the device discovery message from the second device and can start further communication with the second device.
US09538351B1

A device may receive a first request to authenticate a user device for an emergency phone call requested by the user device via a wireless local area network (WLAN). The device may authenticate the user device based on the first request. The device may provide an authentication acceptance message, indicating that the user device is authenticated, based on authenticating the user device. The device may receive a second request, based on providing the authentication message, to establish the emergency phone call. The second request may include an emergency access point name (APN). The device may determine that the emergency APN is not provisioned for the user device. The device may provide, based on determining that the emergency APN is not provisioned, an instruction to allow the emergency phone call from the user device using the preconfigured APN.
US09538347B2

An information distribution system, of the type including distribution means adapted to distribute said information in a first predefined language, said distribution means including at least one distribution device coupled to at least one control unit. The invention is characterized in that said system includes connection means for establishing a telephone connection with a mobile telephone through a telephone network, said connection means being associated with said distribution means for distributing said information through said at least one device in a second language corresponding to the language of the country where a SIM card has been associated with said mobile telephone that has established said telephone connection.
US09538345B2

The present disclosure is directed to systems and methods for performing load balancing and message routing by a device intermediary to a plurality of short message peer to peer (SMPP) clients and a plurality of SMPP servers. The device can receive a request from an SMPP client to establish an SMPP session, replace a first sequence identifier in the request with a second sequence identifier generated by the device, and store a mapping of the second sequence identifier to the first sequence identifier. The device can select an SMPP server to forward the request with the second sequence identifier and receive a response from the SMPP server with the second sequence identifier. The device can identify, from the mapping, the first sequence identifier and the connection to the SMPP client using the second sequence identifier to forward the SMPP response with the first sequence identifier.
US09538340B2

A social networking system selects a set of groups for presentation to a user of the social networking system. To select groups, the social networking system determining scores for various groups representing a likelihood of the user interacting with the groups. When determining a score for a group, the social networking system accounts for a likelihood of the user providing content to the group as well as the user accessing or viewing content associated with the group. Based on the scores, one or more groups are selected and presented to the user. Additionally, the social networking system may apply one or more diversity rules so that the selected groups have a variety of characteristics.
US09538333B2

Techniques where a computer system is able to obtain information about a subject by communicating with a device that employs a limited range communication technology and is associated with the subject are described.
US09538332B1

An infrastructure of Bluetooth and/or Wi-Fi enabled RF tags or beacons deployed within a structure, an urban environment, a residence, buildings, real estate property, in a parking area, etc. The deployed beacons can be integrated with sensors to initiate or trigger an application. The infrastructure being used to recognize a presence of a user within the area to trigger activities, initiate Location Based Services (LBS), provide navigation, provide mapping, convey of information, initiate a link to a server or software, provide support during an emergency, provide assist to E-911 services, trigger an automation function, provide real estate information, and the like.
US09538323B2

A wearable apparatus, which includes a positioning module, a local wireless communication module and a processor module, is disclosed. The processor module is adapted to send a request command through the local wireless communication module to the electronic apparatus for inquiring second positioning information generated by the electronic apparatus. In response to the processor module receives a valid request response comprising the second positioning information from the electronic apparatus, the processor module is further adapted to locate the wearable apparatus according to the second positioning information. In response to the processor module receives an invalid request response from the electronic apparatus, the processor module is further adapted to activate the positioning module to receive the first positioning information, and locate the wearable apparatus according to the first positioning information.
US09538322B2

A method for reconstructing the map of an environment (20) surrounding a wireless device (100), the environment (20) being equipped with one or more radio frequency tags (1) set in a number dependent on the level of detail to be obtained in the reconstruction, the method including the steps of: receiving identification and localization data of the one or more radio frequency tags (1) over a wireless connection by at least one wireless receiver (3) of the wireless device (100); storing the identification and localization data of the one or more radio frequency tags (1) into a filing and/or storage component (5,6) by a processor (2) of the wireless device (100); and providing on an output component (7) of the wireless device (100) at least one map of the environment (20) built on the basis of the identification and localization data of the radio frequency tags (1).
US09538321B2

Certain embodiments herein relate to efficient location determination by wireless stations using one-to-many communication techniques. Location determination can be facilitated by using one-to-many communication techniques to provide for efficient timing message exchange between an initiating wireless station and one or more responding wireless stations. Based at least in part on the time-of-flight of the exchanged messages, the initiating wireless station can determine its distances from the respective one or more responding wireless stations. Based at least in part on the determined distances, the wireless initiating station can determine its location using trilateration or multilateration techniques.
US09538317B2

In one aspect, this disclosure is directed to an activity tracking device having a size and shape adapted for physical coupling with a user. The activity tracking device may include one or more sensors to generate sensor data. For example, the sensor data can include activity and/or biometric sensor data related to the user and/or environmental sensor data related to an environment around the user. The activity tracking device may also include an identification tag including identification data that includes information about actions and/or operations associated with the particular activity tracking device. The activity tracking device also can include an identification tag transmitter, electrically coupled with the identification tag, to wirelessly transmit the identification data, according to a communication protocol, to a wireless reader responsive to coming within a proximity of the wireless reader. The wireless reader can perform, or cause a processing device to perform, the actions and/or operations.
US09538316B2

A smart monitor system includes a hand-held electronic device and a monitor. The hand-held electronic device includes a panel, a control unit, a touch-sensing cover and a wireless communication unit. The touch-sensing cover has a cover and a touch-sensing structure. The cover is disposed on the side of the hand-held electronic device opposite the panel. Partial or total area of the touch-sensing structure is disposed on the cover. The touch-sensing structure is electrically connected to the control unit. The wireless communication unit has a wireless communication chip and an antenna. The wireless communication chip is electrically connected to the control unit, and the antenna is disposed on the touch-sensing cover. The smart monitor system can communicate with and controls the monitor through the hand-held electronic device for various application.
US09538315B2

A computing device comprises a head that can be docked to a base. The base includes a base transceiver to transmit (or receive) a signal via a first port of a waveguide. The waveguide also includes at least a second port and a third port. The head includes a head transceiver to transmit (or receive) the signal via the waveguide. When the head is in a first position relative to the base, the head transceiver may transmit (or receive) the signal via the second port. When the head is in a second position relative to the base, the head transceiver may receive transmit (or receive) the signal via the third port.
US09538312B2

Methods of providing information using an interactive information device (2) are provided. A first method comprises displaying on a display (3) of an interactive information device (2) information selected from information for display stored in a memory of or accessible to the interactive information device (2), establishing a communications connection between the interactive information device (2) and a mobile communications device (20), and transmitting data to the interactive information device (2) from the mobile communications device (20) and/or from the interactive information device (2) to the mobile communications device (20). A further method comprises a tag device detecting the presence of a mobile communications device (20), transmitting data stored in the tag device to the mobile communications device (20) or an information device (2) in response to the detection, preferably transmitting at least some of the data, received from the tag device, from the mobile communications device (20) to an information device (2), and displaying on a display (3) of the information device (2) information relating to the transmitted data received from the mobile communications device (20). One or more systems and/or means for carrying out the methods are provided.
US09538307B2

An audio signal reproduction device generates, from an obtained audio signal, first reproduction signals for the first speaker group, sounds from which are localized at first virtual sound positions, and second reproduction signals for the second speaker group, sounds from which are localized at second virtual sound positions substantially the same as the first virtual sound positions. The audio signal reproduction device generates the first reproduction signals and the second reproduction signals so that at least phases or sound pressure values of a first sound and a second sound are different at a listening position, the first sound being indicated by the first reproduction signals, and localized at a first position among the first virtual sound positions, the second sound being indicated by the second reproduction signals, localized at a substantially same position as the first position, and substantially the same as the first sound.
US09538303B2

An audio controller for use with a loudspeaker that generates sound in dependence upon a loudspeaker signal is disclosed. The loudspeaker includes a voice coil. The audio controller includes a monitor to monitor an electric response of the voice coil to the loudspeaker signal and a signal generator to generate an evaluation signal. The evaluation signal comprises a signal having an evaluation frequency that is below resonant frequency of the loudspeaker. A processing unit is included to generate, based on the monitored electric response, the loudspeaker signal from an input sound signal. The processing unit is configured to combine the evaluation signal with the input sound signal to generate the loudspeaker signal.
US09538302B2

Techniques for determining whether a speaker element, or “earpiece,” of an earphone or headphone set is located within, or proximate to, a right ear, a left ear, or neither ear of a user of the set may include receiving a first temperature value from a first temperature sensor, receiving a second temperature value from a second temperature sensor, and determining whether the speaker element is located within, or proximate to, the right ear, left ear, or neither ear, based on (e.g., a difference between) the first and second temperature values. The techniques may further include receiving a third temperature value from a third temperature sensor, such as an user ambient temperature sensor, or a user body temperature sensor, and further determining whether the speaker element is located within, or proximate to, the right ear, left ear, or neither ear, based on the third temperature value.
US09538296B2

The application relates to a hearing assistance device (HAD) comprising (a) an input transducer system comprising (a1) an audio input transducer (AIT), and (a2) a first supplementary input transducer (SIT1), (b) an output transducer (OT) for converting a processed output signal to a stimulus perceivable by said user as sound, and (c) a signal processing unit (SPU) operationally connected to said audio input transducer (AIT), to said first supplementary input transducer (SIT1), and to said output transducer (OT), said signal processing unit (SPU) being configured for processing said electric audio input signal, and said first supplementary electric input signal, and for providing said processed output signal. The audio input transducer (AIT) is adapted for being located in an ear of the user. In a NORMAL mode of operation, electric audio input signal is processed in the signal processing unit and the supplementary electric input signal(s) are used to control the processing.
US09538291B2

Provided is a speaker including: a frame; a magnetic circuit unit coupled to the frame and configured to generate a magnetic force; a voice coil provided in the frame and configured to vibrate according to the magnetic force; a diaphragm configured to vibrate and produce sound in response to the vibration of the voice coil; and an edge unit that connects the diaphragm and the frame, wherein the edge unit includes a first edge provided between the diaphragm and the frame and configured to control vibration of the diaphragm; and a second edge provided under the first edge in an axial direction of the speaker.
US09538290B2

Coaxial loudspeaker arrangement with an outer diaphragm (21) for operating in a lower frequency range, an inner diaphragm (23) for operating in a higher frequency range, both located in a common loudspeaker frame (10), with an outer voice coil (22) connected to the outer diaphragm (21), an inner voice coil (24) connected to the inner diaphragm (23), two coaxially arranged magnets (31, 32), and ferrite cores (41, 42, 43) in association with the magnets, wherein the voice coils (22, 24) extend into air gaps (51, 52) between the ferrite cores, and the diaphragms are connected to the loudspeaker frame (10) through flexible suspending elements (11-14). In the proposed loudspeaker, an inner core (41) and an outer core (42) separated from each other by an inner air gap (52), is located between an outer magnet (31) and an inner magnet (32); one ferrite core (43a) of the outer magnet (31) is separated by an outer air gap (51) from the outer core (42) located between the two magnets, wherein the voice coil (22) of the outer diaphragm (21) extends into the outer air gap (51) and the voice coil (24) of the inner diaphragm (23) extends into the inner air gap (52).
US09538288B2

An impulse response between a sound-producing source and a listening point in an acoustic space is measured. A frequency characteristic serving as the processing target of sound field correction is derived from the impulse response. A level difference at a boundary frequency between a level representing a low frequency band and a level representing middle and high frequency bands is calculated for the low frequency band equal to or lower than the boundary frequency and the middle and high frequency bands higher than the boundary frequency in the frequency characteristic. The level of a target characteristic in the low frequency band in the frequency characteristic is decided to set the level difference after sound field correction to be equal to or smaller than a predetermined value.
US09538281B2

An earbud adapter or in-ear monitor includes an Ear Interface that fits the human ear and further permits the wearer of these devices to adjust parameters of the fit. In additional aspects, the Ear Interface portion of these devices permits the user to adjust the transmission of ambient sound. The Ear Interface portion also allows the user to change ornamentation.
US09538276B2

An earphone connection interface, a terminal including the same, and a method of operating the terminal are provided. The earphone connection interface includes: a terminal left terminal, a terminal right terminal, a terminal ground terminal, an earphone detection terminal, and a terminal microphone terminal disposed sequentially along an inner wall of a cylindrical groove and an ear microphone bias voltage source electrically connected to the terminal microphone terminal; and a capacitor electrically connected to the terminal microphone terminal through a switch element.
US09538273B2

A microphone device includes an audio signal output circuit that balanced-outputs, through a balanced transmission line, an audio signal output from a condenser microphone unit, a balanced output terminal including a hot terminal, a cold terminal, and a ground terminal connected to the balanced transmission line, a power supply circuit that supplies a phantom power supply to the audio output circuit from the balanced output terminal through the balanced transmission line, and a display circuit including light emitting elements that perform lighting and non-lighting according to an operation of a manual switch, and the display circuit includes constant current elements that generate a constant current through the balanced transmission line, a constant voltage element connected to the constant current elements and which generates a constant voltage, and light emitting elements connected to the constant current elements, and to which the constant voltage by the constant voltage element is applied.
US09538267B2

A sound protection component includes an absorber element and a reflection element, the absorber element being of self-supporting design.
US09538253B2

A method and system for capturing, storing, and streaming over the air broadcasts based on user requests is disclosed. The system and method utilize subarrays of antenna elements for receiving over the air broadcasts. Processing pipelines are used to demodulate, transcode and index the content transmissions to produce content data that are streamed to users. In this way, the feeds from antennas can be accessed by users over a network connection.
US09538251B2

Systems and methods for automatically enabling subtitles are provided. A user request is received from a user input device to access a first media asset. A type of activity associated with the user is detected in response to receiving the user request. The type of activity is cross-referenced with a database of activity types associated with subtitles stored in a storage device. A subtitles setting is automatically enabled when the subtitles setting is disabled, in response to determining that the type of activity associated with the user is associated with subtitles.
US09538241B2

Methods and system deliver media to users of media presentation systems. In accordance with one embodiment of the invention, a media server communicates with a media presentation system, such as a media player for streaming video and audio, to present subscription and non-subscription media to the user of the media presentation system. Subscription media may include multi-tiered media packages and individual media offerings as selected by the user. The media may be presented in various formats, including video, a graphical display, an audio presentation, a graphical and audio presentation, URL links, and interactive windows. Information about the user, the user's subscription status, the user's media presentation system and information about the media providers and the media offered by the media providers are maintained by the media server. The media server updates the foregoing information in accordance with the interaction between the media server, the users of media presentation systems, and the media providers.
US09538240B2

Methods and apparatus for detecting space-shifted media content associated with a digital recording/playback device are disclosed. An example method for detecting space-shifted media content includes detecting, at a router, a data packet transmitted from a first media device of a home network to a second media device of the home network; and determining, at the router, that media associated with the data packet is space-shifted when the data packet comprises at least one of media data or command data.
US09538227B2

Techniques for call integration are provided. Call logs associated with multiple voice accounts are acquired and integrated as an integrated call log. The integrated call log is presented at a display. A user can take a variety of actions on the integrated call log as a whole or on individual entries within the integrated call log.
US09538221B2

A system comprises television equipment and a number of portable electronic devices. The television equipment includes a large display and control circuitry. The control circuitry receives media content and media guidance data for display on the display. The control circuitry also includes communication components for communicating with the portable electronic devices. The portable electronic devices are operable for displaying video and communicating with the television equipment. A method comprises the steps of receiving media guidance information with a first portable electronic device; transmitting at least some of the media guidance information from the first portable electronic device to the control circuitry of the television equipment; and displaying the media guidance information from the first portable electronic device on the display of the television equipment while simultaneously displaying media content or media guidance information received from a source other than the first portable electronic device.
US09538217B1

In some embodiments, the present invention is directed to a computer system which includes: a specifically programmed server, where the server includes a plurality of modules configured to perform at least: electronically and periodically obtaining, over a computer network, media data from a plurality of computer systems of media data sources, where the media data is associated with a plurality of media airings of a plurality creatives; electronically and periodically obtaining web tracking transaction data from a computer system of a web tracking electronic source; where the web tracking transaction data including web tracking metrics for web originated activities; where web originated activities include web orders placed in response to the offer associated with the creative; for each web order record in the transactional web data: attributing, by the specifically programmed server, a particular web order to a particular media airing; and displaying a real time updatable web attribution report.
US09538212B2

A method of generating a stream comprising synchronized interactive content is described. The method comprises the steps of: transmitting a first stream from a studio to a terminal or a terminal system of a first user and to a buffer; transmitting in response to the first stream a second stream to a mixer connected to the buffer, the second stream comprising content generated in reaction to the content of the first stream; providing the mixer with a temporal relation between the packets in the first and second stream; generating a first output stream comprising a substantially synchronized content by mixing packets in second stream with packets of the buffered first stream on the basis of the temporal relation.
US09538209B1

Techniques described herein identify items within a content stream and output information pertaining to these items. For instance, the techniques may monitor an audio and/or video stream to identify products, geographical locations, particular people, or any other item of interest. In response to identifying an item of interest, the techniques obtain an instruction that determines what type of information to output with the content stream.
US09538208B2

Systems, apparatus, articles, and methods are described including operations for distributed transcoding of video clips.
US09538192B2

A method of decoding a video includes determining an initial value of a quantization parameter (QP) used to perform inverse quantization on coding units included in a slice segment, based on syntax obtained from a bitstream; determining a slice-level initial QP for predicting the QP used to perform inverse quantization on the coding units included in the slice segment, based on the initial value of the QP; and determining a predicted QP of a first quantization group of a parallel-decodable data unit included in the slice segment, based on the slice-level initial QP.
US09538187B2

A method and apparatus for encoding and decoding a video are provided. The method of encoding the video includes: determining whether a unidirectional motion estimation mode and a bidirectional motion estimation mode are to be used based on a size of a current prediction unit to be encoded, performing the motion estimation and the motion compensation on the current prediction unit according to the determining of whether the unidirectional motion estimation mode and the bidirectional motion estimation mode are to be used, determining an optimum motion estimation mode of the current prediction unit based on an encoding cost of the current prediction unit obtained through the performing of the motion estimation and the motion compensation, and encoding information indicating the determined optimum motion estimation mode based on the size of the current prediction unit.
US09538185B2

A multi-description-based video encoding and decoding method, device and system, comprising the following steps: separating odd frames from even frames to generate and encode an initial description; utilizing the correlation of macro-block levels between different descriptions to generate and encode the side information of different modes; and transmitting via a channel. The present invention may be used in a real-time video transmission scenario.
US09538182B2

A process and apparatus for digital compression of multiview video, supplied by additional data of scene depth. The method of coding is offered, including: each frame of the multiview video sequence, encoded again, determined according to the predefined order of coding, is represented as a collection of non-overlapped blocks, such that at least one already encoded frame is detected, corresponding to the given view and designated as reference, the synthesized frames for encoded and reference frames, differing that for each non-overlapped block of pixels of the encoded frame designated as an encoded block the spatial-combined block in the synthesized frame is determined, corresponding to the encoded frame, designated as the virtual block, for which spatial position of the block of pixels is determined in the synthesized frame corresponding to a reference frame.
US09538175B2

A device for coding video data includes a video coder configured to code first significance information for transform coefficients associated with residual data, wherein the first significance information indicates if a first sub-block comprises at least one non-zero coefficient, wherein the first sub-block is a sub-block of an entire transform block; and, code second significance information, wherein the second significance information indicates if a second sub-block comprises at least one non-zero coefficient, wherein the second sub-block is a sub-block of the first sub-block, wherein coding the second significance information comprises performing an arithmetic coding operation on the second significance information, wherein a context for the arithmetic coding operation is determined based on one or more neighboring sub-blocks of a same size as the first sub-block.
US09538174B2

A method and apparatus for decoding two-level scanned transform coefficients corresponding to a transform unit (TU) are disclosed. The TU is divided into sub-blocks and the transform coefficients of the TU are scanned across the sub-blocks according to a first scan pattern, and each sub-block is scanned according to a second scan pattern. In one embodiment, the sub-blocks of the transform coefficients received from the variable length decoding are stored in an inverse scan buffer (or TC buffer) and the transform coefficients are retrieved from the inverse scan buffer row-by-row or column-by-column in a selected direction after a corresponding row or column of the transform coefficients is fully received. In a system incorporating an embodiment of the present invention, at least a leading row or a leading column of the transform coefficients is available in the selected direction before a last sub-block of the transform coefficients arrives.
US09538166B2

An apparatus for measuring a depth of a 3D image includes a display panel unit which produces a 3D image by displaying a left-eye and a right-eye image, a depth measurement unit which measures projecting distances or recessed distances of the 3D image and a real object, a parallax measurement unit which measures a distance between pupils of an experimenter based on the projecting distances or recessed distances of the 3D image and the real objects, and a depth value calculation unit which calculates an average value of the projecting distances or recessed distances of the real object with respect to a plurality of experimenters measured when a change in distance between pupils is the same as a change in distance between pupils measured by adjusting the projecting distance or recessed distance of the 3D image, and determines the calculated average value as a depth value of the 3D image.
US09538164B2

The example techniques of this disclosure are directed to generating a stereoscopic view from an application designed to generate a mono view. For example, the techniques may modify instructions for a vertex shader based on a viewing angle. When the modified vertex shader is executed, the modified vertex shader may generate coordinates for vertices for a stereoscopic view based on the viewing angle.
US09538160B1

Methods and apparatus for capturing and displaying stereoscopic images are described in a manner that allows a user to obtain a 3d virtual reality experience simulating that of being in a seat at a football game or other event. Rear images are modified, e.g., in luminance intensity, to make them consistent with the luminance intensity of the forward images to avoid or reduce edges or differences in luminance intensity as a users turns his head from viewing a main image area to a side or rear image area. A seamless 3D presentation is made possible through the use of fisheye lenses at capture time and combining of images corresponding to forward and rear image areas as a user turns his or her head requiring a change in the captured image area which is displayed to the user.
US09538158B1

A system and a method are described for monitoring a medical care environment. In one or more implementations, a method includes identifying a first subset of pixels within a field of view of a camera as representing a bed. The method also includes identifying a second subset of pixels within the field of view of the camera as representing an object (e.g., a subject, such as a patient, medical personnel; bed; chair; patient tray; medical equipment; etc.) proximal to the bed. The method also includes determining an orientation of the object within the bed.
US09538153B1

In a high speed image capturing state, a camera signal processing circuit is not needed to perform a signal process at a high screen rate, but at a regular screen rate. In the high speed image capturing mode, raw data of 240 fps received from an image sensor 101 are recorded on a recording device 111 through a conversion processing section 201 and a recording device controlling circuit 210. Raw data that have been decimated and size-converted are supplied to a camera signal processing circuit 203 through a pre-processing circuit 202 and an image being captured is displayed on a display section 112 with a signal for which a camera process has been performed. In a reproducing state, raw data are read from the recording device 111 at a low screen rate according to a display performance of the display section 112 and the raw data that have been read are processed are processed by the pre-processing circuit 202 and the camera signal processing circuit 203 and a reproduced image is displayed by the display section 112.
US09538150B2

Monitoring system of person coming to entrance comprises camera for capturing image of the person and recorder for the captured image, the system informing the person of the image recordation for deterring a crime in bad visit case or making polite notice in goodwill visit case. Unlock system has an intercom for visitor to request unlock and a self unlock operating portion for resident. If unlock done through intercom with acquaintance confirmed, polite notice is preferred, whereas “note record” is added to the image record in case of intercom unlock with unacquainted assumed. If unlock done by resident, the information and the image recordation are withheld. If entrance in a group detected, “note record” is added to the image record in case bad person successively follows goodwill person duly unlocking entrance. Privacy of acquaintance visitor image is protected by password. “Note record” is added to image record without voice message.
US09538148B2

A method and apparatus for transmitting a user's intention using a captured image, the method including: if a signal for selecting an article category is received from a terminal, capturing articles belonging to the article category and transmitting the captured image of the articles to the terminal; receiving from the terminal tag information indicating user's intention generated based on the captured image; and mapping the received tag information to a predetermined position on the captured image and transmitting the captured image with the mapped tag information to the terminal.
US09538145B2

A transmission apparatus that transmits an image to be distributed to a reception apparatus includes a holding unit configured to hold a plurality of settings that include resolution of a captured image and that are used for generating the image to be distributed, a reception unit configured to receive, from the reception apparatus, specification information for specifying one of the plurality of held settings in relation to superimposition of the mask image and superimposition information indicating a position at which the mask image is superimposed upon the image to be distributed generated in accordance with the one of the settings specified by the specification information, and a setting unit configured to set a position at which the mask image is superimposed upon the captured image on the basis of the specified one of the settings and the superimposition information received by the reception unit.
US09538136B2

A videoconferencing system has a videoconferencing unit that use portable devices as peripherals for the system. The portable devices obtain near-end audio and send the audio to the videoconferencing unit via a wireless connection. In turn, the videoconferencing unit sends the near-end audio from the loudest portable device along with near-end video to the far-end. The portable devices can control the videoconferencing unit and can initially establish the videoconference by connecting with the far-end and then transferring operations to the videoconferencing unit. To deal with acoustic coupling between the unit's loudspeaker and the portable device's microphone, the unit uses an echo canceller that is compensated for differences in the clocks used in the A/D and D/A converters of the loudspeaker and microphone.
US09538133B2

A system and a method for executing a virtual conference that conveys gaze information are presented. Where there are three nodes, input from the first node indicating a gaze recipient of a first participant is received, the gaze recipient being associated with one of the second and third nodes. A virtual space is constructed in which representations of the first participant, a second participant who is associated with the second node, and a third participant who is associated with the third node are positioned in a predetermined order. The gaze angle of the first participant in the virtual space is determined based on the position of the representation of the first participant's gaze recipient in the virtual space. An image that includes the first participant looking at his gaze recipient in the virtual space, as seen from the position of the second participant in the virtual space, is generated.
US09538130B1

Systems and techniques to dynamically correct a gaze of participants in a video conference are described. A computing device participating in a video conference may determine that a frame of a video stream includes features of a face, extract a portion of the frame that includes a first pair of eyes, and determine that the first pair of eyes are looking in a non-forward direction. The computing device may retrieve, from a database, a stored portion that includes a second pair of eyes that are looking in a forward direction, and modify the frame by substituting the stored portion for the portion in the frame to create a modified frame. The computing device may send the modified frame to a videoconferencing server for distribution to other computing devices participating in the video conference.
US09538127B2

Disclosed is a system and method for providing two-way audio and video communications in a remote customer assistance environment. Upon initiation of an audio communications session using an audio server, separate video communications are established between the devices in a customer terminal and a remote attendant workstation. The dial plan of the audio server may used to add additional information to the incoming audio call request for use by the attendant workstation in initiating the video communications sessions.
US09538125B2

A display apparatus and a driving method thereof capable of assuring reliability in frame inversion driving and improving cinema video image quality are provided. To accomplish this, a display apparatus of the embodiment replaces at least one of a plurality of frame images obtained by doubling the frame rate, with a different image before display. Specifically, the display apparatus replaces at least one of the double-speed converted plural frame images with a high-frequency emphasized image and at least one with a low-frequency component image, and displays the frame images. Furthermore, the display apparatus replaces an image at the border between cinema images with a different image before displaying.
US09538124B2

A method is provided for evaluating plant roots, comprising (i) growing a plant in a substantially transparent container charged with a particulate, non-transparent growing medium; and (ii) evaluating plant roots through the transparent container by digital imaging. An apparatus for evaluating plant roots in a high throughput manner is also provided.
US09538119B2

A method and an apparatus for capturing video data and audio data according to reproduction of a moving picture stream are provided. In an apparatus for reproducing the moving picture, a moving picture feature section at a capture instruction time is determined as a capture section for audio data and video data decoded from the moving picture stream when a capture instruction is input while the moving picture stream is reproduced. Next, audio data and video data corresponding to the capture section among the audio data and the video data decoded from the moving picture stream are captured.
US09538113B2

A system for providing an improved image of daytime and nighttime scene for a viewer within a vehicle is provided herein. The system includes: a pixel array sensor having a fully masked gate-off capability at a single pixel level, wherein the pixel array sensor is provided with an inherent anti-blooming capability at the single pixel level; wherein each pixel is gated by a corresponding transfer gate transistor having high transfer gate efficiency. The system further includes a gating unit configured to control the transfer gate transistors with pulsed or continuous wave modulated active and passive light sources, to yield a synchronized sensing signal from the sensor, wherein a single pulse is sufficient to cover the entire field of view of the sensor and the entire depth of field of the illuminated scene; and a processing unit configured to receive the synchronized sensing signal and process it.
US09538110B2

A driving method of an imaging device, and a driving method of an imaging system set the number of unit cells based on signals output from a plurality of unit cells in a phase difference detection area within an imaging area to a number larger than the number of unit cells based on signals output from a plurality of unit cells in a range other than the phase difference detection area within the imaging area.
US09538102B2

In various exemplary embodiments, optically sensitive devices comprise a plurality of pixel regions. Each pixel region includes an optically sensitive layer over a substrate and has subpixel regions for separate wavebands. A pixel circuit comprises a charge store and a read out circuit for each subpixel region. Circuitry is configured to select a plurality of subpixel elements from different pixels that correspond to the same waveband for simultaneous reading to a shared read out circuit.
US09538097B2

An image pickup apparatus that performs control according to an azimuth detected during photographing, such that a user can enjoy excellent viewing of the synthesized image. A digital camera includes a main camera for obtaining a first image, and an in-camera for obtaining a second image when the first image is obtained. An azimuth sensor and a system controller generate first azimuth information by detecting a photographing direction of the main camera, and generate second azimuth information by detecting a photographing direction of the in-camera. The system controller records the first azimuth information in association with the first image, and the second azimuth information in association with the second image, in a recording medium.
US09538092B2

Methods and apparatus to generate wide dynamic range images are disclosed. An example apparatus includes a first processing block having first input, second input to receive input data from an image sensor, and first output; a second processing block having third input, fourth input to receive input data from the image sensor, and second output, at least one of the first and second outputs to output a WDR image based on at least two of the first, second, third and fourth inputs; an architecture recognizer having fifth input and third output, the third output to convey an architecture type of the image sensor; a function selector having fourth output to identify at least one of the first and second processing blocks based on the third output; and a sensor adapter having seventh input coupled to the fourth output and having fifth output coupled to the first and third inputs.
US09538086B2

An electronic device is configured to perform a method of previewing images photographed by a plurality of cameras. The method includes displaying a main preview image of a first one of the cameras, and displaying a sub preview image of a second one of the cameras in the main preview image; changing a property of the sub preview image in response to movement of the electronic device; and when the movement of the electronic device stops, restoring the changed property to an original property before the changing.
US09538077B1

An apparatus comprising a sensor and a processor. The sensor may be configured to capture a first video signal having a first field of view. The processor may be configured to generate a second video signal having a second field of view and a third video signal having a third field of view. The second video signal may generate the second field of view to include a first portion of the first video signal. The third video signal may generate the third field of view to include a second portion of the first video signal. The second portion may be processed to remove possible warping present on a bottom portion of the first video signal. The first and second portions may comprise an area less than the first field of view.
US09538061B1

A method and program product includes establishing a bi-directional communication channel with an operator's filming system. At least one command is communicated to the operator's filming system. The command at least includes instructions for conducting a filming, wherein the instructions are displayable on the operator's filming system. At least a real time stream of the filming is received. At least additional commands are communicated to the operator's filming system during the receiving, wherein the communicating, the receiving and the communicating during the receiving comprise a negative feedback loop during the filming.
US09538055B2

A lens barrel which is capable of securing excellent impact resistance of a lens barrel without increasing the lens barrel in size. A fixed barrel has a plurality of first projection or follower portions on an outer peripheral part thereof and having a flange portion on an object side-outer peripheral end thereof. A stopper member is fixedly arranged coaxially with the fixed barrel and has a plurality of second projection or follower portions. A cam barrel rotatingly moves in the optical axis direction. In an area where the cam barrel is extended to the object side and is close to the flange portion of the fixed barrel, side walls of the plurality of the second cam grooves with which the plurality of the second projection or follower portions are engaged, respectively, are open on the image surface side of the plurality of the second cam grooves.
US09538047B2

An image processing apparatus includes a single-color image reading circuit and a fluorescent color area extracting circuit. The single-color image reading circuit reads an image on a document to create single-color image data. The fluorescent color area extracting circuit extracts a fluorescent color area included in the single-color image data based on pixel values of respective pixels constituting the single-color image data created by the single-color image reading circuit.
US09538046B2

If an image reproducing apparatus has a device-dependent color space conversion function that converts the color space of target image data to a device-dependent color space using a particular color space, reproduction image data is generated (i) by carrying out basic color space conversion to image data for which the color space specified by identification information is the standard color space, and (ii) by carrying out device-dependent color space conversion to image data for which the specified color space is the particular color space. If the apparatus does not have the device-dependent color conversion function, (i) reproduction image data is generated by carrying out basic color space conversion to image data for which the specified color space is the standard color space, but (ii) a notification indicating that the specified color space is not the standard color space is output where the specified color space is the particular color space.
US09538032B2

A simple configuration is used to reduce an impact applied to a reading sensor when the open/close unit is opened/closed. A back face CIS unit is retained to be movable with regard to a pressure plate so that the back face CIS unit can have a corrected posture when the pressure plate is closed.
US09538027B2

A display control apparatus includes; a display unit; a web display control unit which causes a web page to be displayed; an instruction acceptance image display control unit which causes a download instruction acceptance image to be displayed in a web page; a download instruction acceptance unit which accepts a download instruction in accordance with an operation based on the download instruction acceptance image; a processing acceptance image display control unit which displays a processing acceptance image for accepting an instruction for carrying out printing, saving or transmission in respect of the data to be downloaded, when the download instruction is accepted; and a processing acceptance unit which accepts the selection of any one of the aforementioned processes in accordance with an user's operation based on the processing acceptance image.
US09538026B2

A display apparatus includes a display and an acceptance controller. The display displays on a display unit a list of processing images, each of which is an image representing a unit of processing. The acceptance controller restricts acceptance of an operation for a different processing image whose display position moves in accordance with an action of one processing image.
US09538025B2

A data processing apparatus is configured to: receive a selection of one of a first function and a second function other than the first function; store, if one device is selected, the selected one device in correlation with the first and second functions; and control a device to execute one of the first and second functions when an instruction to execute one of the first and second functions is received. If no device is stored in correlation with the one of the first and second functions, the selected one device executes the one of the first function and the second function. If another device has been stored in correlation with the one of the first and second functions, one of candidate devices executes the one of the first and the second functions. The candidate devices include the selected one device.
US09538024B2

A portable terminal includes a storage circuit, a communication circuit, a reading instruction circuit, a target-selection accepting circuit, a scanned-image data acquiring circuit, and a combined image data generating circuit. The reading instruction circuit instructs the scanner to read the document image. The target-selection accepting circuit accepts selection of target image data from the image data inside the storage circuit. The scanned-image data acquiring circuit acquires the scanned-image data from the scanner. The scanned-image data is generated by the reading of the document image by the scanner. The combined image data generating circuit generates single combined image data with a plurality of pages by combining the scanned image data with the target image data, and acquires the combined image data instead of the scanned image data.
US09538018B2

A non-transitory storage medium stores instructions executable by an information processing server communicable with a device capable of executing a print processing and a scan processing. A delivery address and a second surface image are to be printed on first and second surfaces of a delivery object. First feature information indicates a feature of the second surface image. The information processing server reads delivery address information and the first feature information associated with each other, when scan information is newly received. The information processing server extracts sample image information when the read delivery address information is the same as the delivery address information contained in the newly-received scan information. The sample image information is for displaying a sample image corresponding to the second surface image having a feature indicated by the first feature information associated with the read delivery address information.
US09538013B1

A method and system for updating physical location data associated with a VoIP endpoint device is implemented in a variety of embodiments. In one such embodiment, a VoIP endpoint device stores an identifier for a packet-communicating device which is subject to changing. The VoIP endpoint device has an interface for communication over the Internet via the packet-communicating device and uses a circuit-implemented method for prompting a VoIP user to update physical location data associated with the VoIP endpoint device. In response to a power state transition and a change in the stored identifier, the VoIP endpoint device facilitates an update to the physical location data associated with the VoIP service.
US09538012B2

Computer-telephony events are initiated by a user operating a computer terminal to control, through a computer-telephony controller, operation of a communications terminal. The computer-telephony controller receives from a first computer terminal a request for a first computer-telephony event; in which the request for the first computer-telephony event comprises a label value. The computer-telephony controller refers to a mapping between the label value and an identifier of a communications terminal; and initiates the requested first computer-telephony event controlling operation of the communications terminal. The computer-telephony controller then receives, from second computer terminal 2B, a request for the label value. The computer-telephony controller authenticates the label value request and provides to second computer terminal the requested label value. The computer-telephony controller then receives from second computer terminal a request for a second computer-telephony event, in which the request for the second computer-telephony event comprises the label value. The computer-telephony controller refers to the mapping; and initiates the requested second computer telephony event controlling operation of the communications terminal.
US09538009B1

A telephone call to a remote party may encounter a number of abnormal conditions, which prevents the call from being offered to the remote party's interface. These conditions may be indicated to the calling party using call progress information conveyed as out-of-band information, in the form of signaling elements and/or as in-band information, in the form of audio information. The audio information may include a special information tone and/or an intercept announcement. The call handler originating the outbound call may provide the audio information to a speech analytics component that analyzes the audio information. The analyzed audio information may be reconciled with the out-of-band information. Various rules can be applied to ascertain how to disposition the call in instances where the in-band and out-of-information are inconsistent. Once reconciled, accurate call disposition information can be recorded in the call record for that call.
US09538000B1

A computer-implemented method for managing incoming calls comprises receiving, at an intermediate server communicatively coupled to a mobile phone associated with a first phone number corresponding to a first contact group and a second phone number corresponding to a second contact group, a request to receive an incoming call associated with a caller phone number. The intermediate server identifies a contact group associated with the request. The identified contact group comprises the first contact group in response to the received request corresponding to the first phone number, and the identified contact group comprises the second contact group in response to the received request corresponding to the second phone number. The intermediate server selects a notification based on the identified contact group. The intermediate server modifies the request to receive an incoming call to include the selected notification and routes the modified request to the mobile phone.
US09537998B2

A mobile terminal includes an apparatus for displaying messages. When a message is transmitted or received, whether the message has a relation with stored messages is determined. When it is determined that the message has a relation with at least one of the stored messages, the message is assigned the same tag as a tag of the at least one message. When a related message view command for one of the message and the at least one message occurs, contents of messages comprising the tag are displayed together.
US09537991B2

A method for establishing a Bluetooth® connection, where the method includes: establishing data connections with at least two Bluetooth® devices; obtaining a voice connection instruction, where the voice connection instruction includes identification information of a target Bluetooth® device selected by a user from the Bluetooth® devices; and establishing a voice connection between the mobile terminal and the target Bluetooth® device according to the voice connection instruction; and a mobile terminal, a Bluetooth® device, and a system. A voice connection is established with a Bluetooth® device selected by a user, so as to improve an extent to which a Bluetooth® connection is established intelligently and a capability of interacting with the user. Therefore, the user can, according to needs, freely select a Bluetooth® device with which a connection is established, thereby improving convenience of the user in using the Bluetooth® device.
US09537987B2

In one aspect, a first device includes a processor and a memory accessible to the processor. The memory bears instructions executable by the processor to determine at least one of whether the first device is facilitating a telephonic communication with a second device at least in part using a speaker phone feature, and that plural individuals are within a proximity to the first device during the telephonic communication. The instructions are also executable to transmit to the second device data pertaining to at least one of the use of the speaker phone feature and the existence of plural individuals.
US09537985B2

An input/output hall structure for a sound device in a portable terminal includes a main hole and a plurality of sub-holes. The main hole is provided in a case frame forming the exterior of the portable terminal to be exposed to the exterior, and inputs/outputs sound. The plurality of sub-holes is branched from the main hole and communicates with the main hole. The sub-hole and a corresponding sound device communicate sound. The structure reduces the number of holes for inputting/outputting sound of a sound device and provides a more elegant appearance with improved function. A plurality of sound devices can input/output through the main hole and branched configuration of sub-holes.
US09537981B2

The present invention relates to a method and apparatus for transmitting channel parameter information. A method for transmitting a frame in consideration of a channel environment includes the steps of: receiving long training field (LTF) setting information from a station; creating a frame including an LTF, a plurality of divided data fields, and an additional LTF on the basis of the LTF setting information; and transmitting the frame, wherein the LTF positions are ahead of the plurality of divided data fields, the additional LTF positions are between or behind the plurality of divided data fields, and the LTF setting information can be created on the basis of the movement of the station. Therefore, channel estimation performance can be increased.
US09537976B2

The present invention includes a wireless communication method and device comprising a one-to-one exchange of wireless electronic device identifications or unique profile IDs between a sending and a receiving party who are both registered users of the electronic business/personal card service and further comprising upload of the wireless electronic identifications to a data server computer system wherein said system matches said identifications with those of registered users and said computer system displays information about the user associated with each identification.
US09537975B2

A server determines whether network parameters corresponding to a client have been updated, and sends a first check package and a second check package to the client. The client determines whether the server is safe according to the first check package and the second check package, and sends a reconfiguration request to the server upon condition that the server is safe. The server sends the updated network parameters to the client for reconfiguration after receiving the reconfiguration request.
US09537974B2

Systems, methods and media are provided for collaborative caching of files in a cloud storage directory. One method includes providing, at a cloud storage server having a cloud storage directory, an interface configured for forming one or more groups. Each group has a plurality of members. The method also includes monitoring the cloud storage directory including a plurality of files that is shared amongst members of a working group and, upon detecting a file activity related to one of the plurality of files, updating a profile for the file. The method further includes determining using the updated profile whether to distribute the file to the group members by applying a policy to the updated profile. The method also includes distributing the file to the group members by downloading the file to cloud storage devices associated with the group members when it is determined to distribute the file.
US09537973B2

CND load balancing in the cloud. Server resources are allocated at an edge data center of a content delivery network to properties that are being serviced by edge data center. Based on near real-time data, properties are sorted by trending traffic at the edge data center. Server resources are allocated for at least one property of the sorted properties at the edge data center. The server resources are allocated based on rules developed from long-term trends. The resource allocation includes calculating server needs for the property in a partition at the edge data center, and allocating the server needs for the property to available servers in the partition.
US09537963B2

Systems and methods are provided for tracking sharing of an electronic content. An exemplary method may include receiving a request to access content associated with a web address by a user. Based on a unique identity assigned to the user and the web address, a unique tracking web address may be generated. This tracking web address may be shared with additional users. As other users request content associated with the tracking web address, information regarding the sharing of the electronic content may be determined and stored, allowing for tracking of sharing behavior of users.
US09537959B1

Certain aspects of the present disclosure relate to user access to an application service that references user account information and previous user action information. One example method may include receiving, via a receiver device, user input information to access an application, the user input information including at least one action request and authorizing the user to access the application. The method may also include storing the user input information as part of a contextual history information record in a database memory, generating a response message to the selected at least one action request based on the contextual history information, and forwarding the response message to the user via a transmitter device.
US09537955B1

Sending web content via asynchronous background processes is described. A system receives, from a webserver, a request, from an end-user device, for web content. The system sends the web content from a content server to a customer storage server associated with the end-user device. The system sends the web content from the customer storage server to the end-user device via an asynchronous background process.
US09537950B2

System and method for providing content to a plurality of subscribers in a communications network. The method includes receiving event parameters associated with an event from a third party; receiving location information for each subscriber from the communications network; comparing the event parameters with the location information for each subscriber to identify one or more subscribers within the plurality of subscribers within a predetermined range of the event associated with the event parameters; profiling each of the one or more subscribers to produce a profile rating and/or profile score wherein the profile rating and/or profile score are indicative of the likelihood of a given subscriber to attend the event; sorting the one or more subscribers into a number of categories based on the profile rating and/or profile score; compiling content for each category of subscribers; and delivering the content to said one or more subscribers within range of the event.
US09537948B2

According to various embodiments, a method and apparatus for providing a virtual appliance are described. The method includes: obtaining metadata of a specific virtual appliance based on a received request for obtaining the specific virtual appliance, the metadata describing information about virtual machines involved in the specific virtual appliance, determining an association relationship between the specific virtual appliance and at least one other virtual appliance according to the metadata, and providing resource information for obtaining the specific virtual appliance according to the association relationship, the resource information including a plurality of resource addresses, at least one of the plurality of resource addresses pointing to a storage location of the at least one other virtual appliance. In this way, more resource options for obtaining a specific virtual appliance are provided, thereby improving the efficiency of obtaining the virtual appliance and reducing network transmission pressure on a cloud data center.
US09537947B2

A method for operating an Internet-Protocol-based functional system in a vehicle with at least two system units separatably connected to one another in which a local IP address is respectively allocated to a first system unit and to a second system unit and data are transmitted between the first system unit and the second system unit with a reproduction rule for the purpose of carrying out a first function, wherein one of the system units acts as a transmitting system unit and the other system unit acts as a receiving system unit. The data are evaluated in the receiving system unit with the reproduction rule, the reproduction rule is used to refer to a memory location of a memory associated with the execution program code for the first function, and the first function is carried out via the receiving system unit using the data in the reproduction rule.
US09537935B2

A client device has a power system, an operating system, a single chip containing a memory, a memory controller, a central processing unit (CPU), and a peripherals interface, wherein the peripherals interface communicates with external ports over one or more communication buses; an I/O subsystem comprising a display controller, input controllers, a touch screen which includes a soft keyboard, network circuitry, HDMI display/audio, a BIO-reader sensor, a camera, ports, a CDROM drive, an optical sensor coupled to an optical sensor controller, a SATA disk; a disk RAID controller; a Bluetooth device; a Bluetooth controller; an antenna; RF circuitry connected to the antenna; a proximity sensor, an accelerometer coupled to one of the input controllers; and audio circuitry connected to a speaker and a microphone. The client device is used to gain access to a user-adaptable, user-configurable UI-server which is provisioned across a cloud computing environment.
US09537930B2

An information system accesses an internal network via a firewall from an information terminal of an external network. The information system includes a relay server provided in the external network; and a file server provided in the internal network. The file server includes a relay agent configured to manage a network connection between the file server and the relay server, and a file system configured to store desired data. The relay agent generates a thread based on a number of requests received by the relay server from the information terminal, acquires the request by using the generated thread, and transfers the acquired request to the file system. The file system identifies data corresponding to the transferred request, and outputs the identified data to the information terminal via the relay agent and the relay server.
US09537925B2

A non-transitory computer-readable storage medium may comprise instructions stored thereon that, when executed by at least one processor, are configured to cause an intermediary server to at least receive, from a first client device, a first login request via a first browser installed on the first client device, the first login request identifying a user account, receive, from a third-party server, a message request, the message request including an identifier and indicating a browser application or a browser extension, map the identifier to the user account, determine whether the user account has installed the browser application or browser extension, and if the user account has installed the browser application or browser extension, send a first message to the first browser based on the message request.
US09537924B2

A communication transaction management system has a computerized appliance executing software from a digital medium for a particular enterprise, a holding function of the software tracking received transactions initiated by associated persons, and selecting individual transactions for connection to live agents, and a monitoring function for determining behavior of the persons associated with individual transactions on hold relative to an interactive presentation. Individual transactions on hold are prioritized for connection to live agents at least in part depending on the behavior determined by the monitoring function.
US09537913B2

A music service application that can be run on a wireless mobile device enables audio data to be progressively downloaded from a remote server and also enables locally stored data to be played efficiently. Audio content that is relevant to a user is identified and downloaded to the user's mobile device, in some cases with minimal or no effort by the user. Continuous play features ensure that the user can experience an uninterrupted music experience, both in online and offline modes. Social features such as playlists and preferences of other users are leveraged, to provide users with popular music that is relevant to their interests.
US09537912B2

A computer-implemented method, computer program product, and computing system is provided for managing communication traffic relaying in a multiparty communication session. In an implementation, a method may include receiving a request from a first computing device to join a multiparty communication session. The method may also include associating the first computing device with a second computing device for the multiparty communication session, the second computing device participating in the multiparty communication session via a multipoint control unit. The method may further include relaying communication traffic for the multiparty communication session from the multipoint control unit to the first computing device by the second computing device.
US09537910B2

A computer-based method for real-time communication authorization includes receiving, from a first communication device, a communication request, verifying, with a verification engine, a pre-approval status of the communication request, storing the communication request in an approval queue if the communication authorization the pre-approval status is set to false, issuing an alert to the authorization device, and receiving one or more authorization parameters from an authorization device.
US09537907B2

A method for sharing data in a non-destructive testing (NDT) system may include receiving, using a microprocessor, an indication of data to be shared such that the data has been acquired using one or more non-destructive testing (NDT) inspection devices. The method may also include receiving a format in which to send the data, receiving one or more recipients designated to receive the data to be shared; and automatically modifying the data into the format and sending the modified data to the recipients once the data has been acquired by the NDT inspection devices.
US09537906B2

A method for creating, modifying, and terminating connections between Internet end systems, particularly, although not exclusively, for Internet telephony communication. The method relies on several request messages sent between a client and a server and the response messages sent back in response. Each request and response message may contain one or more header fields which modify or more uniquely link the messages with a given connection. On this basis, advanced telephony services, such as call forwarding, call transferring, and multiparty conferencing are provided.
US09537890B2

A trust network has at least one transmission medium supporting transmission of data, wherein data transmitted is in at least some instances transmitted in discrete portions, two or more nodes terminating discrete legs in the transmission medium, and trust software executing from a machine-readable medium by a processor on one or more of the two or more nodes. The one or more nodes executing trust software apply trust logic to transmission of the discrete data portions.
US09537882B2

Methods and systems are disclosed for detecting a security threat. The methods and systems comprise detecting that a first device is coupled with the first I/O interface, responsive to the detection that the first device is coupled with the first I/O interface, temporarily disabling data communication between the first and second I/O interfaces, acquiring a file from the detected first device via the first I/O interface, determining whether the acquired file poses a security threat, and responsive to a determination that the acquired file does not pose a security threat, enabling the data communication between the first and second I/O interfaces.
US09537875B2

At least some incoming traffic is distributed into a first set of traffic groups according to a first grouping scheme. Communication activity from a potentially malicious source may be grouped in a given traffic group in which communication activity from an acceptable source is also grouped. Potentially malicious communication activity is detected in the given traffic group. Traffic in the given traffic group is processed using a first traffic processing mode associated with potentially malicious communication activity, in which at least some traffic that is distributed into the given traffic group is discarded. In response to a dynamic trigger the grouping scheme is altered to one or more further grouping schemes in order that the communication activity from the acceptable source is likely to be subsequently grouped into a traffic group which is different to a group into which the communication activity from the potentially malicious source is subsequently grouped.
US09537874B2

The present invention has the aim of providing a method of an activity information notification service in which a server can receive activity information from a user of a target terminal, depending on his or her privacy setting, and then transmit the received activity information to a selected receiving user, and in which any receiving user can transmit a notification request to a target user in order to receive desired activity information. According to an embodiment of the present invention, a method of an activity information notification service at a server, the method includes steps of receiving activity information from a target terminal; determining a receiving terminal to which the received activity information will be transmitted, depending on a privacy setting of the target terminal stored in a storage unit; and transmitting the activity information to the determined receiving terminal.
US09537861B2

A method of mutual verification between a client and a server is disclosed. The method comprises receiving a request via a telecommunication link, the request comprising an address of the server; receiving a verification data; decrypting the verification data with a private key of the server; identifying an account identity (ID) of the client from the decrypted verification data; generating a first logon token; generating a logon message comprising the first logon token and a uniform resource locator (URL) of the server; encrypting the logon message with a public key of the client; transmitting the logon message via the telecommunication link; receiving a logon request comprising the account ID and a second logon token; and determining whether the second logon token matches the first logon token.
US09537851B2

Embodiments are directed to revoking user sessions using signaling. In one scenario, an identity platform operating on a computer system receives an indication indicating that a user's login account has been compromised, where the user's login account has an associated login session and corresponding session artifact that is valid for a specified amount of time. The identity platform generates a signal indicating that the login session is no longer trusted and that the user is to be re-directed to the identity platform to re-authenticate and renew the session artifact and provides the generated signal to various relying parties including at least one relying party that is hosting the login session for the user.
US09537849B2

A service provision system includes: a management information storage unit that stores management information for managing user identification information, device identification information, and service identification information in association with one another; an authentication information receiving unit that receives authentication information including user authentication information and device authentication information from a device connected via a network; a service specifying unit that specifies, when the authentication information is authenticated by an authentication unit, a service associated with the authentication information based on the authentication information and the management information; and a first execution unit that receives a use request of a mail distribution service from the first device connected via the network, composes a mail according to the use request of the mail distribution service received from the first device, and distributes the composed mail to a previously specified mail server connected to the service provision system via a network.
US09537838B2

Methods, systems, and computer-readable storage media for proxy re-encryption of encrypted data stored in a first database of a first server and a second database of a second server. Implementations include actions of receiving a first token at the first server from a client-side computing device, providing a first intermediate re-encrypted value based on a first encrypted value and the first token, transmitting the first intermediate re-encrypted value to the second server, receiving a second intermediate re-encrypted value from the second server, the second intermediate re-encrypted value having been provided by encrypting the first encrypted value at the second server based on a second token, providing the first encrypted value as a first re-encrypted value based on the first intermediate re-encrypted value and the second intermediate re-encrypted value, and storing the first re-encrypted value in the first database.
US09537836B2

A content delivery platform is provided that includes generating a first content package of content that is encrypted with a unique symmetric key, and a second content package including a link encrypted with the key to the first content package. The first content package is stored in a repository, and a request including the key is transmitted to a first computing device associated with a mail exchange for an encryption key file. An encryption key file is generated using the unique symmetric key and together with a authorizing token is received. A third content package is generated that is encrypted using the encryption key file and includes the encrypted link. The third content package is transmitted to a distributor gateway and the encrypted link is accessible in response to the consumer decrypting the third content package. The link is available to provide to access to the content for the consumer.
US09537835B2

A secure mobile application connection bus is disclosed. First encryption information and an identifier associated with a data storage location on a mobile device are provided from a first application to a second application. Second encryption information associated with the second mobile application is retrieved from the data storage location. The second mobile application is configured to provide data to the data storage location. Data is transferred securely between the first mobile application and the second mobile application via the data storage location.
US09537828B2

The secure mobile communication relay of the present invention may comprise: a baseband processing unit for the baseband modulation/demodulation of the mobile communication signal transmitted between a terminal and a mobile communication network base station so as to extract baseband data; a control unit for analyzing the baseband data and permitting or rejecting the relay of the baseband data based on the result of a determination of whether or not a set security policy has been violated; a storage unit for storing information for setting the security policy; and a firewall function unit for determining, based on the instructions of the control unit, whether or not the packet data included in the baseband data violates the security policy.
US09537827B1

A method includes binding, using a plurality of processors, a process to a wildcard address and a port on each of a plurality of nodes. The process receives, on a redirector node, a first request for a first address of a first volume located on the cluster from a first client. The first request is sent to the port and a first address associated with a first virtual local area network (VLAN) that is not the wildcard address. The process determines the first address from the first request and a name of the first VLAN based on the first address. The process determines a first node that contains information regarding the first volume and an address of the first node that is part of the first VLAN. The process determines that a volume identifier associated with the first volume of the first request is present on a volume list.
US09537824B2

An apparatus and method for enhancing the infrastructure of a network such as the Internet is disclosed. A packet interceptor/processor apparatus is coupled with the network so as to be able to intercept and process packets flowing over the network. Further, the apparatus provides external connectivity to other devices that wish to intercept packets as well. The apparatus applies one or more rules to the intercepted packets which execute one or more functions on a dynamically specified portion of the packet and take one or more actions with the packets. The apparatus is capable of analyzing any portion of the packet including the header and payload. Actions include releasing the packet unmodified, deleting the packet, modifying the packet, logging/storing information about the packet or forwarding the packet to an external device for subsequent processing. Further, the rules may be dynamically modified by the external devices.
US09537815B2

A method, computer program product, and computing system for providing a event notification concerning a specific member of a social network to one or more social network friends of the specific member. A first event message is received in response to the event notification from a first social network friend of the specific member. In response to the first event message, a communal space within the social network accessible by the specific member and the one or more social network friends is generated. The first event message from the first social network friend is posted within the communal space.
US09537813B2

A communication system includes a sender unit, a recipient unit and a control unit. The sender unit is adapted to generate an electronic message, to send the electronic message to the recipient unit, and to send a sending information message to the control unit indicating that the sender unit has sent the electronic message to the recipient unit. The recipient unit is adapted to receive the electronic message from the sender unit and to send a receipt information message to the control unit, the receipt information message indicating that a user of the recipient unit has received the electronic message.
US09537812B2

Methods, systems, and media for managing notifications directed to multiple applications installed on a user device are provided. In some embodiments, a method for managing notifications is provided, the method comprising: receiving, using a hardware processor, a first notification for a first application; determining a first user device associated with the first application; receiving a second notification for a second application; determining a second user device associated with the second application; determining that the first user device and the second user device are the same device; determining that the first notification and the second notification are corresponding notifications; determining that the first notification has priority over the second notification; sending the first notification to the first user device upon determining that the first notification has priority over the second notification; and inhibiting the second notification from being sent to the first user device.
US09537779B2

Embodiments are provided herein for a system and methods for real-time video (or other real-time traffic) delivery, e.g., for cellular or wireless networks. The schemes herein address real-time video delivery by a joint design of the radio resource scheduler and the video encoder at the network side, and of the decoder at the users' terminals. The system design reduces frame loss and hence improves user quality of experience. In an embodiment, a radio node detects a frame of a real-time traffic flow. Upon determining that a transmission deadline corresponding to a rate for real-time traffic flow does not support a size of the frame, the transmission deadline is extended according to the size of the frame and a size of a next frame. The frame and the next frame are scheduled for forwarding within the extended transmission deadline.
US09537777B1

In-band, on the fly allocation of tokens to a token bucket that limits the rate at which input/output operations are performed on a storage resource according to a maximum rate limit, while also supporting a user-configurable burst size limit that allows for a temporary spike in the rate input/output operations are received for the storage resource. An input/output time parameter is adjusted in response to receipt of input/output operations, based on the arrival times of the input/output operations, the maximum rate limit, and the burst size limit, in order to automatically allocate and consume tokens for the token bucket without requiring a separate token allocation thread.
US09537773B2

The ensuring of predictable and quantifiable networking performance. Embodiments of the invention combine a congestion free network core with a hypervisor based (i.e., edge-based) throttling design to help insure quantitative and invariable subscription bandwidth rates. A lightweight shim layer in a hypervisor can adaptively throttle the rate of VM-to-VM traffic flow. A receiving hypervisor can detect congestion and communicate back to sending hypervisors that rates are to be regulated. In response, sending hypervisors can reduce transmission rate to mitigate congestion at the receiving hypervisor. In some embodiments, the principles are extended to any message processors communicating over a congestion free network.
US09537767B2

Technologies for communicating with local components of a computing device include intercepting a name resolution request from a host application, resolving a hostname included in the name resolution request to obtain a network address assigned to a target destination of the network packet, and transmitting the network address to the host application in response to the name resolution request. Such technologies may also include receiving the network packet from the host application destined for the network address, determining, whether the target destination of the network packet includes a local component of the computing device based on the network address, and transmitting the network packet to the local component of the computing device via a platform network in response to the network packet being destined for the local component of the computing device.
US09537766B2

In one embodiment, a system includes a switching processor and logic integrated with the switching processor, the logic being configured to receive a packet, wherein the packet comprises a header and a payload, determine, without using a look-up table, a destination port based on a destination address stored in the header, and send the packet to the destination port. In another embodiment, a system includes logic integrated with and/or executable by a processor, the logic being configured to create an address allocation table comprising a plurality of values, each value being associated with a plurality of IP addresses which, when an algorithm is applied thereto, result in the associated value, receive a request for an IP address from a device electrically connected to a switch, and determine a port to which the device is electrically connected to the switch based on the port on which the request is received.
US09537765B2

A passage channel is calculated by taking into account a plurality of requirements having different importance degrees. A channel calculation unit (202) of a transport control server (100) calculates a plurality of passage channel candidates with respect to a passage setting request wherein an active passage candidate and a standby passage candidate are paired in the passage channel candidate; and calculates the occurrence number of phenomena that violate a predetermined requirement relating an operation of the active passage and the standby passage, or a value of a network element for determining whether the requirement is violated, with respect to each passage channel candidate. A cost calculation unit (205) calculates the cost of a passage channel from the calculated number of occurrence, network element value, and a predetermined cost calculation coefficient corresponding to the requirement. A GUI control unit (display control unit) 201 displays identification information of the passage channel candidate, the number of occurrences or the network element value, and the cost, as a list on, for example, a management terminal.
US09537747B2

A system may include an overlay network linking a plurality of publishers, a plurality of subscribers, and a plurality of brokers. The overlay network may include a first computer network having a first network protocol carried by a second computer network having a second network protocol. The system may also include an agent carried by each of the publishers, the subscribers, and the brokers that adjust the network's topology based upon collected runtime data of condition of each link within the network and/or broker availability to any publisher and subscriber.
US09537745B1

The present disclosure relates to a distributed disk image deployment during virtual machine instance creation, and to deploying a virtual machine instances based on disk image locality. On example method includes receiving a request to create a virtual machine instance identifying a disk image; determining one or more storage devices storing the disk image; determining a distance measurement between each of a plurality of computing nodes and the one or more storage devices storing the disk image; selecting a computing node on which to create the virtual machine instance based on a locality of the computing node to a storage device from the one or more storage devices storing the disk image, the locality including the distance measurement between the computing node and the storage device; and creating the virtual machine instance on the computing node using the disk image from the storage device.
US09537739B1

A method implemented by a node in a high availability system having a master node and a replica node, the method including monitoring another node to determine whether or not the node is responding via a network connection, when the node is found to be not responding, changing into a periodic replication mode of operation, serving user requests while in the replication mode of operation, determining that the other node is now responding via the network connection, negotiating to merge changes resulting from serving the user requests with the other node, and reverting to an online replication mode of operation.
US09537736B2

In one embodiment, a report generation system receives a request for a first report associated with a first resource and identifies a second resource associated with the first resource. The report generation system then generates a reference to a second report for the second resource. The report generation system then provides the first report for the user. The first report includes the reference to the second report.
US09537735B2

A first mobile terminal requests a device to transmit data, on the basis of a processing request transmitted from a management server. The device transmits the requested data to the first mobile terminal. The first mobile terminal generates processed data by using the data received from the device. The first mobile terminal assigns an identifier to the processed data. The first mobile terminal transmits the processed data in association with the identifier to the management server. The first mobile terminal transmits an association relationship between the identifier and the data used for generating the processed data to the device. The device stores the identifier in association with the transmitted data. A second mobile terminal transmits to the device an identifier transmitted from the management server as an identifier associated with data to be deleted. The device identifies data associated with the identifier received from the second mobile terminal.
US09537731B2

Systems, software, and methods for managing traditional (i.e., TCP/IP-based), non-traditional, and traditional-non-traditional hybrid networks of connected electronic devices are described. In one example, network management policy and network management applications are downloaded automatically upon detection and identification of a new device, application or service on a network. In another example, information related to at least one aspect of the network is obtained by a network management device through connection to a non-TCP/IP network, or by way of a gateway device or application, at least one applicable management policy is identified, and the identified policy is used to manage at least one aspect of the network's operation. In another example, devices, applications or services presenting various behaviors under various scenarios are evaluated and placed under management.
US09537726B2

The invention relates to systems, methods and computer-readable media for controlling access to compute resources in a compute environment such as a cluster or a grid. The method of providing conditional access to a compute environment comprises associating a required service level threshold with a compute environment, associating a service level with a requestor, receiving a request for access to the compute environment from the requestor; and, if the service level of the requestor meets the specified service level threshold, then allowing access to the compute resources. The threshold-based access may be enforced by reservations, policies or some other method.
US09537716B1

A computing device that is configured to coordinate remote sessions is described. The computing device includes a processor and instructions stored in memory. The computing device establishes a first remote session corresponding to a first node. The computing device further establishes a second remote session corresponding to a second node. The computing device further determines whether to establish a direct link between the first and second nodes. The computing device further establishes a direct link between the first and second nodes if it is determined to establish a direct link.
US09537712B2

A method is provided in one example and includes communicating a first request message to a first network element functioning as a point of local repair for a backup label switched path. The first request message includes a first network address having a predetermined value and an indication of a forwarding equivalence class associated with the backup label switched path. The method further includes receiving a first reply message from the first network element. The first reply message includes at least one backup path parameter associated with the backup label switched path.
US09537704B2

An apparatus and method are disclosed for migrating between terminals. An apparatus that incorporates teachings of the present disclosure may include, for example, a network proxy having a controller that manages a communications interface in a communication system. The controller can be programmed to receive a request to migrate a first terminal to a third terminal while active communications are taking place on a first voice channel connecting the first terminal to a second terminal, establish a second voice channel with the third terminal, connect the first and second voice channels, and terminate without action of an end user of the first terminal a connection between the first terminal and the first voice channel. Additional embodiments are disclosed.
US09537701B2

A joint estimation and compensation method of RF imperfections in a LIE (Long Term Evolution) uplink system comprises steps: establishing a joint signal model with RF imperfections; according to the joint signal model, undertaking estimation and compensation of CFO, DC offset, multipath channel, IQ imbalance and shaping filter imbalance of a received signal; and using a frequency equalizer to equalize said received signal and determine modulation data. For reducing computational complexity, the present invention further converts the received signal from a time domain to a frequency domain to undertake frequency domain compensation. The present invention can indeed solve the problems of IQ imbalance, filter imbalance, DC offset, multipath channel and CFO and effectively estimate and compensate RF imperfections in the LTE uplink system.
US09537699B2

Embodiments of a wireless device and method for transmitting a packet comprising one or more orthogonal frequency division multiplexed (OFDM) transmission symbols are generally described herein. In some embodiments, the wireless device may be configured to map data to active tones and map zeroes to nulled tones of a set of OFDM tones to generate an OFDM symbol comprising both the active and the nulled tones. The number of active and nulled tones may be based on a nulling factor. The OFDM symbol may be down-clocked to generate an OFDM transmission symbol for transmission over a reduced transmission bandwidth. Accordingly, low power may be used for very low data rate transmissions, which may be suitable for sensor devices.
US09537697B2

In the method for constrained optimization for compander design for OFDM PAPR, wherein the improvement comprises the step of converting a Rayleigh amplitude distribution from which superior performing companders are derived, whereby a constrained optimization problem may be solved using Lagrange multipliers.
US09537694B2

In a signal coding method, bits for coding allocated to different bands of a frequency domain signal obtained from an input signal are adjusted to improve the coding quality. The total available bits for coding are first allocated to the bands of the frequency domain signal according to a predetermined allocation rule. The numbers of bits allocated to the respective bands of the frequency domain signal are then adjusted when a highest frequency of the frequency domain signal to which bits are allocated is greater than a predetermined value. The frequency domain signal is coded according to the adjusted bit allocation for the bands of the frequency domain signal.
US09537680B2

Methods and systems are provided in which a network induces different distortions in signals traversing different segments of the network. The distortions may be used to identify locations on the network of devices that transmit and receive the signals. The distortions may be reflected in equalization coefficients programmed into transmitting or receiving devices, which may be used to pre or post filter the signals to compensate for the distortions.
US09537676B2

A semiconductor device includes a receiver configured to receive a reference voltage via a first input terminal, receive an input signal via a second input terminal, and generate an output signal by comparing the reference voltage to the input signal with each other. A termination circuit associated with the input signal terminal may be adjusted and a logic threshold voltage may be adjusted to accommodate the adjustment in the termination circuit.
US09537674B2

A method for notifying a user of a computer having a display about incoming messages stored in an inbox. The method includes the steps of receiving attribute information describing attributes of a plurality of messages in the inbox and generating message visualization structures associated with the respective messages and determining at least one non-textual visual feature of each message visualization structure on the basis of an attribute of a respective message. The method also includes rendering on the display the visualization structures within a graphical environment in which the message visualization structures convey information about the messages and their respective attributes in a non-textual list manner.
US09537669B2

A method, system and computer readable medium for selective multicast processing. The method can include obtaining, using one or more processors, an association between a multicast data stream and a service identifier. The method can also include programming, using the one or more processors, a classification engine with a match that classifies a VLAN. The method can further include receiving, at the one or more processors, a data stream, and classifying, using the one or more processors, the data stream based on a mapping to a source virtual port. The method can also include deriving, using the one or more processors, a service identifier from the source virtual port.
US09537667B2

Using switching technologies to duplicate packets of a digital stream (e.g., digital video stream) sent from one workstation to multiple recipient workstations, where the switching technologies enable the multiple streams sent from the switch to the recipient workstations to be generated from a single digital stream sent from the sending workstation to the switch. Data units, such as video data units, may be transmitted by using a switch to enable receipt of a stream of data units including a payload portion and an attribute portion from at least two conferencing participants. The switch is used to duplicate at least a subportion of the payload portion of a data unit within the stream of data units, and to enable access to the duplicated subportion of the data unit by two or more conferencing participants.
US09537666B2

A method and system for realizing number association are provided. The method includes that a Proxy Call Session Control Function (P-CSCF) acquires number information of A user; the P-CSCF parses and stores the number information to realize number association. With the method that a P-CSCF acquires number information of A user, and then parses and stores the number information, number association is realized, wherein the format of the number may be either SIP or TEL. The method and system can simplify and optimize service processing, thus improving efficiency and reducing cost.
US09537665B2

To address the need for power management, the following facilitates maintaining power states in an efficient manner based at least in part on managing packets at different layers of an input/output interface that supports multiple layers. One specific example prevents a destructive event for link layer control logic because packets and information might have been lost or dropped due to a hang condition and/or a dropped packet. In yet another example of power management, this facilitates a low power platform state by preventing the loss of packets or data upon exiting a platform power state upon initiation of a link reset condition by preventing certain types of packets from reaching link layer controller logic.
US09537663B2

A challenge manipulation and restoration capability is provided for use during network authentication. A mobile device (MD) and a subscriber server (SS) each have provisioned therein a binding key (B-KEY) that is associated with a subscriber identity of a network authentication module (NAM) of the MD. The SS obtains an authentication vector (AV) in response to a request from a Radio Access Network (RAN) when the MD attempts to attach to the RAN. The AV includes an original authentication challenge parameter (ACP). The SS encrypts the original ACP based on its B-KEY, and updates the AV by replacing the original ACP with the encrypted ACP. The MD receives the encrypted ACP, and decrypts the encrypted ACP based on its B-KEY to recover the original ACP. The MD provides the original ACP to the NAM for use in computing an authentication response for validation by the RAN.
US09537662B2

Methods and systems for generating or validating compact certificates include receiving a first format of the certificate. Moreover, obtain a signature for the certificate in the first format. For each field of the certificate decode the field to obtain a value for the field from the first format and encoding the value for the field into a second format. Decoding and encoding for each field is done incrementally in the same order of the fields as the first format. In other words, a next field is not decoded from the first format until the field is encoded in the second format. Furthermore, a security envelope is encoded using the signature in the first format and the fields.
US09537660B2

The present invention relates to information security and discloses a method of establishing public key cryptographic protocols against the quantum computational attack. The method includes the following steps: definition of an infinite non-abelian group G; choosing two private keys in G by two entities; a second entity computing y, and sending y to a first entity; the first entity computing x and z, and sending (x, z) to the second entity; the second entity computing w and v, and sending (w, v) to the first entity; the first entity computing u, and sending u to the second entity; and the first entity computing KA, and the second entity computing KB, thereby reaching a shared key K=KA=KB. The security guarantee of a public key cryptographic algorithm created by the present invention relies on unsolvability of a problem, and has an advantage of free of the quantum computational attack.
US09537657B1

Incremented authenticated encryption involves dividing a data stream to be encrypted into multiple data segments and encrypting each of the data segments. For each encrypted data segment, an authorization tag is generated. Each segment's authorization tag may be based on the corresponding segment's position in the sequence of data segments within the data stream. A segment authorization tag may be generated based on an segment initialization vector that may be incremented with each segment authorization tag. Each data segment may be encrypted independently of the others. Similarly, each encrypted data segment may be decrypted and authenticated independently of the others. Additionally, a final authentication tag may be generated. The final authentication tag may be used to authenticate all the data segments of the data stream as a whole.
US09537655B2

A random number generating device includes an uncertain circuit which outputs uncertain data, and a cipher processing device. The cipher processing device encrypts input data using a cipher function of the cipher processing device, and generates a random number including higher uniformity than data outputted from said uncertain circuit using the cipher function of the cipher processing device and the data outputted from the uncertain circuit.
US09537651B2

A plurality of user terminals or sensors transmit data encrypted by individual cryptographic key, a server receives the encrypted data items, and executes a data process according to a program defining a decryption process sequence. Bit slice expression data is generated by performing a bit slice process with respect to the plurality of encrypted data items which are decryption target, bit slice expression key based on the cryptographic key of each encrypted data item is generated, round key is generated based on a bit slice expression key, a decryption process including operation and movement processes of a block unit of the bit slice expression data, and an operation using the round key is executed, and a plurality of plain text data items corresponding to the plurality of encrypted data items are generated by a reverse conversion of the data with respect to the decryption process results.
US09537640B2

The invention relates to an apparatus including: at least one processor and at least one memory including a computer program code, the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus at least to: obtain a channel quality indicator comprising a detector class indicator informing transmitter's capability to a high order modulation, and substitute the modulation, coding and rank scheme utilizing the high order modulation with a modulation, coding and rank scheme utilizing a lower order modulation and providing nearest similar performance, if the high order modulation is not supported by a receiver.
US09537632B2

A radio communication apparatus is disclosed that enables the influence of the feedback information on the channel capacity to be kept to the minimum without reducing the transmission efficiency of information by transmission of pilot symbol. In the apparatus, a delay dispersion measuring section generates a delay profile using the received signal, and measures delay dispersion indicative of dispersion of delayed versions. A moving speed estimating section estimates moving speed of a mobile station apparatus that transmits a pilot symbol based on the variation in reception power of the pilot symbol. An other-cell interference measuring section measures other-cell interference caused by signals transmitted in cells except the cell to which the apparatus belongs. Corresponding to the delay dispersion, moving speed and other-cell interference, a pilot pattern information generating section selects a pilot pattern such that placement of pilot symbol is optimal in a frame, and generates the pilot pattern information.
US09537628B2

Methods and apparatus are disclosed for receiving user data in a wireless communication system that employs coordinated multi-point transmission of the user data from a first cell serving a wireless terminal and a second cell site neighboring the first cell site. In an exemplary system, the first cell site maps control signals and user data to a time-frequency resources according to a first mapping pattern, while the second cell site maps control data and traffic data to the time-frequency resources according to a second mapping pattern. An exemplary method comprises extracting user data, according to the first mapping pattern, from time-frequency resources of a first transmission for the wireless terminal transmitted from the first cell site; detecting a control element transmitted by one of the first and second cell sites, the control element indicating that user data associated with the control element is mapped to the time-frequency resources according to the second mapping pattern; and, responsive to said detecting, extracting user data according to the second mapping pattern from time-frequency resources of a second transmission for the wireless terminal transmitted from the second cell site.
US09537623B2

A method, an apparatus, a base station and user equipment for reducing interference in a wireless communication system are provided. The wireless communication system comprises a first cell and a second cell. The method includes mapping a resource grid of at least one of a first type of sub-frame and a second type of sub-frame to reserve at least one resource element in the first type of sub-frame and corresponding to a resource element in the second type of sub-frame and mapped for at least reference signal and a common control channel, and a resource element in the second type of sub-frame and corresponding to a resource element in the first type of sub-frame and mapped for at least one reference signal and a common control channel, for not transmitting information; and transmitting a mapping result of the mapping.
US09537612B2

The disclosure describes apparatus and methods for communicating control plane data with a mobile device in a Long Term Evolution (LTE) network employing carrier aggregation. A network apparatus, such as an enhanced NodeB (eNodeB) or a mobility management entity (MME), can be configured to evaluate a measurement report (MR) received from a mobile device for one or more radio frequency (RF) conditions associated with a primary network cell and one or more RF conditions associated with a secondary network cell. Then, based on the evaluation, the network apparatus can determine to communicate the control plane data with the mobile device via the primary network cell, the secondary network cell, or both. The control plane data can correspond to non-access stratum (NAS) information, radio resource control (RRC) information, or a hybrid automatic repeat request (HARQ) retransmission of previously transmitted control plane data.
US09537609B2

A processing module of a computing device alternatingly sends a stream of data to a first or second processing device. When receiving the stream of data, the first processing device performs a first portion of a dispersed storage error encoding function on the received stream of data to produce a plurality of sets of a threshold number of slices and writes the plurality of sets of the threshold number of slices into first memory of a dispersed storage network (DSN). When not receiving the stream of data, the first processing device reads the plurality of sets of the threshold number of slices from the first memory, performs a second portion of the dispersed storage error encoding function using the plurality of sets of the threshold number of slices to produce a plurality of sets of redundancy slices, and writes the plurality of sets of redundancy slices into second DSN memory.
US09537602B2

Isolating tenants in a multi-tenant cloud system includes identifying a plurality of tenants in the multi-tenant cloud system, assigning a domain to each tenant of the plurality of tenants based on a wavelength division multiplexing (WDM), for each wavelength set of the plurality of wavelength sets, associating each wavelength set with a different domain of the plurality of domains and with a different indicator identifying the domain for the wavelength set, and isolating each tenant using the associated wavelength sets and associated indicators. The plurality of tenants share computational resources in the multi-tenant cloud system and the domain includes the computational resources for each tenant. The WDM uses a plurality of wavelength sets and each wavelength set includes one or more wavelengths.
US09537600B2

The invention relates to a receiving device (Rx1_b) capable of receiving an optical signal emitted by an emitting device including a light source for emitting the optical signal, the optical signal being transmitted by a passive optical network having wavelength division multiplexing, the receiving device including: an optical amplifier (Amp_b) for amplifying the optical signal received from the emitting device; an optical detector (D_b) capable of detecting data in the amplified optical signal; an optical reflector (Ref_b) configured to return the amplified optical signal toward the emitting device, such as to tune the wavelength of the optical signal emitted by the emitting device by means of a round trip of the optical signal between the emitting device and the optical reflector.
US09537596B2

A terminal apparatus is disclosed wherein even in a case of applying SU-MIMO and MU-MIMO at the same time, the inter-sequence interference in a plurality of pilot signals used by the same terminal can be suppressed to a low value, while the inter-sequence interference in pilot signal between terminals can be reduced. In this terminal apparatus: a pilot information deciding unit decides, based on allocation control information, Walsh sequences of the respective ones of first and second stream groups at least one of which includes a plurality of streams; and a pilot signal generating unit forms a transport signal by using the decided Walsh sequences to spread the streams included in the first and second stream groups. During this, Walsh sequences orthogonal to each other are established in the first and second stream groups, and users are allocated on a stream group-by-stream group basis.
US09537593B2

In one embodiment, a method is disclosed in which physical layer information is received from one or more nodes along a path in a network. Self-interference information is also received from the one or more network nodes. The presence of self-interference along the path is identified and a transmission strategy of the one or more nodes is altered based on the identified self-interference and the received physical layer information.
US09537592B2

A method of calculating the difference between a device clock and a host clock over a communication network is provided. In a preferred embodiment, the method comprises: a.) sending a sync requests over the communication network; b.) storing in memory a sent host time TH0 when the sync requests was sent; c.) receiving a local time report over a communication network from a local device; d.) storing in memory a device local time X extracted from the local time report; e.) storing in memory a receive host time TH3 when the local time report was received; f.) calculating T such that T=(TH0+TH3)/2; repeating steps a through f a plurality of times; and calculating coefficients Ai and Bi using linear regression after repeating steps a through f at least twice where X=Ai*T+Bi.
US09537588B2

A mobile device may be configured with multiple receivers (e.g., a cellular receiver, a broadcast receiver such as FM, AM, DTV, a satellite receiver, a NWR receiver, etc.). Upon receipt of an emergency alert message via at least one of the receivers, the mobile device, via an application installed on the mobile device, may extract the emergency alert message from a data channel of the broadcast. The mobile device, via the application, may process the extracted emergency alert message to determine if the emergency alert message is to be rendered via the device. And, if the emergency alert message is to be rendered, the mobile device, via the application, may format the extracted emergency alert message to conform to a standard format (e.g., Commercial Mobile Alert System, CMAS, format).
US09537569B2

Methods and apparatus for target identification are disclosed. Example methods disclosed herein to respond to a target identification interrogation include aligning an optical transceiver based on a detected optical signal to establish an optical communication link with a target detector, receiving a first signal from the target detector using the optical communication link, extracting a first code from the first signal, and transmitting a second signal using the communication link, wherein the second signal is encoded with a second code based on the first code of the first signal.
US09537563B2

A method for the automated coupling of a mobile communication terminal with a central computing unit of a motor vehicle involves the mobile communication terminal communicating with a server to exchange pairing information. The central computing unit of the vehicle and an internet server exchange the pairing information. The mobile terminal then transmits the pairing information to the central computing unit of the vehicle, which then identifies and authenticates the mobile communication terminal using the pairing information and allows a coupling of the mobile communication terminal with the central computing unit of the vehicle.
US09537556B2

System and method embodiments are provided to optimize uplink multiple-input-multiple-output (MIMO) beamforming for uplink and compression for fronthaul links transmission in cloud radio access network (C-RANs). In an embodiment, cloud-computing based central processor (CP) obtains channel state information for a mobile device (MD) being served by a plurality of access points (APs) in a C-RAN, and generates a channel gain matrix in accordance with the channel state information. A weighted sum-rate maximization model is then established using the channel gain matrix in accordance with power constraints of transmission from the MD to the APs and capacity constraints of fronthaul links connecting the APs to the CP. The CP calculates a transmit beamforming vector for the MD and a quantization noise covariance matrix for the APs jointly by applying a weighted minimum-mean-square-error successive convex approximation algorithm, or separately by applying an approximation algorithm, to solve the weighted sum-rate maximization model.
US09537554B2

A user equipment generates information based on a plurality of values of joint coding of a Rank Index RI and a first Precoding Matrix Index W1 and transmits the information on a physical uplink control channel. The payload size of the information is 5 bits. The first Precoding Matrix Index W1 and a second Precoding Matrix Index W2 correspond to a precoding matrix and 16 values in the plurality of values correspond to the Rank Index RI of 1 or 2 where a part of values in the plurality of values except the 16 values in the plurality of values correspond to the Rank Index RI of more than 2.
US09537553B2

A method and an apparatus for adjusting transmit powers of base station antennas, and a base station are provided. The method includes receiving an input precoding matrix of a transmit power-limited antenna set, where the precoding matrix is determined according to a scheduling result of a user equipment communicating with a base station in each layer of each subband in a system; adjusting the precoding matrix according to a transmit power limit requirement of the transmit power-limited antenna set, a system capacity improvement requirement, or a coverage performance improvement requirement to obtain an adjusted precoding matrix; and adjusting a stream transmit power of the transmit power-limited antenna set by using the adjusted precoding matrix.
US09537550B2

In a mobile communication system, a base station performs downlink multi-antenna transmission by applying a precoder matrix for defining downlink transmission directivity. The mobile communication system includes a first user terminal that selects one of first precoder matrix information and second precoder matrix information as precoder matrix information to be fed back to the base station. The precoder matrix information is referred to determine, in the base station, the precoder matrix to be applied to transmission to a second user terminal that establishes a connection with the base station. The first precoder matrix information indicates the precoder matrix that is preferred to the first user terminal. The second precoder matrix information indicates the precoder matrix that is not preferred to the first user terminal.
US09537538B2

A communication apparatus receives a use request to use a function of the communication apparatus from an external device via a communication unit. When the use request is received, the communication apparatus acquires a first identifier for identifying the external device as a request source which requests the use of the function. Based on the acquired first identifier and a second identifier for identifying an external device which requests power supply by a power transmission unit, the communication apparatus determines whether to cause the power transmission unit to transmit power to the external device. If it is determined to transmit power, the communication apparatus transmits, via the power transmission unit, power to the external device which requests power supply.
US09537535B2

A wireless flash drive may use a Near Field Communication (NFC) radio link with a second device to establish a second, non-NFC, radio link with the second device, and then use the non-NFC link to wirelessly transfer data between the second device and the non-volatile memory in the flash drive. Some embodiments may also have other features, such as a switch to activate the non-NFC link without using the NFC link, a battery to power the non-NFC radio and the non-volatile memory, inductive charging circuitry to wirelessly recharge the battery, or instructions to be uploaded to the second device for use in establishing the non-NFC link.
US09537529B2

There is provided a communication apparatus including an antenna unit configured to transmit or receive a wireless signal, and a wireless processing unit configured to process the wireless signal transmitted or received via the antenna unit. The antenna unit is configured or arranged to maintain a satisfactory communication characteristic regardless of arrangement and a direction with respect to an antenna of a communication partner apparatus that transmits or receives a wireless signal of high directivity.
US09537519B2

Wireless communications circuitry in an electronic device may include power amplifier circuitry that is powered using a bias voltage supplied by adjustable power supply circuitry. The power supply circuitry may include envelope tracking circuitry that continuously adjusts the bias voltage. The wireless communications circuitry may generate test signals and may generate performance metric data from the test signals. Processing circuitry may generate bias voltage calibration data based on the performance metric data and may provide the calibration data to the envelope tracking circuitry. After the calibration data has been generated, the envelope tracking circuitry may continuously select bias voltages to provide to the amplifier based on the magnitude of signals that are transmitted and the calibration data. By actively adjusting the bias voltage in this way, power consumption may be minimized without generating undesirable harmonics or other radio-frequency performance requirement violations.
US09537513B2

Techniques herein support enhanced multi-rate encoding and decoding of signals in multiple formats. In one embodiment, input data is received at a first device at one of a plurality of data rates. Encoder units are activated to produce streams of encoded input data. The encoder units are configured to operate at the same data rate. Differential encoding operations are performed to produce an encoded output stream. The encoded output stream is modulated for transmission to a second device. In another embodiment, a first device receives an encoded data stream that is transmitted from a second device. The modulated data stream includes encoded data at one of a plurality of data rates. Differential decoding is performed on the encoded data by activating one or more of a plurality of decoder units, where each of the plurality of decoder units is configured to operate at the same rate.
US09537509B2

A transmitting apparatus is provided. The transmitting apparatus includes: an encoder configured to generate a Low Density Parity Check (LDPC) codeword by LDPC encoding based on a parity check matrix; an interleaver configured to interleave the LDPC codeword; and a modulator configured to map the interleaved LDPC codeword onto a plurality of modulation symbols, wherein the modulator is configured to map bits included in a predetermined bit group from among a plurality of bit groups constituting the LDPC codeword onto a predetermined bit of each of the modulation symbols.
US09537505B2

A data processing apparatus includes an inputting portion; a first retrieving portion; a second retrieving portion; a clock determining portion; a first serial parallel converting portion; a second serial parallel converting portion; and a combining portion. The inputting portion receives a serial data including a clock bit. The first retrieving portion obtains a first retrieved data. The second retrieving portion obtains a second retrieved data. The clock determining portion determines whether the clock bit is included in the first retrieved data or the second retrieved data. The first serial parallel converting portion performs parallel conversion to obtain a first parallel data. The second serial parallel converting portion performs parallel conversion to obtain a second parallel data. The combining portion combines the first parallel data and the second parallel data to output a parallel data.
US09537504B1

A processing device includes a storage device to store data and a processor, operably coupled to the storage device, the processor to receive a token stream comprising a plurality of tokens generated based on a byte stream comprising a plurality of bytes, wherein each token in the token stream comprises at least one symbol associated with a respective byte in the byte stream, and wherein the at least one symbol represents one of the respective byte, a length of a first byte string starting from the respective byte, or a byte distance between the first byte string and a matching second byte string, generate a graph comprising a plurality of nodes and edges based on the token stream, wherein each token in the token stream is associated with a respective node connected by at least one edge to another node, and wherein the at least one edge is associated with a cost function to encode the at least one symbol stored in the each token, identify, based on the graph, a path between a first node associated with a beginning token of the token stream and an end node associated with a last token of the token stream, wherein the path comprises a subset of nodes and edges linking the subset of nodes, and perform variable-length encoding of a subset of tokens associated with the subset of nodes to generate an output data.
US09537495B2

A system for assigning a characterization and calibrating a parameter is disclosed. The system includes a frequency measurement circuit and a finite state machine. The frequency measurement circuit is configured to measure frequencies of an oscillatory signal and to generate a measurement signal including measured frequencies. The finite state machine is configured to control measurements by the frequency measurement circuit, to assign a characterization to a parameter based on the measurement signal, and to generate a calibration signal based on the characterized parameter.
US09537482B2

A touch panel and display device including the same are disclosed. In one aspect, the touch panel includes a substrate, at least one first signal line formed over the substrate and extending in a first direction, and at least one second signal line formed over the substrate and extending in a second direction that crosses the first direction. A plurality of identification patterns are formed in areas corresponding to at least one of the first and second signal lines.
US09537475B1

A method and device for dynamically updating a phase interpolator circuit module using an update control circuit module. The method can include providing the phase interpolator with a set of input clock phases to produce a clock signal. The update control module can generate a blanking signal in response to an update signal and apply an update process that stops an old clock output signal after a last clock pulse. The update control module can then update phase select multiplexers for a rising edge integrator and falling edge integrator according to a new phase interpolator code. The update control module can determine a phase jump code and then release the blanking signal during a discharge time interval of the rising edge integrator following a phase jump duration according to the phase jump code. Afterwards, the phase interpolator module can generate the new clock output signal without producing glitches.
US09537468B2

Technologies for RFID positioning and tracking apparatus and methods are disclosed herein. The apparatus and methods disclose a radio-frequency identification positioning system that includes a radio-frequency identification reader and a phased-array antenna coupled to the radio-frequency identification reader. Techniques are applied to reduce in-reader and in-antenna signal leakages. Techniques are applied to position and track RFID tags. Circuits with leakage cancellation abilities are also disclosed. Reflective vector attenuators with tunable impedance load are also disclosed. Polarization adjustable antennas with matching circuits used in the RFID positioning system are also disclosed. Circuits to re-transmit a received signal at a higher amplitude to enhance radio link range are also disclosed. Techniques are applied to increase the level of scattered radio signals from RFID tags.
US09537449B1

A crystal oscillation circuit, a gain stage of the crystal oscillation circuit and a method for designing the same are provided. The gain stage includes multiple amplifiers and multiple current-limiting resistors. Input terminals of the amplifiers are coupled together to a first bonding pad, wherein transconductances of the amplifiers are different from each other. The first bonding pad is used for electrically coupling to a first terminal of an oscillation crystal module. First terminals of the current-limiting resistors are respectively coupled to output terminals of the amplifiers in a one-on-one manner, and second terminals of the current-limiting resistors are coupled together to a second bonding pad, wherein the second bonding pad is used for electrically coupling to a second terminal of the oscillation crystal module.
US09537445B2

A method for testing a photovoltaic panel connected to an electronic module. The electronic module includes an input attached to the photovoltaic panel and a power output. The method activates a bypass to the electronic module. The bypass provides a low impedance path between the input and the output of the electronic module. A current is injected into the electronic module thereby compensating for the presence of the electronic module during the testing. The current may be previously determined by measuring a circuit parameter of the electronic module. The circuit parameter may be impedance, inductance, resistance or capacitance.
US09537444B2

A method of quantum efficiency (QE) photovoltaic measurement is provided that includes coupling measurement electronics to a p-n junction of a Cell Under Test (CUT) that are capable of measuring a pulsed DC photocurrent. The measurement electronics output a response by the CUT to turning on and turning off the pulsed DC photocurrent that are digitized and analyzed for the magnitude that is representative of a conversion efficiency of the CUT to a wavelength of the DC photocurrent, where a measured decay time represents the p-n junction or the minority carrier lifetime. The CUT is exposed to the pulsed DC photocurrent, where signatures of the response to turning off and on to the pulsed DC photocurrent overlap, where a combined amplitude of the response is proportional to an efficiency of a production of photocarriers, where a value of a spectral response at a wavelength is determined.
US09537443B2

To obtain a reinforcing frame capable of securing sufficient reinforcing strength and adhesive strength while suppressing a manufacturing cost by omitting a rim-like frame. A reinforcing frame is adhered to a rear surface, which is a non-light receiving surface of a solar battery panel, and includes a cylindrical portion that has a cylindrical shape along a longitudinal direction of the reinforcing frame and on which an adhesive surface for adhering to the solar battery panel is formed, and protruding portions that protrude from end portions along a longitudinal direction of the adhesive surface and that are substantially parallel to the adhesive surface.
US09537441B2

An electric razor is provided with a linear actuator having a stator which includes an electromagnet and also having a moving element which includes a permanent magnet. The electric razor is also provided with an amplitude control unit and a control/output unit, which detect the amplitude and speed of the moving element on the basis of an induced voltage occurring in the winding of the stator as the moving element reciprocates, compare the detected speed and a formerly detected speed, and, according to the difference representing the result of the comparison, change a method for controlling the moving element.
US09537440B2

A control apparatus for a motor having a rotor includes a resolver, a processor, a decoder, a sensor, and a motor driver. The resolver outputs waveforms sensed from a rotation of the rotor. The decoder generates an absolute angle signal and an incremental angle signal in response to the waveforms from the resolver and provides the absolute angle signal and the incremental angle signal to the processor. The sensor estimates a positioning angle of the rotor and provides an estimated angle signal in response to the positioning angle of the rotor to the processor. When one of the absolute angle signal, the incremental angle signal, and the estimated angle signal is transmitted to the processor, the processor executes a predetermined program associated with the respective absolute angle signal, the incremental angle signal, and the estimated angle signal, to control the motor driver to rotate the rotor.
US09537426B2

The invention relates to a method for actuating an inverter (10) by means of space vector pulse width modulation, in particular for actuating an electrical machine (14), wherein the inverter (10) has a plurality of controllable switches (S) and is configured to provide a multi-phase electrical voltage (U, V, W) in the form of a voltage space vector (V*), wherein the controllable switches (S) are actuated in such a manner that different duty cycles of the switches (S) are set and a plurality of successive different switching states (V0-V7) of the switches (S) are set up to provide the voltage space vector (V*), wherein the duty cycles of the switches (S) are extended during a pulse width modulation period (T) if a duty cycle of one of the switches (S) falls below a predefined threshold (44) during the pulse width modulation period (T).
US09537421B2

A power converter includes at least one leg having a first string operatively coupled to a second string via a first connecting node and a second connecting node. The first string includes a first branch and a second branch operatively coupled via a third connecting node. Each of the branches has a plurality of switching units, a controllable semiconductor switch and the first connecting node and the second connecting node. The first string is operatively coupled across a first bus and a second bus. Furthermore, the second string includes a plurality of controllable semiconductor switches.
US09537420B2

A method and apparatus for modifying power produced by a power converter. In one embodiment, the method comprises comparing a line voltage level to a first threshold and a second threshold, wherein the line voltage level is a level of a line voltage at an output of a power converter; and modifying power produced by the power converter by (i) a first modification when the line voltage level is between the first and the second thresholds, and (ii) a second modification when the line voltage level exceeds the second threshold.
US09537414B2

A full-bridge circuit has serial first arms and serial second arms. Another full-bridge circuit has serial third arms and serial fourth arms. Primary and secondary coils of a transformer are included, respectively, in a part connecting a middle point of the first arms and a middle point of the second arms and a part connecting a middle point of the third arms and a middle point of the fourth arms. A switching phase difference between the first arms and the third arms and a switching phase difference between the second arms and the fourth arms are adjusted, and transmission power between these full-bridge circuits is controlled. Connections of respective electrodes of a power source are inversely connected to respective polarity buses of the other full-bridge circuit. A phase of switching in one of the third and fourth arms other one having a short-circuit failure is inverted.
US09537403B2

A control circuit for a switched-mode power supply having an input side (101) connectable to an electrical power source and an output side (102) connectable to a load. The control circuit comprises: a primary control circuit (140) adapted to generate a driving signal for a switching element (110) at the input side of the power supply; a secondary control circuit (150) adapted to monitor an output signal at the output side (102) of the power supply; and an opto-coupler (300, 400), wherein the opto-coupler is arranged to receive its input from the secondary control circuit and to provide a control signal to the primary control circuit, and the primary control circuit comprises a compensation circuit (900, 1000, 1100, 1400, 2010, 2610) adapted to process the control signal to generate a compensation signal for reducing power consumption in the opto-coupler, wherein the compensation circuit is adapted to generate the compensation signal such that a current in the opto-coupler tends to return to a desired minimum value.
US09537398B2

A high voltage generating circuit includes a charge pump circuit and an output voltage control circuit. The charge pump circuit raises a voltage to a high voltage higher than a power supply voltage. The output voltage control circuit controls the voltage to make the raised high voltage to be a predetermined target voltage. The output voltage control circuit includes at least two offset free comparator circuits, or at least one offset free comparator circuit and at least one differential amplifier. The offset free comparator circuit includes a coupling capacitor, a differential amplifier and a plural switch. The coupling capacitor inputs a voltage corresponding to the high voltage. The differential amplifier compares a voltage from the coupling capacitor with a predetermined reference voltage and outputs a comparison result voltage to the charge pump circuit. The switches are connected to the differential amplifier to cancel an offset of the differential amplifier.
US09537387B2

A reference signal generating circuit is provided that generates a reference signal corresponding to an input signal for power factor compensation of a power converter. The reference signal generating circuit includes a detector sampling the input signal according to a reference clock to detect and hold the maximum input signal and a phase measuring unit measuring a phase of the sampled input signal based on the sampled input signal and the detected maximum input signal. The circuit also includes a reference signal generating unit configured to generate a reference signal having a specific value in response to the measured phase.
US09537382B2

A switch controller includes a primary side including signal transmission circuitry to transmit signals representative of desired transitions of a switch. A signal transformer galvanically isolates the primary side from a secondary side but inductively couples signal transmission circuitry to signal reception circuitry. A switch is coupled to switch a low impedance onto a primary side winding of the signal transformer during pauses between transmissions of the signals representative of the desired transition of the switch. The secondary side includes signal reception circuitry, a drive signal generator to generate a drive signal in response to valid signals received by the signal reception circuitry, and a validation circuit that includes a first comparator, a timer, and a second comparator to compare a timed duration with a threshold duration, and to output to the drive signal generator signals indicative of the validity of particular signals received by the signal reception circuitry.
US09537379B2

A motor realizes mechanical field-weakening control by controlling the leakage magnetic flux from the rotor cores of the motor. The motor includes a stator, a rotor including rotor cores circumferentially spaced apart from one another inside the stator and permanent magnets disposed between the respective rotor cores which extend radially from the stator, and a magnetic flux adjustment unit including a ring-shaped main frame, magnetic substance portions extending from the main frame so as to be circumferentially spaced apart from one another and non-magnetic regions defined between the magnetic substance portions. The magnetic flux adjustment unit is rotatable to control the leakage magnetic flux from the rotor cores.
US09537375B2

An electric machine includes a housing, a stator core positioned within the housing, a wire wound about the stator core to form a plurality of end-turns that extend from an end of the stator core, and a thermal conductor positioned between the plurality of end-turns and the housing. The thermal conductor includes a substrate and a thermally conductive coating formed on a surface of the substrate. The thermally conductive coating includes a thermally conductive, dielectric material configured to transfer heat from the plurality of end-turns to the substrate.
US09537374B2

A rotor form electric machine is provided including a rotor body that rotates about an axis of rotation, the rotor body having a superconducting rotor winding and cooling arrangement provided for cooling the rotor winding having at least one pair of cooling tube loops disposed substantially radially opposite each other on the rotor body, wherein a cryogenic coolant is transported in the axial direction in the coolant tube loops from a first axial rotor end to a second, opposite axial rotor end and back when the rotor rotates about the axis of rotation. One or more connecting tubes are provided in the cooling arrangement and connect one cooling tube loop to the other cooling tube loop of the at least one pair of cooling tube loops.
US09537370B2

Hand-held machine tool having an outer housing extending substantially along a longitudinal axis, with an electric drive unit accommodated in this outer housing, and with a tool arrangement which is disposed at a first end of the electric drive unit. The outer housing of the machine tool has a defined inner contour and the electric drive unit and the tool arrangement have a defined outer contour. The outer contour and the inner contour of the outer housing are at a predetermined minimum spacing from each other. At least one inlet opening for cooling air is disposed in an end region of the outer housing. The electric drive unit drives a fan arrangement which draws in through the at least one inlet opening cooling air which flows substantially parallel to the rotational axis of the electric drive unit through the machine tool and flows out of the outer housing to the outside at the outer contour of the machine tool.
US09537365B2

A magnet-type generator 1 has a stator 20 having a stator core 21 and a coil 60, and fixed on an engine cover. The stator core has an annular base portion 26 and salient pole portions 27 extended in a radial direction from the annular base portion. The coil is wound around winding frame portions formed on the salient pole portions. Lead wires 64A, 64B, 64C are inserted into through holes 35A, 35B, 35C passing through the stator core and connected with outgoing wires of the coil at one side of the stator core. The stator core has an extension portion 33, which is partly enlarged outwards in a radial direction from an outer periphery of the annular base portion and fills a part of a gap 32 between neighboring salient pole portions. The through holes are provided on an area including the extension portion of the stator core.
US09537352B2

A differential load detection apparatus and method are provided for detecting a wireless power receiver in a wireless power network. The differential load detection method includes transmitting first detection power for detecting the wireless power receiver, transmitting second detection power when an impedance variation greater than a first predetermined threshold value and equal to or less than a second threshold value is detected, and waiting for a reception of an advertisement signal according to the transmission of the second detection power from the wireless power receiver.
US09537346B2

In various embodiments, an electronic device such as a portable computer has a structure that extends from the device to wirelessly transfer electrical power between itself and an external device. The structure may be placed in a non-extended position when not being used for such power transfer. In some embodiments power transfer may take place in either direction, and may be used for various purposes, such as to provide operational power and/or to charge a battery. The external device may be placed on or near the extended structure for power transfer to take place.
US09537345B2

A wireless charger charges an electronic device. The wireless charger receives radio frequency (RF) from a wireless power transmitter and generates alternating current (AC) electricity. The wireless charger coverts the AC electricity to direct current (DC) electricity and charges the electronic device using the DC electricity.
US09537326B2

Batteries, battery systems, battery submodules, battery operational methods, battery system operational methods, battery charging methods, and battery system charging methods are described. According to one aspect, a battery includes a first battery terminal, a second battery terminal, and a plurality of submodules individually comprising a first submodule terminal, a second submodule terminal, a plurality of rechargeable cells electrically coupled between the first and second submodule—terminals, and switching circuitry configured to electrically couple one of the first and second battery terminals with one of the first and second submodule terminals of one of the submodules during an engaged mode of operation of the one of the submodules and to electrically isolate the one of the first and second battery terminals from the one of the first and second submodule terminals of the one of the submodules during a disengaged mode of operation of the one of the submodules.
US09537323B2

Provided is a contactless power supplying system which is efficient and can be built of small coils by appropriately limiting power to be inputted into a transmitting coil. In the contactless power supplying system, power transmitted from a transmitting coil is received by a receiving coil by means of magnetic coupling, and the contactless power supplying system includes a power control unit configured to cause power from a power source to flow through the transmitting coil and a control unit configured to perform power limiting control of limiting the power flowing through the transmitting coil by controlling the power control unit.
US09537315B2

A power system for an electrical system with highly fluctuating loads is powered by one or more power sources that are slow to react to load changes. The power sources are connected to electrical equipment used on the drill rig which provide active load to the generators. One or more load banks may be positioned to provide passive load to the generators to maintain generally constant generator load, while allowing for instant access to power as active load increases. Generators may be run at 100% capacity, a maximum efficient capacity, or at a high enough level to allow for a sufficiently rapid increase in power output. At least one parameter of a drilling operation may be utilized to anticipate load demand changes.
US09537313B2

Dispatch engines service endpoints by transmitting dispatch signals to the serviced endpoints that cause the endpoints to adjust their electric power consumption from the electric power grid in accord with a control signal received by the dispatch engine. A market interface dispatch engine receives its control signal from an electric power grid managing entity, and downstream dispatch engines form a hierarchy cascading downstream from the market interface dispatch engine with each downstream dispatch engine being an endpoint serviced by a dispatch engine located upstream in the hierarchy. The control signal received by each downstream dispatch engine comprises dispatch signals transmitted by the upstream dispatch engine. The endpoints further include electric power-consuming loads. A suitable load controller comprises separate power interface and logic elements operatively connected to define the load controller, with the logic element powered by low voltage DC power received from the power interface element.
US09537307B2

An example, overvoltage protection device includes a switch and a surge protection device that is selectively activated by actuating the switch. The switch is actuated in response to a voltage. An example method of absorbing an overvoltage includes sensing a voltage, and selectively activating a surge protection device in response to the sensed voltage.
US09537304B2

A surge suppression device comprising a voltage sensitive element, heat sensitive materials, terminals, a blocking element and a non-conductive barrier is disclosed. One of the terminals comprises an arm portion, a contact portion and an extension portion extended from the contact portion. The blocking element has a part engaging with the extension portion and another part contacting with the barrier and separating the barrier from the arm portion of the terminal. The device has higher structural stability and sensitivity and is only failed in the event that the voltage sensitive element is failed due to aging or grid fault.
US09537298B2

An electronic module (100) has a first and a second circuit (200, 300) with respective first and second output connections (230, 330), respective first and second reference potential connections (220, 320), and respective first and second sensing connections (240, 340), each circuit (200, 300) comprising a respective sensing block (250, 350), which at its input side is connected to the respective sensing connection (240, 340) and to the respective reference potential connection (220, 320). The first sensing connection (240) is either connected to the first output connection (230) or to the second output connection (330). The second sensing connection (340) is connected to the second output connection (330). The sensing blocks (250, 350) are configured to detect a failure of the electronic module (100) with respect to its respective reference potential connection (220, 320) and to indicate a detected failure by providing a failure signal at its respective output connection (230, 330).
US09537288B2

A semiconductor laser device assembly includes (A) a semiconductor laser element and (B) a diffraction grating that configures an external resonator, returns diffraction light other than zero-th order diffraction light to the semiconductor laser element, and outputs the zero-th order diffraction light to the outside. An extension direction of a diffraction surface of the diffraction grating and a main vibration direction of a field of a laser beam incident on the diffraction grating are substantially parallel to each other.
US09537286B2

A circuit system includes: a first optoelectronic semiconductor component situated with an n-conductive surface facing an electrically conductive support surface and connected to the support surface in an electrically conductive manner; and a second optoelectronic semiconductor component situated with a p-conductive surface facing the support surface and connected to the support surface in an electrically conductive manner.
US09537282B2

An optical amplifier includes a multi-mode pump laser module, a multi-mode waveguide, a multi-mode to multiple single-mode fiber converter module and a plurality of single-mode cores. The multi-mode pump laser module emits pump light having a plurality of modes to the multi-mode fiber or waveguide. The multi-mode waveguide propagates the emitted pump light to the converter module. The converter module receives the pump light and distributes the pump light approximately uniformly to a plurality of single-mode cores.
US09537276B1

A power adapter with replaceable plug structure includes a plug and a housing. The plug includes a contact point. The housing includes an assembly member configured for detachably engaging the plug. The housing includes a left cover, a right cover and an assembly plate. When the left cover and the right cover are assembled, the assembly plate is disposed between the left cover and the right cover. One or more slots are disposed on the assembly plate to form a resilient area. The resilient area includes an electrical conductor. The electrical conductor is in contact with the contact point when the plug is assembled onto the housing.
US09537274B1

A modular lighting system for use with shelving and a variety of other applications. A power track is adapted to be disposed within an upright support of a shelving unit. A power plug with vertically-aligned prongs inserts through existing openings in the upright support to reach conductors within the power track. The power plug has connecting structure to connect to a cable, and frangible portions that allow the cable to exit in a number of positions. Light bars carry the same connecting structures, can connect to the cable and snap together to extend continuously across a shelf. A second power track and second plug may provide power to the power track within the upright. The second plug carries the same connecting structure as the other components.
US09537272B2

A reinforcing structure of an electrical receptacle connector includes an insulation housing, a terminal group, and a reinforcing sheet. The insulation housing includes a substrate and a tongue portion extending to one side of the substrate. The tongue portion includes a top surface, a bottom surface, and a front side surface between the top surface and the bottom surface. The terminal group is provided on the bottom surface, and includes a power supply terminal and a grounding terminal. A contact wall is formed between the power supply terminal and the front side surface, and the reinforcing sheet is provided on the top surface. The reinforcing sheet includes a front baffle and a recessed portion, the front baffle is fixed on the front side surface, and the recessed portion inwardly curves to be formed on the front baffle and corresponds to the contact wall.
US09537267B2

The present invention relates to squib connectors, for instance for airbag ignition systems, which allow the electrical or electronic monitoring of the correct coupling of a squib plug connector with its corresponding counterpart. According to the invention, a squib connector has at least two terminals having corresponding signal lines. In order to allow an electrical monitoring of the correct coupling of the plug connector, the terminals are in electrical contact with each other in the uncoupled or incorrectly coupled condition of the plug connector. This electrical contact between the terminals is configured to be separated upon correct coupling to a corresponding counter-connector either automatically or by an actuating action. The disconnecting of the terminals may then be monitored by any suitable monitoring means.
US09537266B1

Power strips are provided having voice message playback capabilities, which enable a user to selectively playback stored voice messages or verbal memorandum identifying the particular electronic devices plugged into the power strip outlets. In this manner, a user need only trigger playback of a voice message to determine the identity of an electronic device plugged into a given outlet. This may be particularly beneficial when several electronic devices are plugged into the power strip, which is located underneath a desk, behind an entertainment center, or in another difficult-to-access area. In certain embodiments, the power strip enables the user to record personalized voice messages identifying the electronic devices plugged into the power strip outlets, possibly along with additional information pertaining to the plugged-in devices and considered pertinent by the user. Embodiments of the power strips described herein may also be beneficially used by the blind and visually impaired.
US09537262B2

Printed circuit boards for communications connectors are provided that include a dielectric substrate formed of a first insulative material having a first dielectric constant. First and second pairs of input terminals and first and second pairs of output terminals are provided on the dielectric substrate. A first differential transmission line electrically connect the first pair of input terminals to the first pair of output terminals, and a second differential transmission line electrically connect the second pair of input terminals to the second pair of output terminals. The dielectric substrate includes an opening that is positioned between the conductive paths of the first differential transmission line, the opening containing a second insulative material having a second dielectric constant.
US09537260B1

A power distributor includes an upper cover with an inverted U-shaped cross-section, a plurality of output power sockets being located along a longitudinal direction of the upper cover. The power distributor also includes a lower cover with a U-shaped cross-section. The lower cover is engaged with the upper cover to form housing for the power distributor. The upper cover is composed of several modular cover units that are interconnected with each other. Each modular cover unit includes stepped connecting parts that connect to stepped connecting parts of adjacent modular cover units. The lower cover includes a slidable hanging mechanism. A front end of the housing is provided with an input power connector.
US09537259B2

A plug-type connector arrangement includes a plug-type connector and an opposing plug-type connector, which each have an insulating housing and plug-type contacts in the insulating housing. The plug-type connector also includes plug-type contours configured correspondingly to one another for plugging together and for electrically conductively connecting assigned plug-type contacts in the plugged-together state. The plug-type connector arrangement also includes at least one coding element, which can be accommodated displaceably on the plug-type contours of the plug-type connector and opposing plug-type connector, and fixes a permissible plug-in position for plugging together the plug-type connector and the opposing plug-type connector.
US09537256B2

A connector includes a connector housing including a locking mechanism which locks a mating housing and formed to be fitted to the mating housing, and a connector terminal held by the connector housing to come into contact with a mating terminal held by the mating housing. The connector housing is designed to have a locking position of the connector housing with the mating housing by the locking mechanism and a contact position of the connector terminal with the mating terminal, and the locking position and the contact position coincide with or come close to each other in a fitting direction relative to the mating housing.
US09537253B2

A connection terminal has a connector body having a mating end and an opposite cable receiving end; a pair of contact arms extending from the mating end; and a cable receiving member having an approximate cylindrical shape with a variable diameter, and extending from the cable receiving end.
US09537251B2

A fastener device for a gas-insulated substation (GIS) type installation comprising a threaded shank and a ring including a duct configured to receive the threaded shank, the ring being housed in a supporting insulator of the invention.
US09537250B2

An electrical receptacle connector includes an insulated housing, plate terminals, and a metallic shell. The insulated housing includes a base portion. The plate terminals are at the insulated housing. The plate terminals include soldering segments exposed out of the bottom of the base portion. The metallic shell encloses four sides of the insulated housing and includes a top cover plate, a rear cover plate, and pins. The top cover plate is located atop the base portion. The rear cover plate is extending downwardly to the rear side of the base portion from the rear side of the top cover plate. The rear cover plate includes a bottom surface and a bent sheet substantially perpendicular to an outer wall of the rear cover plate and extended outward from the outer wall of the rear cover plate, and the pins are extending downwardly from the bottom surface.
US09537249B2

The present invention relates to a conduit adapter system comprising a conduit adapter that is assigned to an electrical connector assembly. The conduit adapter comprises a first shell and a second shell, wherein the first shell comprises first fixing elements and the second shell comprises corresponding second fixing elements. The first shell further comprises a pre-locking means that can be engaged with corresponding pre-locking means of the electrical connector assembly, to lock the first shell to the electrical connector assembly in a pre-assembled condition. A method of assembling such a conduit adapter system is also presented.
US09537248B2

A connector structure of a transmission line is disposed at one end of a cable. The connector structure includes an elastic sleeve, a first connector module, and a second connector module. The elastic sleeve has an opening or slit. The first connector module is covered by the elastic sleeve. One end of the first connector module has a first plug, and the other end has a first socket. The second connector module is covered by the elastic sleeve. One end of the second connector module has a second plug, and the other end is connected to the cable. The second plug can be pluggably connected with the first socket. The opening or slit is located adjacent to the junction part between the first connector module and the second connector module.
US09537245B1

A socket assembly is for a meter center including at least one meter having a stab. The socket assembly includes a base member; and a jaw assembly having a first jaw member and a second jaw member coupled to the first jaw member, each of the first jaw member and the second jaw member having a number of retaining edges and being structured to engage the stab. The jaw assembly is structured to rotate between a first position corresponding to disengagement between the number of retaining edges and the base member, and a second position corresponding to engagement between the number of retaining edges and the base member.
US09537236B2

An electrical connector includes an insulative connector housing including a longitudinal bottom wall defining a plurality of contact openings for receiving a plurality of contacts, first and second side walls extending upwardly from the bottom wall at opposing sides thereof, first and second end walls extending upwardly from the bottom wall at opposing ends thereof, first and second pairs of latch openings at opposing ends of the bottom wall, and first and second protrusions extending upwardly from the bottom wall and disposed between respective first and second pairs of latch openings. Each latch opening extends through the bottom wall and through a side wall and is configured to allow a latch to eject a mating connector by moving within the opening. Each of the protrusions is configured to engage a corresponding opening in a latch of a mating connector cover or strain relief assembled to the electrical connector.
US09537229B2

An electrical grounding device comprises an elongate shaft with plate members projecting radially outward from a lower region of the shaft. The shaft and plate members are made of an electrically-conductive material, and are connected such that an electric current can flow between the plates and the shaft. The device is installed by boring a hole into the earth to a selected depth less than the length of shaft above the plates. The grounding device is inserted into the borehole and driven into the earth below the borehole until the upper end of the shaft projects a desired distance above the adjacent earth surface, leaving the shaft projecting sufficiently to allow connection of grounding cables. The borehole is preferably filled with gravel or other suitable fill material, and water may be added to the fill to enhance electrical conductivity between the device and the earth.
US09537226B2

The invention relates to an RJ45 connector (1) with a baseboard (10) for connecting to conductors (22) of a cable (20), and with a plurality of insulation displacement contacts (12) to accept the conductors (22), wherein the insulation displacement contacts (12) are arranged in two rows (14, 16) on one side of said baseboard (10), the two rows (14, 16) are positioned at a distance from one another in the longitudinal direction of the cable (20) to be connected, and the RJ45 connector (1) comprises a guide device (30) to guide the conductors (22) for connection to the row (16) of insulation displacement contacts (12) that is further from the end of the cable, wherein the guide device (30) has ramps (34) made in an arc shape to guide the conductors (22).
US09537225B2

A method for use with a reflectarray antenna for wireless telecommunication is described. The method involves providing a reflectarray antenna, and adjusting a phase of a scattered field of the reflectarray antenna for generating different radiation patterns for angular mode-based multiplexing. The reflectarray antenna includes a ground plane, a dielectric substrate attached on the ground plane; and a first antenna patch formed on one side of the dielectric substrate. Further, the reflectarray antenna includes a second antenna patch formed adjacent to the first antenna patch with a separation area therebetween; and a phase adjustment member disposed in the separation area. The phase of the scattered field of the antenna is adjusted by changing a DC voltage of the phase adjustment member.
US09537223B2

A reconfigurable multi-output antenna (16) is disclosed comprising: one or more radiating elements (12, 14), at least two matching circuits (42, 44, 50, 52) coupled to the or each radiating element (12, 14) via e.g. a splitter (30, 32) or a duplexer; and wherein each matching circuit (42, 44, 50, 52) is associated with a separate port (38, 40, 46, 48) arranged to drive a separate resonant frequency so that the or each radiating element (12, 14) is operable to provide multiple outputs simultaneously. The resonant frequency of each output is independently controllable by each matching circuit, with good isolation with each other port, thereby offering very wide operating frequency range with simultaneous multi-independent output operations. Also described is a multi-output antenna control module for coupling to one or more radiating elements, an antenna structure and an antenna interface module. A reconfigurable multi-output antenna is disclosed comprising: one or more radiating.
US09537222B2

A method is provided for defining an antenna with weak sidelobes having at least two sources, in which the sources are regularly distributed and the reflectors have suitable shapes, obtained by the implementation of a specific algorithm, the reflectors being illuminated by sources composed of a single part. The obtained antenna will offer a gain close to 0 in the direction of the array lobes, so these will be as low as possible.
US09537220B2

An antenna assembly includes a base, a ground surface, a first radiating portion, a second radiating portion, a third radiating portion, and a feed portion. The ground surface is arranged on a surface of the base. The feed portion includes a plurality of feed points mounted on the radiating portions. The first radiating portion and one feed point transmit and receive wireless signals at a first frequency band and a second frequency band; the second radiating portion and the third radiating portion couple with the feed points to transmit and receive wireless signals at a third frequency band and a fourth frequency. The first radiating portion, the second radiating portion, and the third radiating portion form several slot antennas. A wireless communication device employing the antenna assembly is also described.
US09537219B2

An electronic device may have wireless circuitry with antennas. An antenna may have an inverted-F antenna resonating element, an antenna ground, and other resonating element structures. A tip of the antenna resonating element and the antenna ground may be separated by a peripheral housing gap filled with plastic. The antenna may be sensitive to capacitance changes induced by the presence of a user's hand overlapping the gap or other portions of the antenna. A hand capacitance sensing electrode may be mounted in the plastic of the gap or elsewhere in the vicinity of the antenna. A transmission line may couple the hand capacitance sensing electrode to the antenna to retune the antenna in the event that the user's hand overlaps the antenna.
US09537217B2

A broadband capacitively-loaded tunable antenna, and device there for is provided. The device comprises: an antenna feed; a first radiating arm connected to the antenna feed; a second radiating arm capacitively coupled to the first radiating arm; an adjustable reactance device connecting the second radiating arm to one or more of a ground and a third radiating arm; and, a processor in communication with the adjustable reactance device, the processor configured to adjust a reactance of the adjustable reactance device to tune a resonance frequency of a combination of the second radiating arm, the adjustable reactance device, and, when present, the third radiating arm.
US09537216B1

Antenna arrays can be fabricated as patches on conductive transparent material over an appropriate transparent dielectric substrate with the appropriate transparent ground-plane. To keep the fabrication cost low, such antenna arrays have a planar design without cross-over of the feeding lines or 3D interconnects. To steer the antenna horizontally, patches need to be fed with incremental phase shifts relative to their left or right neighbors; such feeds require an appropriate network and RF switches, typically located in an adjacent non-transparent area such as a PCB. Fabricating and disposing transparent phase delay component on the transparent material reduces the size of the PCB, thereby increasing visible transparent area.
US09537214B2

In an exemplary embodiment, a phased array antenna comprises multiple subcircuits in communication with multiple radiating elements. The radio frequency signals are adjusted for both polarization control and beam steering. In a receive embodiment, multiple RF signals are received and combined into at least one receive beam output. In a transmit embodiment, at least one transmit beam input is divided and transmitted through multiple radiating elements. In an exemplary embodiment, the phased array antenna provides multi-beam formation over multiple operating frequency bands. The wideband nature of the active components allows for operation over multiple frequency bands simultaneously. Furthermore, the antenna polarization may be static or dynamically controlled at the subarray or radiating element level.
US09537206B2

A force-applying element for fixing radomes provides an annular flange region. The force-applying element provides at least one fixing region, which extends from the flange region in the direction towards the radome to be fixed, and its outer surfaces are surrounded by the radome in a form-fit manner.
US09537197B2

In an integrated circuit package that houses radio-frequency (RF) circuits or components using wafer-level packaging (WLP), an RF-signal transmission structure includes a signal-carrying conductive line positioned between grounded conductive lines to avoid undesirable coupling between the signal-carrying conductive line and other RF circuits or components in the same package.
US09537182B2

The invention claims a process and device for ensuring the operational readiness of a battery in which the battery is first electrically connected with a testing device, and is then tested with the testing device to determine whether the battery is passivated. If the battery is passivated, a procedure for de-passivation of the battery is performed. If the battery is not passivated, a point in time for the next testing of the battery is scheduled.
US09537178B2

Provided is an electrode assembly, and more particularly, an electrode assembly having a structure wound in a state, in which a plurality of unit cells having a stacking structure is disposed on a long sheet type separation film, and including the unit cells having two or more types of configurations of electrode materials, wherein a separator stacked on the unit cell having a stacking structure has a coating material coated on both sides thereof and the long sheet type separation film has a coating material coated on one side thereof. According to the present invention, an electrode assembly improving processability of preparation of a battery while reducing initial resistance during the preparation of the battery as well as having battery lifetime equivalent to that of a conventional battery and a lithium secondary battery including the electrode assembly may be provided.
US09537169B2

An electrochemical device and methods of using the same. In one embodiment, the electrochemical device may be used as a fuel cell and/or as an electrolyzer and includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, chemically-inert, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, as well as a fluid chamber and a non-porous an electrically-conductive plate.
US09537168B2

The present invention relates to improved membrane electrode assemblies, having two electrochemically active electrodes separated by a polymer electrolyte membrane.The membrane electrode assemblies according to the instant invention contains at least one phosphoric acid-containing polymer electrolyte membrane and two gas diffusion electrodes one of each located at both sides of said membrane, each of the gas diffusion electrodes having at least one catalyst layer facing towards the membrane. At least one of the gas diffusion electrodes contains a gas diffusion medium comprising an electrically conductive macroporous layer in which the pores have a mean pore diameter in the range from 10 μm to 30 μm and at least one micro porous layer arranged between said gas diffusion medium and said catalyst layer facing towards the membrane having a defined pore void volume and pore hydrophobicity measured by the Cobb Titration.
US09537167B2

The present invention relates to a fuel cell having an anode; a cathode opposing the anode; a first electrolyte membrane disposed between the anode and the cathode; a second electrolyte membrane disposed between the anode and the cathode; and an A/C junction electrode disposed between the first electrolyte membrane and the second electrolyte membrane, the A/C junction electrode comprising a first gas diffusion layer; a second gas diffusion layer; a current collector disposed between the first gas diffusion layer and the second gas diffusion layer; a first catalyst layer disposed between the first electrolyte membrane and the first gas diffusion layer; and a second catalyst layer disposed between the second electrolyte membrane and the second gas diffusion layer.
US09537166B2

The present invention relates to a new method for the production of electrochemical cells, in particular individual cells for fuel cells and stacks, in which the individual components of a membrane electrode assembly are compressed and bonded by use of ultrasonic waves and the absence of any further additional heating. The method according to the invention allows faster cycles during the lamination of the membrane electrode assemblies.
US09537164B2

A system and method for monitoring fuel cells in a fuel cell group. The system includes a sensor circuit, such as a voltage sensor circuit, that monitors a condition of the fuel cells. If the sensor circuit detects a low performing cell, then it sends a signal to a tone generator that generates a frequency signal that switches a load into and out of the cell group. A voltage sensor detects the voltage of the cell group including the frequency signal, and sends the detected voltage signal to a tone decoder that decodes the frequency signal to determine that the fuel cells are low performing.
US09537162B2

A device and a method for controlling a cold start of a fuel cell system are provided and are capable of increasing a fuel cell load to reduce a cold start time using a kinetic energy storage method for a rotor of a motor for driving a fuel cell system. The method improves cold start performance by performing self-heating of a fuel cell stack based on an increase in an output current amount of a fuel cell and by restricting a motor torque simultaneously with generating the motor torque while applying a current to a motor when a vehicle stops to consume an output current of the fuel cell.
US09537153B2

This current collector for a lithium electrochemical accumulator includes an electronically-insulating viscoelastic foam associated with an electroconductive polymer film.
US09537151B2

A lithium ion battery electrode includes an electrode material layer. The lithium ion battery electrode further includes a current collector. The current collector is located on a surface of the electrode material layer. The current collector is a carbon nanotube layer. The carbon nanotube layer consists of a number of carbon nanotubes.
US09537149B2

Disclosed is a method for manufacturing a lithium transition metal phosphate. The disclosed method for manufacturing a lithium transition metal phosphate comprises the steps of: injecting reaction materials containing lithium, a transition metal, and a phosphate, into a reactor, and mixing the raw materials at the molecular level in the reactor; and allowing the reaction materials to chemically react in the reactor so as to cause nucleation.
US09537148B2

Disclosed is a positive electrode active substance for a non-aqueous electrolyte secondary battery including a composite oxide containing lithium and nickel, in which the positive electrode active substance has a structure of secondary particles formed by aggregation of primary particles. The average particle diameter of the primary particles (D1) is 0.9 μm or less. The average particle diameter of the primary particles (D1) and the standard deviation (σ) of the average particle diameter of the primary particles (D1) meet the relationship of D1/σ2≧24.
US09537144B2

A sulfur-containing electrode has a binder comprising a single-lithium ion conductor. The electrode may be used a cathode in a lithium-sulfur or silicon-sulfur battery.
US09537141B2

A method for making a lithium ion battery electrode is provided. A support having a support surface is provided. A graphene layer is formed on the support surface of the support. An electrode material layer is applied on an exposed surface of the graphene layer. The graphene layer is located between the electrode material layer and the support.
US09537136B2

A battery pack includes a lead tab, a connection member positioned on a protective circuit module, the connection member connecting the protective circuit module and the lead tab and having a first through-hole, and a soldering member inserted into the connection member through the first through-hole so as to form a connection between the connection member and the lead tab.
US09537131B2

A method is presented for fabricating an anode preloaded with consumable metals. The method provides a material (X), which may be one of the following materials: carbon, metals able to be electrochemically alloyed with a metal (Me), intercalation oxides, electrochemically active organic compounds, and combinations of the above-listed materials. The method loads the metal (Me) into the material (X). Typically, Me is an alkali metal, alkaline earth metal, or a combination of the two. As a result, the method forms a preloaded anode comprising Me/X for use in a battery comprising a M1YM2Z(CN)N.MH2O cathode, where M1 and M2 are transition metals. The method loads the metal (Me) into the material (X) using physical (mechanical) mixing, a chemical reaction, or an electrochemical reaction. Also provided is preloaded anode, preloaded with consumable metals.
US09537114B2

An organic EL light emitting device includes a transparent substrate, a transparent electrode film formed on the substrate, a positive electrode contact portion in contact with a part of the transparent electrode film and electrically connected therewith, an insulating layer formed on the transparent electrode film such that the an insulating layer covers a portion excluding a light emitting part, an organic light emitting layer formed on the transparent electrode film and on the insulating layer, a negative electrode film formed on the organic light emitting layer, a negative electrode contact portion in contact with at least a part of the negative electrode film and electrically connected therewith, and a protective layer for separating and electrically insulating the positive electrode contact portion and the transparent electrode film from the negative electrode contact portion.
US09537113B2

An organic light emitting display device with improved thermal reliability is disclosed. The organic light emitting display device includes a substrate, and an organic light emitting device that includes a first electrode, an organic light emitting layer including a first host, a second host, and a dopant, and a second electrode sequentially stacked on the substrate. The first host and the second host have different glass transition temperatures.
US09537094B2

A memory cell and method including a first electrode formed through a first opening in a first dielectric layer, a resistive layer formed on the first electrode, a spacing layer formed on the resistive layer, a second electrode formed on the resistive layer, and a second dielectric layer formed on the second electrode, the second dielectric layer including a second opening. The first dielectric layer formed on a substrate including a first metal layer. The first electrode and the resistive layer collectively include a first lip region that extends a first distance beyond the first opening. The second electrode and the second dielectric layer collectively include a second lip region that extends a second distance beyond the first opening. The spacing layer extends from the second distance to the first distance. The second electrode is coupled to a second metal layer using a via that extends through the second opening.
US09537090B1

A method of making a spin-torque transfer magnetic random access memory device (STT MRAM) device includes forming a tunnel barrier layer on a reference layer; forming a free layer on the tunnel barrier layer, the free layer comprising a cobalt iron boron (CoFeB) alloy layer and an iron (Fe) layer; and performing a sputtering process to form a metal oxide layer on the Fe layer.
US09537088B1

Some embodiments include a magnetic tunnel junction comprising magnetic reference material having an iridium-containing region between a multi-layer stack and a polarizer region. Some embodiments include a magnetic tunnel junction having a conductive first magnetic electrode which contains magnetic recording material, a conductive second magnetic electrode spaced from the first electrode and which contains magnetic reference material, and a non-magnetic insulator material between the first and second electrodes. The magnetic reference material of the second electrode includes a first region containing a stack of cobalt alternating with one or more of platinum, palladium and nickel; includes an iridium-containing second region over the first region; and includes a cobalt-containing third region over the second region. The third region is directly against the non-magnetic insulator material.
US09537071B2

A method of manufacturing a light emitting device having a resin package which provides an optical reflectivity equal to or more than 70% at a wavelength between 350 nm and 800 nm after thermal curing, and in which a resin part and a lead are formed in a substantially same plane in an outer side surface, includes a step of sandwiching a lead frame provided with a notch part, by means of an upper mold and a lower mold, a step of transfer-molding a thermosetting resin containing a light reflecting material in a mold sandwiched by the upper mold and the lower mold to form a resin-molded body in the lead frame and a step of cutting the resin-molded body and the lead frame along the notch part.
US09537061B2

A phosphor composition is disclosed. A phosphor composition, comprises at least 10 atomic % bromine; silicon, germanium or combination thereof; oxygen; a metal M, wherein M comprises zinc (Zn), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), or combinations thereof; and an activator comprising europium. The phosphor composition is formed from combining carbonate or oxides of metal M, silicon oxide, and europium oxide; and then firing the combination. A lighting apparatus including the phosphor composition is also provided. The phosphor composition may be combined with an additional phosphor to generate white light.
US09537046B2

In an optical device wafer processing method, a light emitting layer on the front side of a wafer is removed by applying a pulsed laser beam to the wafer along division lines from the back side of a substrate with the focal point of the beam set near the light emitting layer, thereby partially removing the light emitting layer along the division lines. A shield tunnel is formed by applying the beam to the wafer along the division lines from the back of the substrate with the focal point of the beam set near the front of the substrate. This forms a plurality of shield tunnels arranged along each division line, each shield tunnel extending from the front side of the substrate to the back side thereof. Each shield tunnel has a fine hole and an amorphous region formed around the fine hole for shielding the fine hole.
US09537033B2

The present invention is premised upon a system and method for an improved photovoltaic cladding device array with an interface member (500) for use on a building structure with other non-solar cladding materials (600). The interface member is disposed under a portion of the photovoltaic cladding elements (P) and includes a photovoltaic cladding element nesting portion and a building sheatin nesting portion.
US09537030B2

Methods of fabricating solar cells with tunnel dielectric layers are described. Solar cells with tunnel dielectric layers are also described.
US09537029B2

A semiconductor device includes a first semiconductor layer including a recess region and protrusions defined by the recessed region, first insulating patterns provided on the protrusions and extending to sidewalls of the protrusions, and a second semiconductor layer to fill the recess region and cover the first insulating patterns. The protrusions includes a first group of protrusions spaced apart from each other in a first direction to constitute a row and a second group of protrusions spaced from the first group of protrusions in a second direction intersecting the first direction and spaced from each other in the first direction to constitute a row. The second group of protrusions are shifted from the first group of protrusions in the first direction.
US09537027B2

The invention relates to quantum dot and photodetector technology, and more particularly, to quantum dot infrared photodetectors (QDIPs) and focal plane array. The invention further relates to devices and methods for the enhancement of the photocurrent of quantum dot infrared photodetectors in focal plane arrays.
US09537022B2

A wavelength converting material comprising a phosphate compound have a chemical formula of AB1-m-nPO4:Mm, Nn, wherein A comprises an alkali metal element, B comprises an alkaline earth metal element, M is a sensitizer comprising a rare-earth element, and N is an acceptor comprising a rare-earth element, wherein 0
US09537021B2

A concentrated photovoltaic cell comprises a semiconductor stack comprising an upper surface and a lower surface opposite to the upper surface, wherein the upper surface is operable to absorb a light which comprises a light intensity distribution on the upper surface; and an upper electrode formed on the upper surface of the semiconductor stack and comprising an electrode pattern approximately corresponding to the light intensity distribution, wherein the light intensity distribution comprises a high light-concentrated area having a first light intensity and a low light-concentrated area having a second light intensity, wherein the second light intensity is lower than the first light intensity.
US09537018B2

A photo-voltaic cell has a first and second two-dimensional array of contact points on the first surface, each coupled to a respective one of base and emitter areas in or on the semi-conductor body. Electrically separate first and second conductor structures on the first surface emanate from each contact point, coupled to contact points of the first and second two-dimensional array respectively. The first conductor structure comprises sets of first conductor line branches, the first conductor line branches of each set branching out from a respective one of the contact points of the first two-dimensional array in at least three successive different directions at less than a hundred and eighty degrees to each other. The second conductor structure comprise second conductor line branches in at least three different directions in areas between respective pairs of adjacent non-parallel ones of the first conductor line branches, each second conductor line branch coupled at least to a respective one of the contact points of the second two-dimensional array.
US09537012B2

It is an object to manufacture a highly reliable semiconductor device including a thin film transistor whose electric characteristics are stable. An insulating layer which covers an oxide semiconductor layer of the thin film transistor contains a boron element or an aluminum element. The insulating layer containing a boron element or an aluminum element is formed by a sputtering method using a silicon target or a silicon oxide target containing a boron element or an aluminum element. Alternatively, an insulating layer containing an antimony (Sb) element or a phosphorus (P) element instead of a boron element covers the oxide semiconductor layer of the thin film transistor.
US09537002B2

A base layer is used that has an N-type SiC layer formed in a surface layer on the front surface side of an N-type SiC substrate, and a P-type region is formed on a surface of the N-type SiC layer with an N-type source region selectively formed in a surface layer of the P-type region. A source electrode is formed on a surface of the N-type source region and a drain electrode is formed on the back surface side of the N-type SiC substrate. Additionally, the gate electrode is formed via a gate insulation film only on a surface of the P-type region. In this way, high electric field is no longer applied to the gate insulation film on the surface of the N-type SiC layer due to stoppage of voltage application to the gate electrode.
US09537000B2

A semiconductor device includes a substrate having a surface, a composite body region disposed in the substrate, having a first conductivity type, and comprising a body contact region at the surface of the substrate and a well in which a channel is formed during operation, a source region disposed in the semiconductor substrate adjacent the composite body region and having a second conductivity type, and an isolation region disposed between the body contact region and the source region. The composite body region further includes a body conduction path region contiguous with and under the source region, and the body conduction path region has a higher dopant concentration level than the well.
US09536994B2

A minute transistor and the method of manufacturing the minute transistor. A source electrode layer and a drain electrode layer are each formed in a corresponding opening formed in an insulating layer covering a semiconductor layer. The opening of the source electrode layer and the opening of the drain electrode layer are formed separately in two distinct steps. The source electrode layer and the drain electrode layer are formed by depositing a conductive layer over the insulating layer and in the openings, and subsequently removing the part located over the insulating layer by polishing. This manufacturing method allows for the source electrode later and the drain electrode layer to be formed close to each other and close to a channel forming region of the semiconductor layer. Such a structure leads to a transistor having high electrical characteristics and a high manufacturing yield even in the case of a minute structure.
US09536992B2

A method includes providing a semiconductor structure. The semiconductor structure includes a first transistor region, a second transistor region and a silicon dioxide layer on the first transistor region and the second transistor region. A layer of a high-k dielectric material is deposited on the silicon dioxide layer. A layer of a first metal is formed over the second transistor region. The layer of first metal does not cover the first transistor region. After the formation of the layer of the first metal, a layer of a second metal is deposited over the first transistor region and the second transistor region. A first annealing process is performed. The first annealing process initiates a scavenging reaction between the second metal and silicon dioxide from a portion of the silicon dioxide layer on the first transistor region. After the annealing process, a ferroelectric transistor dielectric is formed over the first transistor region.
US09536990B2

One method disclosed herein includes, among other things, forming a patterned fin having a thickness that is equal to or greater than a target final fin height for a replacement fin, performing an etching process through the patterned fin etch mask to form a plurality of trenches in a semiconductor substrate to define a substrate fin and forming a recessed layer of insulating material in the trenches so as to expose the patterned fin etch. The method also includes forming a layer of CTE-matching material around the exposed patterned fin etch mask, removing the patterned fin etch mask to thereby define a replacement fin cavity and expose a surface of the substrate fin, forming the replacement fin on the substrate fin and in the replacement fin cavity, removing the layer of CTE-matching material and forming a gate structure around at least a portion of the replacement fin.
US09536983B2

A method of forming a semiconductor device includes forming a gate electrode on a substrate, forming a first spacer on a sidewall of the gate electrode, forming a second spacer on the first spacer, and forming a capping pattern on top surfaces of the gate electrode, the first spacer and the second spacer. An outer sidewall of the second spacer is vertically aligned with a sidewall of the capping pattern.
US09536982B1

A semiconductor device that includes a gate structure on a channel region of a semiconductor device. Source and drain regions may be present on opposing sides of the channel region. The semiconductor device may further include a composite gate sidewall spacer present on a sidewall of the gate structure. The composite gate sidewall spacer may include a first composition portion having an air gap encapsulated therein, and a second composition portion that is entirely solid and present atop the first composition portion.
US09536971B2

A method used in fabrication of a recessed access device transistor gate has increased tolerance for mask misalignment. One embodiment of the invention comprises forming a vertical spacing layer over a semiconductor wafer, then etching the vertical spacing layer and the semiconductor wafer to form a recess in the wafer. A conductive transistor gate layer is then formed within the trench and over the vertical spacing layer. The transistor gate layer is etched, which exposes the vertical spacing layer. A spacer layer is formed over the etched conductive gate layer and over the vertical spacing layer, then the spacer layer and the vertical spacing layer are anisotropically etched. Subsequent to anisotropically etching the vertical spacing layer, a portion of the vertical spacing layer is interposed between the semiconductor wafer and the etched conductive transistor gate layer in a direction perpendicular to the plane of a major surface of the semiconductor wafer.
US09536968B2

Semiconductor devices may include a gate pattern and a contact pattern disposed on an active region. The contact pattern may include a recessed portion near the gate pattern, and a rising portion away from the gate pattern. The gate pattern may include a gate insulating layer and a gate electrode disposed on the gate insulating layer. An upper surface of the recessed portion may be lower than an upper surface of the rising portion.
US09536967B2

A device includes a III-N layer having an upper side and a lower side, the lower side being opposite the upper side, and at least one conductive contact on the upper side of the III-N layer, the conductive contact extending into the III-N layer. The conductive contact comprises a top side facing away from the lower side of the III-N layer, and a bottom side facing towards the lower side of the III-N layer. The bottom side includes a first end and a second end opposite the first end, a first side rising from the first end to an intermediate point closer to the top side than the first end, and a second side falling from the intermediate point to the second end further from the top side than the intermediate point.
US09536965B2

A semiconductor device comprises: a substrate; a multilayer semiconductor layer located on the substrate; a source located on the multilayer semiconductor layer, the source including a first source portion inside an active region and a second source portion inside a passive region; a drain located on the multilayer semiconductor layer, the drain including a first drain portion inside the active region and a second drain region inside the passive region; a gate located on the multilayer semiconductor layer, the gate including a first gate portion inside the active region and a second gate portion inside the passive region, and the first gate portion being in a form of interdigital among the first source portion and the first drain portion; and a heat dissipating layer disposed at one or more of the first source portion, the first drain portion, the first gate portion, the second source portion, the second drain portion and the second gate portion.
US09536964B2

A method for forming the semiconductor device structure is provided. The method includes forming a first metal layer over a substrate and forming a dielectric layer over the first metal layer. The method includes forming an antireflection layer over the dielectric layer, forming a hard mask layer over the antireflection layer and forming a patterned photoresist layer over the hard mask layer. The method includes etching a portion of the antireflection layer by performing a first etching process and etching through the antireflection layer and etching a portion of the dielectric layer by performing a second etching process. The method includes etching through the dielectric layer by performing a third etching process to form a via portion on the first metal layer. The via portion includes a first sidewall and a second sidewall, and the slope of the first sidewall is different from that of the second sidewall.
US09536962B1

An embodiment high electron mobility transistor (HEMT) includes a gate electrode over a semiconductor substrate and a multi-layer semiconductor cap over the semiconductor substrate and adjacent the gate electrode. The multi-layer semiconductor cap includes a first semiconductor layer and a second semiconductor layer comprising a different material than the first semiconductor layer. The first semiconductor layer is laterally spaced apart from the gate electrode by a first spacing, and the second semiconductor layer is spaced apart from the gate electrode by a second spacing greater than the first spacing.
US09536960B2

A semiconductor device includes a gate electrode adjacent to a body region in a semiconductor substrate. The semiconductor device further includes a field electrode in a field plate trench in the main surface, the field plate trench having an extension length in a first direction parallel to a main surface. The extension length is less than the double of an extension length in a second direction that is perpendicular to the first direction parallel to the main surface. The extension length in the first direction is more than half of the extension length in the second direction. The field electrode is insulated from an adjacent drift zone by means of a field dielectric layer. A field plate material of the field electrode has a resistivity in a range from 105 to 10−1 Ohm·cm.
US09536959B2

A semiconductor device includes first to third semiconductor regions, first to fourth electrodes and a first insulating film. The first insulating film is provided between the third electrode and the first semiconductor region, between the third electrode and the second semiconductor region, between the third electrode and the third semiconductor region, and between the fourth electrode and the first semiconductor region. The first insulating film has a first insulating region, a second insulating region and a third insulating region. A first width in the first insulating region is different from a second width in the second insulating region. The first insulating region and the second insulating region are arranged in the direction. A third width of the third insulating region is constant along the second direction.
US09536958B2

The semiconductor substrate includes a high-ohmic semiconductor material with a conduction band edge and a valence band edge, separated by a bandgap, wherein the semiconductor material includes acceptor or donor impurity atoms or crystal defects, whose energy levels are located at least 120 meV from the conduction band edge, as well as from the valence band edge in the bandgap; and wherein the concentration of the impurity atoms or crystal defects is larger than 1×1012 cm−3.
US09536943B2

Vertical power MOSFETs having a super junction are devices capable of having a lower on resistance than other vertical power MOSFETs. Although they have the advantage of high-speed switching due to rapid depletion of an N type drift region at the time of turn off in switching operation, they are likely to cause ringing. A vertical power MOSFET having a super junction structure provided by the present invention has, in the surface region of a first conductivity type drift region under a gate electrode, an undergate heavily doped N type region having a depth shallower than that of a second conductivity type body region and having a concentration higher than that of the first conductivity type drift region.
US09536936B2

An organic light emitting diode display includes a display substrate, a sealing member disposed to face the display substrate, a sealant disposed between the display substrate and the sealing member, the sealant being configured to attach the display substrate and the sealing member to each other, a plurality of conductive wires on the display substrate, the conductive wires overlapping the sealant, and at least one short-circuit blocking layer between the conductive wires.
US09536933B2

A display device, in which self-luminous elements are arranged, prevents a leakage current through a common layer, provided for the self-luminous elements and disposed throughout its image display area, from causing adjacent pixels to emit unintended light. A light-emitting element layer 102 includes a lower layer 102d and a light-emitting layer. The lower layer 102d has carrier mobility and includes a carrier transport layer or a carrier injection layer. The lower layer 102d is stacked on lower electrodes 100 and banks 106. The light-emitting layer is stacked on the lower layer 102d. An upper electrode 62 is disposed on the light-emitting element layer 102 and supplies carriers to the light-emitting element layer 102 together with each lower electrode. A lower layer 102d has a dividing area 112 on the bank. The dividing area 112 prevents carriers from traveling between adjacent pixels through the lower layer 102d.
US09536930B2

In a display device including an device substrate arranged with a plurality of pixels arranged with a light emitting device, a color filter layer with different transmission bands corresponding to each of the pixels, and a color filter substrate arranged with an overcoat layer above the color filter layer, by arranging a first light shielding layer arranged corresponding to a matrix of pixels and a second light shielding layer wider than the first light shielding layer and separated from the first light shielding layer and on a side close to a pixel, light emitted in a diagonal direction leaking to an adjacent pixel enters the second light shielding layer and by increasing the length of a light path of the incident light, the light is absorbed and attenuated by the second light shielding layer and improvements in viewing angle characteristics are achieved without decreasing the aperture ratio of a pixel.
US09536927B2

A method for producing a semiconductor device includes forming a fin-shaped semiconductor layer on a semiconductor substrate and a first pillar-shaped semiconductor layer, a first dummy gate layer and a second pillar-shaped semiconductor layer, and a second dummy gate layer. Third and fourth dummy gate layers are formed on sidewalls of the first dummy layer gate, the first pillar-shaped semiconductor layer, the second dummy gate layer and the second pillar-shaped semiconductor layer. An interlayer insulating film is deposited, the dummy gate layers are removed, and a gate insulator is formed film around the first and second pillar-shaped semiconductor layers. A first metal is deposited and a gate electrode and a gate line are formed around the first pillar-shaped semiconductor layer. Second and third metals are deposited and a first contact and a pillar-shaped resistance-changing layer, a lower electrode, and a reset gate are formed.
US09536925B1

A technique relates to an MRAM system. A conformal film covers trenches formed in an upper material. The upper material covers conductive islands in a substrate. The conformal film is selectively etched to leave sidewalls on the trenches. The sidewalls are etched into vertical columns self-aligned to and directly on top of the conductive islands below. A filling material is deposited and planarized to leave exposed tops of the vertical columns. An MTJ element is formed on top of the filling material and exposed tops of the vertical columns. The MTJ element is patterned into lines corresponding to the vertical columns, and each of the lines has a line MTJ element self-aligned to one of the vertical columns. Line MRAM devices are formed by patterning the MTJ element into the lines. Each of line MRAM devices respectively include the line MTJ element self-aligned to the one of the vertical columns.
US09536922B2

A fabricating method of a recess with asymmetric walls includes the steps of providing a substrate comprising a top surface. A recess is formed in the substrate, wherein the recess comprises a first wall, a second wall and a bottom. A patterned mask is formed to cover the substrate. Part of the top surface adjacent to the second wall is exposed through the patterned mask. Finally, the substrate is removed to form a sloping wall, wherein the sloping wall, the first wall and the bottom form a recess with asymmetric walls.
US09536918B2

An integrated circuit includes a semiconductor substrate, at least one photodiode, which is formed on a surface of the semiconductor substrate, at least one trench, which extends from the surface of the semiconductor substrate into the semiconductor substrate and surrounds a region of the semiconductor substrate on which the photodiode Is arranged, and at least one cavity in the semiconductor substrate, which is located below the surface of the semiconductor substrate. The at least one trench and the at least one cavity form an electrical insulation structure between the region of the semiconductor substrate on which the photodiode is arranged and one or more adjacent regions of the semiconductor substrate.
US09536916B2

A stacked type image sensor including color separation elements, and an image pickup apparatus including the stacked type image sensor, are provided. The stacked type image sensor includes a first light sensing layer including first pixels configured to absorb and detect light of a first wavelength band and transmit light of a second wavelength band and a third wavelength band, and a second light sensing layer disposed to face the first light sensing layer, the second light sensing layer including second pixels configured to detect light of the second wavelength band and third pixels configured to detect light of the third wavelength band. The color separation elements are disposed between the first light sensing layer and the second light sensing layer, and are configured to direct the light of the second wavelength band toward the second pixels, and direct the light of the third wavelength band toward the third pixels.
US09536909B2

A display panel is provided. A display panel includes a plurality of pixels and a plurality of gate lines. The pixels include a first pixel, a second pixel and a third pixel. The gate lines include a first gate line, a second gate line and a third gate line. The first gate line drives the first pixel. The second gate line drives the second pixel. The third gate line drives the third pixel. The first gate line, the second gate line and the third gate line are disposed sequentially and driven at different time. The first pixel and the second pixel are arranged respectively at two opposite sides of the first gate line and the second gate line. The second pixel and the third pixel are arrange between the second gate line and the third gate line.
US09536904B2

A light-emitting device capable of suppressing variation in luminance among pixels is provided. A light-emitting device includes a pixel and first and second circuits. The first circuit has a function of generating a signal including a value of current extracted from the pixel. The second circuit has a function of correcting an image signal by the signal. The pixel includes at least a light-emitting element and first and second transistors. The first transistor has a function of controlling supply of the current to the light-emitting element by the image signal. The second transistor has a function of controlling extraction of the current from the pixel. A semiconductor film of each of the first and second transistors includes a first semiconductor region overlapping with a gate, a second semiconductor region in contact with a source or a drain, and a third semiconductor region between the first and second semiconductor regions.
US09536900B2

A method of manufacturing a semiconductor device, by etching a region of an SOI substrate so that only a portion of the original semiconductor is present above the insulator layer. After etching has occurred, a different semiconductor material is grown in the etched region, and fins are formed. An isolation layer is deposited to a height above that the base semiconductor of the etched region.
US09536893B2

A three-dimensional (3D) memory and a method for manufacturing the same are disclosed. According to one embodiment, the 3D memory comprises a thin-film transistor. The thin-film transistor has a source region and a drain region disposed separately. The source region comprises a first source region and a second source region disposed between the first source region and the drain region. The first source region is p-type of doping, the second source region is n-type of doping, and the drain region is n-type of doping.
US09536885B2

A semiconductor device including a pFET and an nFET where: (i) the gate and conductor channel of the pFET are electrically insulated from a buried oxide layer; and (ii) the conductor channel of the nFET is in the form of a fin extending upwards from, and in electrical contact with, the buried oxide layer. Also, a method of making the pFET by adding a fin structure extending from the top surface of the buried oxide layer, then condensing germanium locally into the lattice structure of the lower portion of the fin structure, and then etching away the lower portion of the fin structure so that it becomes a carrier channel suspended above, and electrically insulated from the buried oxide layer.
US09536883B2

According to one exemplary implementation, a dual anti-fuse structure includes a first channel in a common semiconductor fin adjacent to a first programmable gate. The dual anti-fuse structure further includes a second channel in said common semiconductor fin adjacent to a second programmable gate. A first anti-fuse is formed between the first channel and the first programmable gate. Furthermore, a second anti-fuse is formed between the second channel and the second programmable gate. The first programmable gate can be on a first sidewall of the common semiconductor fin and can comprise a first gate dielectric and a first electrode. The second programmable gate can be on a second sidewall of the common semiconductor fin and can comprise a second gate dielectric and a second electrode.
US09536880B2

Methods of fabricating devices (e.g., FDSOI devices) having multiple threshold voltages are described. One method includes providing a first fixed charge region proximate to an interface of an insulating (e.g., buried oxide (BOX) layer) and a semiconductor substrate for a first device. The first charge region has a first configuration of fixed charges. The method also includes providing a second fixed charge region proximate to the interface of the insulating layer and the semiconductor substrate for the second device. The second charge region has a second configuration of fixed charges that is different than the first configuration.
US09536875B2

An IGBT is disposed in an IGBT portion, and an FWD is disposed in an FWD portion. A p-type base region and an n−-type drift region are alternately exposed in a trench longitudinal direction in a substrate front surface in a mesa portion between neighboring trenches in the IGBT portion. A p-type anode region and the n−-type drift region are alternately exposed in the trench longitudinal direction in the substrate front surface in a mesa portion in the FWD portion, and a repetitive structure is formed with a portion of the n−-type drift region sandwiched between p-type anode regions and one p-type anode region in contact with the portion as one unit region. The proportion occupied by the p-type anode region in one unit region (an anode ratio) (α) is 50% to 100%.
US09536869B2

An electrostatic discharge protection apparatus comprises a stack arrangement having a first electrostatic discharge protection element and a second electrostatic discharge protection element. The stack arrangement is arranged to provide a bias potential between the first and second electrostatic discharge protection elements. In one embodiment, the bias potential can be achieved by a clamp arrangement coupled across the stack arrangement.
US09536862B2

Semiconductor integrated circuits (110) or assemblies are disposed at least partially in cavities between two interposers (120). Conductive vias (204M) pass through at least one of the interposers or at least through the interposer's substrate, and reach a semiconductor integrated circuit or an assembly. Other conductive vias (204M.1) pass at least partially through multiple interposers and are connected to conductive vias that reach, or are capacitively coupled to, a semiconductor IC or an assembly. Other features are also provided.
US09536850B2

A package and method of making the package are provided. An embodiment package includes an integrated circuit supporting a conductive pillar, a substrate having a landing pad on each embedded metal trace, a landing pad width greater than a corresponding embedded metal trace width, and a conductive material electrically coupling the conductive pillar to the landing pad. In an embodiment, the landing pad overlaps the metal trace in one direction.
US09536846B2

A semiconductor device includes a chip body having an uneven surface including at least two regions at different levels from one another, a through electrode penetrating the chip body and having an end which is exposed by the uneven surface of the chip body, a passivation layer disposed on the uneven surface of the chip body, and a bump disposed on the passivation layer and the exposed end of the through electrode and overlapping with the uneven surface of the chip body.
US09536829B2

An method including forming a back end of the line (BEOL) wiring portion directly on top of a semiconductor base portion, the BEOL wiring portion including a plurality of layers of a metallic material and a dielectric material and excluding a semiconductor material, forming a through-substrate via through the BEOL wiring portion and the semiconductor base portion, forming an electronic fuse in the BEOL wiring portion adjacent to the through-substrate via, and forming a guard ring in the BEOL wiring portion surrounding the through-substrate via and the electronic fuse in the BEOL wiring portion, the through-substrate via in the semiconductor base portion being free from the guard ring.
US09536828B2

On a semiconductor substrate, coils CL5 and CL6 and pads PD5, PD6, and PD7 are formed. The coil CL5 and the coil CL6 are electrically connected in series between the pad PD5 and the pad PD6, and the pad PD7 is electrically connected between the coil CL5 and the coil CL6. The coil magnetically coupled to the coil CL5 is formed just below the coil CL5, the coil magnetically coupled to the coil CL6 is formed just below the coil CL6, and they are connected in series. When a current is flowed in the coils connected in series formed just below the coils CL5 and CL6, directions of induction current flowing in the coils CL5 and CL6 are opposed to each other in the coils CL5 and CL6.
US09536824B2

A method of forming an integrated circuit, including providing a first substrate layer having a center piece and two side pieces on opposite sides of the center piece, assembling one or more circuit elements on a top side and a bottom side of the center piece of the first substrate layer, preparing two support pieces from a substrate, matching the size of the side pieces, coupling the support pieces to the bottom of the first substrate layer under the side pieces to form a second substrate layer with a void in the center under the center piece of the first substrate layer; and wherein the side pieces and support pieces include via connectors electrically connecting between a bottom side of the second substrate layer and the circuit elements.
US09536820B1

An improved power distribution network for an integrated circuit package that reduces the number of power supply pins that are used in the pin array and achieves better operating performance. In a preferred embodiment, the ratio of power supply pins to input/output (I/O) pins is in the range of approximately 1 to 24 to approximately 1 to 52. In this embodiment, the integrated circuit package comprises a substrate, an integrated circuit mounted on the substrate, a first decoupling capacitor mounted on the substrate, and a second decoupling capacitor formed in the integrated circuit. The package is formed by coupling a power supply pin to both the first and second capacitors by a low frequency path and a DC path, respectively, and the first and second capacitors are coupled by a high frequency path.
US09536814B2

Embodiments of a die stacking apparatus are provided. The die stacking apparatus includes a storage device configured to contain a top wafer and an interposer wafer. The top wafer has a number of top dies, and the interposer wafer has a number of interposer dies. The die stacking apparatus also includes a carrier device configured to carry the interposer wafer, and a transferring device configured to transfer the interposer wafer to the carrier device and to dispose the top dies on the interposer dies. The die stacking apparatus further includes a process module configured to control the transferring device. The process module controls the transferring device to transfer the interposer wafer to the carrier device, and controls the transferring device to dispose the top dies on the interposer dies of the interposer wafer, which is stacked on the carrier device.
US09536813B2

A semiconductor device includes: a semiconductor chip, and a lead frame. The semiconductor chip is mounted over a die pad. Four suspension leads are connected with the die pad and at least one of them is provided between first and second lead groups and is deformed to protrude toward the first lead group. At least one of the leads of the second lead group which is nearer to the deformed suspension lead is deformed to be apart from remaining leads of the second lead group.
US09536812B2

A cavity package is disclosed comprising a metal leadframe, a metal ring connected to the metal leadframe, a plastic body molded to the metal leadframe forming a substrate cavity including an exposed die attach pad of the leadframe for affixing a semiconductor device, exposed lead fingers of the leadframe for wire bonding to the semiconductor device and an external circuit, and an exposed top surface of the metal ring, and a metal cap for closing and encapsulating the substrate cavity. The metal ring is integrated into the pre-molded cavity leadframe for providing an electrical ground path from the metal cap to the die attach pad and permitting attachment of the metal cap to the pre-molded leadframe using solder reflow.
US09536811B2

A system and method for forming a semiconductor die contact structure is disclosed. An embodiment comprises a top level metal contact, such as copper, with a thickness large enough to act as a buffer for underlying low-k, extremely low-k, or ultra low-k dielectric layers. A contact pad or post-passivation interconnect may be formed over the top level metal contact, and a copper pillar or solder bump may be formed to be in electrical connection with the top level metal contact.
US09536803B2

An integrated power module having a depletion mode device and an enhancement mode device that is configured to prevent an accidental on-state condition for the depletion mode device during a gate signal loss is disclosed. In particular, the disclosed integrated power module is structured to provide improved isolation and thermal conductivity. The structure includes a substrate having a bottom drain pad for the depletion mode device disposed on the substrate and an enhancement mode device footprint-sized cavity that extends through the substrate to the bottom drain pad. A thermally conductive and electrically insulating slug substantially fills the cavity to provide a higher efficient thermal path between the enhancement mode device and the bottom drain pad for the depletion mode device.
US09536801B2

An electronic component including a wiring board having interlayer insulation layers and conductive patterns, the wiring board having a first surface and a second surface on the opposite side of the first surface, multiple first bumps formed on a first conductive pattern positioned on the first surface of the wiring board among the conductive patterns of the wiring board, a semiconductor element mounted on the first surface of the wiring board through the first bumps, an encapsulating resin encapsulating the semiconductor element and at least a portion of a side surface of the wiring board, the side surface of the wiring board extending between the first surface and second surface of the wiring board, and multiple of second bumps formed on the second surface of the wiring board and connected to a second conductive pattern of the conductive patterns in the wiring board.
US09536789B1

A method of forming a double-gated junction field effect transistors (JFET) and a tri-gated metal-oxide-semiconductor field effect transistor (MOSFET) on a common substrate is provided. The double-gated JFET is formed in a first region of a substrate by forming a semiconductor gate electrode contacting sidewall surfaces of a first channel region of a first semiconductor fin and a top surface of a portion of a first fin cap atop the first channel region. The tri-gated MOSFET is formed in a second region of the substrate by forming a metal gate stack contacting a top surface and sidewall surfaces of a second channel region of a second semiconductor fin.
US09536788B1

A complementary bipolar junction transistor (BJT) integrated structure and methods for fabricating and operating such. The structure includes a monolithic substrate and conductive first and second backplates electrically isolated from each other. An NPN lateral BJT is superposed over the first backplate, and a PNP lateral BJT is superposed over the second backplate. A buried oxide (BOX) layer is positioned between the NPN lateral BJT and the first backplate, and between the PNP lateral BJT and the second backplate.
US09536786B2

A wafer is formed with a plurality of division lines on a front surface of a single crystal substrate having an off angle and formed with devices in a plurality of regions partitioned by the division lines. The wafer is processed by setting a numerical aperture (NA) of a focusing lens for focusing a pulsed laser beam so that a value obtained by dividing the numerical aperture (NA) by a refractive index (N) of the single crystal substrate falls within the range from 0.05 to 0.2. The pulsed laser beam is applied along the division lines, with a focal point of the pulsed laser beam positioned at a desired position from a back surface of the single crystal substrate, so as to form shield tunnels each composed of a pore and a pore-shielding amorphous portion along the division lines from the focal point positioned inside the single crystal substrate.
US09536785B2

A method of manufacturing through silicon via stacked structures. A plurality of substrates is provided. At least one tapered hole is formed on one surface of each substrate. Each tapered hole is filled up with a tapered through silicon via. A recessed portion is formed on the wider end of each tapered through silicon via. A part of the substrate is removed until the narrower end of each tapered through silicon via protrudes from the other surface of the substrate. The substrates is stacked one after another by fitting and jointing the narrower end of each tapered through silicon via on one substrate into a corresponding recessed portion of the tapered through silicon via of another substrate.
US09536782B2

A tungsten film forming method includes: supplying a tungsten chloride gas as a source material of tungsten and a reducing gas towards a substrate to be processed under a depressurized atmosphere to cause reaction between the tungsten chloride gas and the reducing gas while heating the substrate to be processed, such that a main tungsten film is directly formed on a surface of the substrate to be processed without forming an initial tungsten film for nucleus generation.
US09536779B2

A method of forming a wiring structure for an integrated circuit device includes forming a first metal line within an interlevel dielectric (ILD) layer, and forming a second metal line in the ILD layer adjacent the first metal line; masking selected regions of the first and second metal lines; selectively plating metal cap regions over exposed regions of the first and second metal lines at periodic intervals such that a spacing between adjacent metal cap regions of an individual metal line corresponds to a critical length, L, at which a back stress gradient balances an electromigration force in the individual metal line, so as to suppress mass transport of electrons; and wherein the metal cap regions of the first metal line are formed at staggered locations with respect to the metal cap regions of the second metal line, along a common longitudinal axis.
US09536776B2

An object of the invention is to provide a semiconductor device having improved performance. A method of manufacturing a semiconductor device includes: forming a trench and then forming a first insulating film made of a silicon oxide film through CVD using a gas containing an O3 gas and a TEOS gas to cover the side surface of the trench with the insulating film; forming a second insulating film made of a silicon oxide film through PECVD to cover the side surface of the trench with the second insulating film via the first insulating film; and forming a third insulating film made of a silicon oxide film through CVD using a gas containing an O3 gas and a TEOS gas to close the trench with the third insulating film while leaving a space in the trench.
US09536775B2

A method comprises forming one or more fins in a first region on an insulated substrate. The method also comprises forming one or more fins formed in a second region on the insulated substrate. The insulated substrate comprising a silicon substrate, and an insulator layer deposited on the silicon substrate. The one or more fins in the first region comprising a first material layer deposited on the insulator layer. The one or more fins in the second region comprising a second material layer deposited on the insulator layer.
US09536765B2

A load port unit can prevent or control leakage of inert gas from an EFEM system to the outside. The load port unit used in the EFEM system is provided with an air inlet that opens on a side facing a mini-environment between the upper end of an opener driving unit and the lower end of the pod. The width of the air inlet opening is larger than the width of the opening of the pod. With this arrangement, surplus gas is sucked from the pod when gas purging is performed on the pod.
US09536761B2

A substrate liquid processing apparatus includes a cup 50 configured to receive a processing liquid supplied onto a substrate. The cup includes a ring-shaped first exhaust space 530 in contact with a top opening 50A, and a ring-shaped second exhaust space 540 which is in contact with an exhaust port 52 and is disposed adjacent to the first exhaust space, and the first exhaust space and the second exhaust space communicate with each other intermittently or continuously along an entire circumference thereof. Further, the cup has an inner wall that confines an inner periphery of the second exhaust space, and the inner wall includes a first wall portion 581 serving as an upper part of the inner wall, and a second wall portion which serves as a lower part of the inner wall and is located at an inner position than the first wall portion in a radial direction.
US09536760B2

A semiconductor die encapsulation or carrier-mounting method and apparatus for manufacturing a semiconductor product, wherein a first tool part for holding multiple semiconductor dies is provided and the semiconductor dies are placed on the first tool part, one of the first and a second tool part including displaceable insert members applying a pressure by each displaceable insert member on a surface area of the semiconductor die, and the first and second tool parts are brought together to define a space between the first and second tool parts with the semiconductor products being arranged within the space. The pressure applied by the displaceable insert members is monitored and regulated to a predetermined pressure, and subsequently, the first and second tool parts are separated and the processed semiconductor dies removed.
US09536758B1

A semiconductor substrate can include two or more electrodes, located directly or indirectly on the semiconductor substrate, separated from each other and capacitively coupled to the semiconductor substrate. At the two or more electrodes, non-zero frequency time-varying electrical energy can be received. The time-varying electrical energy can be capacitively coupled via the two or more electrodes to trigger a displacement current to activate free carriers confined within the semiconductor substrate to generate heat in the semiconductor substrate. A temperature associated with the semiconductor substrate can be sensed, using a temperature sensor located in association with the semiconductor substrate. A temperature of the semiconductor substrate can be established or adjusted. This can include controlling the electrical energy received at the two or more electrodes using information received from the temperature sensor.
US09536756B1

One or more embodiments are directed to semiconductor packages that are assembled using a sacrificial material, that when removed, separates the assembled packages into individual packages. The sacrificial material may be removed by a blanket technique such that a mask, pattern, or alignment step is not needed. In one embodiment the sacrificial material is formed on the lead frame on a connecting bar of a lead frame between adjacent leads. After the molding step, the connecting bar is etched away exposing a surface of the sacrificial material. The sacrificial material is removed, thereby separating the assembled packages into individual packages.
US09536755B2

It is an object of the invention to improve the production efficiency in sealing a thin film integrated circuit and to prevent the damage and break. Further, it is another object of the invention to prevent a thin film integrated circuit from being damaged in shipment and to make it easier to handle the thin film integrated circuit. The invention provides a laminating system in which rollers are used for supplying a substrate for sealing, receiving IC chips, separating, and sealing. The separation, sealing, and reception of a plurality of thin film integrated circuits can be carried out continuously by rotating the rollers; thus, the production efficiency can be extremely improved. Further, the thin film integrated circuits can be easily sealed since a pair of rollers opposite to each other is used.
US09536750B1

A method of making a semiconductor device includes disposing a first hard mask (HM), amorphous silicon, and second HM on a substrate; disposing oxide and neutral layers on the second HM; removing a portion of the oxide and neutral layers to expose a portion of the second HM; forming a guiding pattern by selectively backfilling with a polymer; forming a self-assembled block copolymer (BCP) on the guiding pattern; removing a portion of the BCP to form an etch template; transferring the pattern from said template into the substrate and forming uniform silicon fin arrays with two types of HM stacks with different materials and heights; gap-filling with oxide followed by planarization; selectively removing and replacing the taller HM stack with a third HM material; planarizing the surface and exposing both HM stacks; and selectively removing the shorter HM stack and the silicon fins underneath.
US09536749B2

A method for slope control of ion energy is described. The method includes receiving a setting indicating that an etch operation is to be performed using a radio frequency (RF) pulse signal. The RF pulse signal includes a first state and a second state. The first state has a higher power level than the second state. The method further includes receiving a pulse slope associated with the RF pulse signal. The pulse slope provides a transition between the first state and the second state. Also, the pulse slope is other than substantially infinite for reducing an amount of ion energy during the etch operation. The method includes determining power levels and timings for achieving the pulse slope and sending the power levels and the timings to an RF generator to generate the RF pulse signal.
US09536743B2

An embodiment for realizing a power device with trench-gate structure integrated on a semiconductor substrate, and including etching the semiconductor substrate to make a first trench having first side walls and a first bottom; and further etching said semiconductor substrate to make a second trench inside the first trench, realized in a self-aligned way and below this first trench, the first trench and the second trench defining the trench-gate structure with a bird beak-like transition profile suitable for containing a gate region.
US09536742B2

The present disclosure provides a method for forming a Lateral Double-Diffused MOSFET (LDMOS). The method includes providing a semiconductor substrate having a first conductivity type; forming a first shallow trench isolation (STI) structure in the semiconductor substrate; and applying a first ion implantation to form a drift region of a second conductivity type into the semiconductor substrate with the drift region surrounding the first STI structure. The method also includes applying a counter-doping implantation to form a counter-doped region having the first conductivity in the drift region and forming a body region on one side of the drift region in the semiconductor substrate. The method further includes forming a gate structure on the semiconductor substrate, wherein one end of the gate structure extends to an area on the body region another end of the gate structure extends to an area on the first STI region.
US09536732B2

A structure and method for fabricating a laterally configured thin film varistor surge protection device using low temperature sputtering techniques which do not damage IC device components contiguous to the varistor being fabricated. The lateral thin film varistor may consist of a continuous layer of alternating regions of a first metal oxide layer and a second metal oxide layer formed between two laterally spaced electrodes using a low temperature sputtering process followed by a low temperature annealing process.
US09536731B2

A method for cleaning etch residues that may include treating an etched surface with an aqueous lanthanoid solution, wherein the aqueous lanthanoid solution removes an etch residue that includes a majority of hydrocarbons and at least one element selected from the group consisting of carbon, oxygen, fluorine, nitrogen and silicon. In one example, the aqueous solution may be cerium ammonium nitrate (Ce(NH4)(NO3)),(CAN).
US09536730B2

A composition and method for removing copper-containing post-etch and/or post-ash residue from patterned microelectronic devices is described. The removal composition includes water, a water-miscible organic solvent, an amine compound, an organic acid, and a fluoride ion source. The compositions effectively remove the copper-containing post-etch residue from the microelectronic device without damaging exposed low-k dielectric and metal interconnect materials.
US09536729B2

Embodiments of the present invention generally relate to a tubular lamp with a coiled filament having an overwind wrapped around the coil. In one embodiment, the tubular lamp has a coiled coil filament, and the coiled coil has an overwind wrapped around the coiled coil.
US09536724B2

A method of constructing an ion guide is disclosed comprising providing an elongated spine member and a plurality of plates. Each plate comprises an aperture therethrough for receiving the spine member and at least one electrode for use in guiding ions. The apertures of the plates are arranged around the spine member and the plates are arranged along the spine member. The plates are then locked in position on the spine member such that the plates are fixed axially with respect to the spine member and so that the electrodes of the plates are arranged so as to form an array of electrodes for use in guiding ions.
US09536722B2

An ion guide for mass spectrometry comprising an electrode arrangement of at least two electrodes, at least one of which is an RF electrode, arranged adjacent to each other but spaced apart on a planar surface of a dielectric material and arranged at a distance from an ion flow path, wherein a portion of the dielectric surface is exposed between an adjacent pair of the spaced apart electrodes and wherein at least one electrode of said adjacent pair of electrodes is arranged to overhang the exposed portion of surface between them such that there is no direct line of sight from the ion flow path to the exposed portion of dielectric surface. The device enables RF guiding of ions accompanied by much reduced charging-up of dielectric surfaces and reduced amount of collisions of neutral species with electrodes.
US09536721B2

The present invention is concerned with a device for charged particle transportation and manipulation. Embodiments provide a capability of combining positively and negatively charged particles in a single transported packet. Embodiments contain an aggregate of electrodes arranged to form a channel for transportation of charged particles, as well as a source of power supply that provides supply voltage to be applied to the electrodes, the voltage to ensure creation, inside the said channel, of a non-uniform high-frequency electric field, the pseudopotential of which field has one or more local extrema along the length of the channel used for charged particle transportation, at least, within a certain interval of time, whereas, at least one of the said extrema of the pseudopotential is transposed with time, at least within a certain interval of time, at least within a part of the length of the channel used for charged particle transportation.
US09536708B2

Provided is a plasma generating device. The plasma generating device includes: an RF power supply providing an RF signal; a plasma chamber providing a space where gas is injected to generate plasma; a first electromagnetic inducer installed at one portion of the plasma chamber and inducing an electromagnetic field in the plasma chamber as the RF signal is applied; a second electromagnetic inducer installed at another portion of the plasma chamber and inducing an electromagnetic field in the plasma chamber as the RF signal is applied; a first load connected to the first electromagnetic inducer; a second load connected to the second electromagnetic inducer; and a controller controlling a power supplied to the first electromagnetic inducer and the second electromagnetic inducer by adjusting at least one impedance of the first load and the second load.
US09536706B2

A dynamic pattern generator (DPG) device and method of making a DPG device are disclosed. The DPG device is used in semiconductor processing tools that require multiple electron-beams, such as direct-write lithography. The device is a self-aligned DPG device that enormously reduces the required tolerances for aligning the various electrode layers, as compared to other design configurations including the non-self-aligned approach and also greatly simplifies the process complexity and cost. A process sequence for both integrated and non-integrated versions of the self-aligned DPG device is described. Additionally, an advanced self-aligned DPG device that eliminates the need for a charge dissipating coating or layer to be used on the device is described. Finally, a fabrication process for the implementation of both integrated and non-integrated versions of the advanced self-aligned DPG device is described.
US09536703B2

This scanning electron microscope is provided with: a deceleration means that decelerates an electron beam (5) when the electron beam is passing through an objective lens; and a first detector (8) and a second detector (7) that are disposed between the electron beam and the objective lens and have a sensitive surface having an axially symmetric shape with respect to the optical axis of the electron beam. The first detector is provided at the sample side with respect to the second detector, and exclusively detects the signal electrons having a high energy that have passed through a retarding field energy filter (9A). When the distance between the tip (13) at the sample side of the objective lens and the sensitive surface of the first detector is L1 and the distance between the tip at the sample side of the objective lens and the sensitive surface of the second detector is L2, then L1/L2≦5/9. As a result, when performing low-acceleration observation using a deceleration method by means of a scanning electron microscope, it is possible to detect signal electrons without the effect of shading in a magnification range of a low magnification on the order of hundreds of times to a high magnification of at least 100,000×. Also, it is possible to highly efficiently detect backscattered electrons, of which the amount generated is less than that of secondary electrons.
US09536700B2

Provided is a sample observation apparatus including a charged particle optical column that irradiates a sample including an observation target portion that is a concave portion with a charged particle beam at an acceleration voltage, an image generation section that acquires an image including the observation target portion from a signal acquired with irradiation of the charged particle beam, a storage section that stores information representing a relationship between a brightness ratio of a concave portion and its neighboring portion of a reference sample that is irradiated with the charged particle beam at the acceleration voltage and a value that represents a structure of the concave portions of the reference sample in advance, a calculation section that acquires a brightness ratio of the concave portion and its neighboring portion of the image, and a determination section that determines whether or not a defect occurs in the observation target portion based on the information that represents the relationship and the brightness ratio of the image.
US09536699B2

The present disclosure relates to a gas field ion source having a gun housing, an electrically conductive gun can base attached to the gun housing, an inner tube mounted to the gun can base, the inner tube being made of an electrically isolating ceramic, an electrically conductive tip attached to the inner tube, an outer tube mounted to the gun can base, the outer tube being made of an electrically isolating ceramic, and an extractor electrode attached to the outer tube. The extractor electrode can have an opening for the passage of ions generated in proximity to the electrically conductive tip.
US09536696B1

A horizontal multilayer junction-edge field emitter includes a plurality of vertically-stacked multilayer structures separated by isolation layers. Each multilayer structure is configured to produce a 2-dimensional electron gas at a junction between two layers within the structure. The emitter also includes an exposed surface intersecting the 2-dimensional electron gas of each of the plurality of vertically-stacked multilayer structures to form a plurality of effectively one-dimensional horizontal line sources of electron emission.
US09536694B2

A pole shaft catch assembly is for an electrical switching apparatus, such as a circuit breaker. The circuit breaker includes a housing, separable contacts enclosed by the housing, and an operating mechanism for opening and closing the separable contacts. The operating mechanism includes a pole shaft pivotably coupled to the housing and a yoke assembly coupled to the pole shaft. The pole shaft catch assembly includes a catch arm. The catch arm moves between an engaged position in which the catch arm engages the yoke assembly to restrict movement of the yoke assembly and the pole shaft, and a disengaged position in which the catch arm disengages the yoke assembly. A biasing element biases the catch arm toward the disengaged position. A trigger translates movement of the yoke assembly into movement of the catch arm.
US09536691B1

This specification describes axial relays. One of the axial relays includes first and second adapters positioned along an axis defining an axial direction, a contact extending along the axial direction between the first adapter and the second adapter, and a driver configured to move the contact relative to at least one of the first and second adapters between a first position and a second position by moving the contact along the axial direction or rotating the contact around the axial direction, such that a first end of the contact is conductively coupled to the first adapter and a second end of the contact is conductively coupled to the second adapter when the contact is at the first position, and the first adapter is conductively decoupled from the first end of the first adapter when the contact is at the second position.
US09536689B2

Provided is a multi-operating switch unit for vehicles including: a housing part; a substrate; a switch shaft part; a rotary switch part; a directional switch part; and a push switch part. The directional switch part has: a directional slide part in which the position thereof can vary in the housing part due to a tilting directional operation of the switch shaft part; a directional switch that is arranged on the substrate and is operated due to the positional variation of the directional slide part; and a directional return part that returns the directional slide part and the switch shaft part. The directional return part has a return plunger; a return elastic part; and a return groove. The return plunger can be movable in the axial length direction of the switch shaft part with respect to the housing part, and the return groove is formed in the directional slide part.
US09536685B2

A touch panel includes a strengthen cover lens and a touch electrode layer. The strengthen cover lens includes a first non-planar sulfate, and is planned with a display region and a peripheral region surrounding the display region. The touch electrode layer is formed, on the first non-planar surface and overlaid on the display region and at least part of the peripheral region for manufacturing a non-planar touch panel.
US09536683B2

A touch module is provided, including a hollow frame, a positioning member, and a touch unit. The positioning member includes a main body, an extending portion, and a U-shape structure. The extending portion is connected to the main body and fixed to the frame. The U-shape structure includes a contact portion and a pair of flexible arms. The flexible arms are connected to the main body, wherein the U-shape structure and the main body form a gap therebetween. The contact portion and the extending portion are disposed on opposite sides of the main body, wherein the contact portion is disposed between the two flexible arms. The touch unit is connected to the main body and forms a protrusion, wherein when a force is applied to the touch unit, the protrusion contacts the contact portion.
US09536679B2

A method of manufacturing trenched electrochemical double layer capacitors is provided. One aspect of the method employs state-of-the art processes used in semi-conductor wafer manufacturing such as photolithography etching for creating trenches in the electrodes of the double layer capacitor. Another aspect of the method employs a die-saw process, which is scalable and low-cost. The trenched super/ultra capacitors made by the disclosed methods have the combined advantage of higher energy storage capacity than conventional planar super/ultra capacitors due to the increased surface area and higher power density than commonly used Li-ion batteries due to the faster charging time and higher instantaneous energy burst power. The manufacturing processes also have the advantage of better manufacturability, scalability and reduced manufacturing cost.
US09536676B2

A dye-sensitized solar cell module includes a plurality of dye-sensitized solar cells electrically connected in series. The dye-sensitized solar cell includes a first electrode that comprises a transparent substrate, and a transparent conductive film provided on the transparent substrate, a second electrode that faces the first electrode, an oxide semiconductor layer that is provided on the first electrode or the second electrode, and an annular sealing section that joins the first electrode and the second electrode. The transparent substrate is composed of a transparent substrate that is common to the plurality of dye-sensitized solar cells. The second electrodes of two adjoining dye-sensitized solar cells are separated apart from each other. The sealing section includes an annular first sealing section that is provided between the first electrode and the second electrode, and the first sealing sections that are adjoining are integrated together.
US09536674B2

Provided is an electrolytic solution suitable for use in a 100 WV class electrolytic capacitor having low inductance at low temperatures and high durability in high-temperature use conditions. This electrolytic solution for an electrolytic capacitor contains: a mixed organic solvent including sulfolane and γ-butyrolactone; water; an electrolyte selected from the group consisting of a quaternized pyridinium salt of carboxylic acid and a quaternized imidazolinium salt of carboxylic acid; boric acid; and mannitol; and has a mass ratio of boric acid and mannitol in the range of 1:1.2 to 1:1.6, and a total amount of boric acid and mannitol of 10.0 to 14.5% by mass of the total electrolytic solution, the water content being 1.5 to 2.0% by mass of the total electrolytic solution.
US09536660B2

A chip electronic component may include: a magnetic body; and internal coil parts buried in the magnetic body. The magnetic body includes: a core layer including the internal coil parts; and upper and lower cover layers disposed on upper and lower portions of the core layer, respectively, the core layer having a level of magnetic permeability different from that of at least one of the upper and lower cover layers.
US09536648B2

A drum core for a wire-wound component having a pair of flange parts provided on both ends of an axis core around which a winding wire is wound, with tapered surfaces of roughly conical shape formed on their facing inner surfaces in such a way that the interval of the inner surfaces increases toward the outer sides of the flange parts. The flange parts have roughly a rectangular shape and the sides along which their long side faces contact the tapered surfaces have the curved shapes that convex roughly at the center. The curved shapes make the height of the corners of the flange parts from the reference surface lower than the height of the convex parts of the curved shapes from the reference surface, and the loads received by the wire during winding are reduced as a result.
US09536646B2

A sintered ferrite magnet comprising metal elements of Ca, La, Fe and Co, whose atomic ratios are represented by the general formula of Ca1-xLaxFe2n-yCoy, wherein x and y, and n representing a molar ratio meet 0.3≦x≦0.6, 0.25≦y≦0.5, and 3≦n≦6, and further comprising 0.2% to 0.35% by mass of SiO2.
US09536643B2

A method for manufacturing a multilayer electronic component includes the steps of preparing a laminate including a plurality of laminated insulating layers and a plurality of internal electrodes disposed along interfaces between the insulating layers, edges of the internal electrodes being exposed at a predetermined surface of the laminate, and forming an external electrode on the predetermined surface to electrically connect exposed the edges of the internal electrodes. The step of forming an external electrode includes a plating step of forming a continuous plating film by depositing plating deposits on the edges of the internal electrodes exposed at the predetermined surface and by performing plating growth to be connected to each other, and a heat treatment step of performing a heat treatment at an oxygen partial pressure of about 5 ppm or less and at a temperature of about 600° C. or more.
US09536640B2

A furcation tube for optical fibers has a polymer inner jacket surrounded by a fiber and strength member layer of fibers and strength rods, which is surrounded by a polymer outer jacket. The inner jacket may surround a plurality of inner tubes. The strength members may be arrayed around the inner jacket generally equidistant from one another. The strength members may be resin pultruded fiber rods and the fiber may be para-aramid fibers.
US09536630B2

A method for removing radioactive cesium and/or iodine from a radioactive substance in liquid and/or a solid matter using a hydrophilic resin composition comprising a hydrophilic resin and a metal ferrocyanide compound, wherein the hydrophilic resin includes at least one hydrophilic resin selected from the group consisting of a hydrophilic polyurethane resin, a hydrophilic polyurea resin, and a hydrophilic polyurethane-polyurea resin each having at least a hydrophilic segment, and a metal ferrocyanide compound is dispersed in the hydrophilic resin composition in a ratio of at least 1 to 200 mass parts relative to 100 mass parts of the hydrophilic resin.
US09536629B2

Apparatus for passively generating electric power during a nuclear power station blackout by utilizing the temperature difference between the hot inlet of a residual heat removal circuit and the surrounding containment environment. A heat engine, such as a thermoelectric generator, a Stirling Cycle Engine or Rankine Cycle Engine, is coupled in heat exchange relationship with an uninsulated portion of the inlet to a passive residual heat removal heat exchanger and/or passive residual heat removal heat exchanger channel head to generate the power required to operate essential equipment needed to maintain the nuclear power station in a safe condition during a loss of normal onsite and offsite power.
US09536620B2

A method of improving radiation tolerance of floating gate memories is provided herein. Floating gate memories can include a floating gate transistor or a block of floating gate transistors. A floating gate transistor can include a semiconductor region, a source region, a drain region, a floating gate region, a tunnel oxide region, an oxide-nitride-oxide region, and a control gate region. A floating gate transistor or block of floating gate transistors can be written to multiple times in order to accumulate charge on one or more floating gate regions in accordance with an embodiment of the invention. When exposed to radiation, a floating gate region can retain its charge above a certain voltage threshold. A block of floating gate transistors can communicate with an external device where the external device can read a state of the block of floating gate transistors in accordance with an embodiment of the invention.
US09536602B2

A method for writing data into a flash memory, wherein the flash memory includes a plurality multi-level cells, and each of the plurality of multi-level cells is capable of storing a plurality of bits. The method includes: storing a first bit into each of the plurality of multi-level cells respectively; determining if each of the plurality of multi-level cells stores the first bit respectively; and when each of the plurality of multi-level cells stores the first bit respectively, storing a second bit into each of the plurality of multi-level cells respectively.
US09536600B2

Mechanisms are provided, in a non-volatile memory device comprising a non-volatile memory and a memory controller, for controlling an operation of the non-volatile memory device. The non-volatile memory device receives a single combined memory command for accessing the non-volatile memory. The non-volatile memory device decodes the row address and the column address for the word-line to be accessed by the single combined memory command. The non-volatile memory device accesses the word-line such that at least a most significant bit (MSB) page and a least significant bit (LSB) page are accessed simultaneously.
US09536596B2

An apparatus includes a first read port, a second read port, a write port, and at least one storage latch. A width of a bit cell that includes the first read port, the second read port, and the write port is greater than twice a contacted poly pitch (CPP) associated with the bit cell. For example, a bit cell may be a 3-port static random access memory (SRAM) bit cell that is compatible with self-aligned double patterning (SADP) processes and that can be manufactured using semiconductor manufacturing processes of less than 14 nanometers (nm).
US09536594B1

A data reception chip coupled to an external memory including a first input-output pin to output first data and including a comparison module, a voltage generation module, a logic unit, a detection module and a switching module is provided. The comparison module is coupled to the first input-output pin to configure to receive the first data. The comparison module compares the first data with a first reference voltage to identify the value of the first data. The voltage generation module is configured to generate the first reference voltage. The logic unit is coupled to the comparison module and the voltage generation module and outputs at least one switching signal. The detection module detects the logic unit to generate at least one detection signal. The switching module transmits the detection signal to a test pin according to the switching signal.
US09536592B2

A memory device includes a first memory circuit including a silicon transistor, a selection circuit including a silicon transistor, and a second memory circuit including oxide semiconductor transistors and a storage capacitor, in which one terminal of the storage capacitor is connected to a portion where two oxide semiconductor transistors are connected in series, an output of the second memory circuit is connected to a second input terminal of the selection circuit, and an input of the second memory circuit is connected to a first input terminal of the selection circuit or an output terminal of the first memory circuit.
US09536584B2

A nonvolatile logic gate device is configured to include a resistive network of a memory structure in which at least three nonvolatile resistive elements are connected, a reference resistive network as a reference resistance providing a tolerance of the memory structure to a resistance value of the resistive network of the memory structure, a writing part operable to selectively write or rewrite a value of each of the nonvolatile resistive elements in the resistive network into a maximum or a minimum corresponding to a logical value to be read when data are stored into the resistive network, and a logic circuit structure operable to use, as a logical value of the memory structure, a value obtained by comparison between the resistance value of the resistive network and the resistance value of the reference resistive network.
US09536573B2

A 3D memory structure and a method for manufactured the same are provided. The 3D memory structure comprises a plurality of strings, a plurality of first conductive lines, a plurality of second conductive lines and a plurality of third conductive lines. The strings are disposed in parallel. The first conductive lines are disposed over the strings. Center regions of the first conductive lines are disposed perpendicular to the strings. The second conductive lines are disposed over the first conductive lines. The second conductive lines connect end regions of half of the first conductive lines. The third conductive lines are disposed over the second conductive lines. The third conductive lines connect end regions of the other half of the first conductive lines.
US09536569B2

Systems and methods for selectively recording and bookmarking a portion of broadcast media content include receiving a video stream containing the broadcast media content, determining a video segment of the video stream to be output to a display device, and performing OCR on characters present within the video segment. The systems and methods may further include detecting a trigger event in the OCR of the video segment and creating a digital bookmark corresponding to the detected trigger event. The systems and methods may include generating a recording of a portion of the broadcast media content, whereby the recording begins prior to the trigger event and concludes after the trigger event, and storing the digital bookmark associated with the generated recording.
US09536565B2

A system and method for a media processor separates the functions of topology creation and maintenance from the functions of processing data through a topology. The system includes a control layer including a topology generating element to generate a topology describing a set of input multimedia streams, one or more sources for the input multimedia streams, a sequence of operations to perform on the multimedia data, and a set of output multimedia streams, and a media processor to govern the passing of the multimedia data as described in the topology and govern the performance of the sequence of multimedia operations on the multimedia data to create the set of output multimedia streams. The core layer includes the input media streams, the sources for the input multimedia streams, one or more transforms to operate on the multimedia data, stream sinks, and media sinks to provide the set of output multimedia streams.
US09536564B2

Some embodiments of the invention provides a media editing application that includes tools to perform a variety of different editing operations based on roles assigned to media content. In some embodiments, the media editing application includes focus-editing tools to emphasize or de-emphasize different sets of clips based on the assigned roles. In some embodiments, the media editing application allows one or more sets of clips to be disabled or enabled during playback based on the assigned roles.
US09536558B2

Techniques for reducing the time required for erasing specific data recorded on a tape medium. A specific group of records is erased without preliminarily locating the erasure end position. This is carried out by simultaneously utilizing three heads, that is, two read heads and one write head, to detect the erasure end position during data erasure. Various embodiments are applicable to tape media as well as other storage media. Various embodiments are not only applicable as a file system cooperating as a combination of hardware (H/W) and software (S/W), but also applicable in systems, such as databases, that directly use storage without an intermediary file system.
US09536554B2

A magnetic head includes a read transducer and a write transducer at a media-facing surface of the magnetic head. The magnetic head includes at least one heater that causes heat deformation at the media-facing surface in response to different first and second energizing currents. The first energizing current results in a first close point between the media-facing surface and a recording medium. The second energizing current results in a second close point between the media-facing surface and the recording medium. The second close point is at a different location in the media-facing surface than the first close point.
US09536547B2

A speaker change detection device sets first and second analysis periods before and after each of time points in a voice signal, generates, for each of the time points, a first speaker model from a distribution of features in frames in the first analysis period, and a second speaker model from a distribution of features in frames in the second analysis period, calculates, for each of the time points, a matching score representing the likelihood of similarity of features between a group of speakers in the first analysis period and a group of speakers in the second analysis period by applying the features extracted from the second analysis period to the first speaker model and applying the features extracted from the first analysis period to the second speaker model, and detects a speaker change point on the basis of the matching scores at the plurality of time points.
US09536544B2

A system and method of creating a customized multi-media message to a recipient is disclosed. The multi-media message is created by a sender and contains an animated entity that delivers an audible message. The sender chooses the animated entity from a plurality of animated entities. The system receives a text message from the sender and receives a sender audio message associated with the text message. The sender audio message is associated with the chosen animated entity to create the multi-media message. The multi-media message is delivered by the animated entity using as the voice the sender audio message wherein the mouth movements of the animated entity conform to the sender audio message.
US09536541B2

A novel audio ducking method that is aware of the loudness levels of the audio content is provided. The method specifies a minimum loudness separation between audio tracks that are designated as masters and audio tracks that are designated as slaves. The method attenuates the volume of the slave tracks in order to provide at least the minimum loudness separation between the slave tracks and the master tracks. The amount of attenuation for a slave is determined based on the loudness levels of the slave and of a master.
US09536534B2

Provided is a speech/audio encoding apparatus with which it is possible to code a significant frequency domain region with high precision, and to enable high audio quality. A speech/audio encoding apparatus codes a linear prediction coefficient. A significant frequency domain region detection unit identifies a frequency domain region which is aurally significant from the linear prediction coefficient. A frequency domain region repositioning unit repositions the significant frequency domain region which is identified by the significant frequency domain region detection unit. A bit allocation computation unit determines a coding bit allocation on the basis of the significant frequency domain region which is repositioned by the frequency domain region repositioning unit.
US09536529B2

An apparatus for processing an audio signal and method thereof are disclosed. The present invention includes receiving a downmix signal and side information; extracting extension type identifier indicating whether extension area includes a residual signal from the side information; when the extension type identifier indicates that the extension area includes the residual signal, extracting control restriction information for residual using mode from the side information; receiving control information for controlling gain or panning of at least one object signal; estimating modified control information based on the control information and the control restriction information; obtaining at least one of enhanced object signal and one or more regular object signals from the downmix signal using the residual signal; and, generating an output signal using the modified control information and at least one of enhanced object signal and one or more regular object signal, wherein the control restriction information for residual using mode relates to a parameter indicating limiting degree of the control information in case of the residual using mode.
US09536522B1

Systems and techniques are provided for training a natural language processing model with information retrieval model annotations. A natural language processing model may be trained, through machine learning, using training examples that include part-of-speech tagging and annotations added by an information retrieval model. The natural language processing model may generate part-of-speech, parse-tree, beginning, inside, and outside label, mention chunking, and named-entity recognition predictions with confidence scores for text in the training examples. The information retrieval model annotations and part-of-speech tagging in the training example may be used to determine the accuracy of the predictions, and the natural language processing model may be adjusted. After training, the natural language processing model may be used to make predictions for novel input, such as search queries and potential search results. The search queries and potential search results may have information retrieval model annotations.
US09536516B2

A speech recognition circuit comprises an input buffer for receiving processed speech parameters. A lexical memory contains lexical data for word recognition. The lexical data comprises a plurality of lexical tree data structures. Each lexical tree data structure comprises a model of words having common prefix components. An initial component of each lexical tree structure is unique. A plurality of lexical tree processors are connected in parallel to the input buffer for processing the speech parameters in parallel to perform parallel lexical tree processing for word recognition by accessing the lexical data in the lexical memory. A results memory is connected to the lexical tree processors for storing processing results from the lexical tree processors and lexical tree identifiers to identify lexical trees to be processed by the lexical tree processors. A controller controls the lexical tree processors to process lexical trees identified in the results memory by performing parallel processing on a plurality of said lexical tree data structures.
US09536497B2

The present invention discloses a Gamma voltage driving circuit, which comprises a voltage dividing resistor string, which comprises 2n resistors connected in series sequentially, used to divide a reference voltage into 2n Gamma voltages; wherein, n is an integer not less than 1; a reference voltage module, which provides the reference voltage for the voltage dividing resistor string; a voltage selecting module, which is used to selectively output one of the 2n Gamma voltages. The reference voltage module comprises a first reference voltage and a second reference voltage, the first reference voltage is coupled to one end of the voltage dividing resistor string, the second reference voltage is coupled between the 2n/2-th resistor and the (2n/2+1)-th resistor; wherein, the voltage selecting module comprises 2n−1 transmission lines, which respectively connects the voltage dividing nodes of the first to (2n/2−1)-th resistors and the (2n/2+1)-th to 2n-th resistors in the voltage dividing resistor string to a output terminal; and each transmission line is provided with n−1 switching units.
US09536494B2

According to embodiments described in the specification, a method and apparatus are provided for controlling an output device of a portable electronic device comprising a processor, a first motion sensor, a second motion sensor and an output device. The method comprises: receiving at the processor, from the first motion sensor, first motion data representing movement of an external object relative to the portable electronic device; receiving at the processor, from the second motion sensor, second motion data representing movement of the portable electronic device; generating, at the processor, third motion data based on the first and second motion data, the third motion data representing movement of the external object; and, controlling the output device based on the third motion data.
US09536491B2

A source driver generates a plurality of gradation voltages based on a plurality of gradation reference voltages VH255 to VL255 generated by a gradation reference voltage generation circuit, and drives the data lines using the generated gradation voltages. The control unit sets a waiting time before the power of the source driver is cut off, and controls the gradation reference voltage generation circuit such that all the plurality of gradation reference voltages VH255 to VL255 become the same voltage during the waiting time. In this way, the same voltages are written into the pixel circuits and the charge remaining in the pixel circuits are discharged, and thus, an afterimage, a ghosting, and a flickering caused by the remaining charge when the power is cut off are prevented.
US09536485B2

A Gamma voltage generating module for supplying a liquid crystal panel having a plurality of pixel units, each including comprising a main pixel region M and a sub pixel region S. The Gamma voltage generating modules have a reference voltage unit source to a first divider resistance string for dividing the reference voltages to form Gamma voltages corresponding to 0-255 gray scales, and supplying the Gamma voltages to the main pixel region M; and a second divider resistance string, coupled to the reference voltage unit, for forming Gamma voltages corresponding to 0-255 gray scales, and supplying the Gamma voltages to the sub pixel region S. The first divider resistance string and the second divider resistance string, the Gamma voltage generating points at least at gray scales of 0, Gx, Gx+1 and 255 connect with the reference voltages. Also discloses a liquid crystal panel comprising the above Gamma voltage generating module.
US09536482B2

A display device with a plurality of sub-pixel groups is disclosed. Each of the sub-pixel groups comprises a first sub-pixel, located at a first column; a second sub-pixel, located at a second column adjacent to the first column; a third sub-pixel, located at a third column adjacent to the second column; a fourth sub-pixel, located at a fourth column adjacent to the third column; and a fifth sub-pixel, located at the fourth column; wherein the row of the second sub-pixel overlaps the row of the first sub-pixel; wherein the row of the third sub-pixel overlaps the row of the first sub-pixel; wherein the row of at least one of the fourth sub-pixel and the fifth sub-pixel overlaps the row of the first sub-pixel; wherein a sum of the heights of the fourth sub-pixel and the fifth sub-pixel is smaller than or equal to the height of the first sub-pixel.
US09536480B2

An image display device including: a light-emitting unit that is capable of individually controlling emission amounts in each of a plurality of regions constituting a screen; a display unit that displays an image on the screen; and a control unit that sets a first region in which display is performed at a predetermined brightness and a second region in which an image is displayed at a lower brightness than the predetermined brightness in the screen, wherein the control unit sets the second region in a region excluding the first region in the screen on the basis of an influence of light leakage from the first region.
US09536465B2

A method that includes an initial uniform pixel measurement and interpolation followed by an edge detection algorithm to recognize the areas that contribute mostly to the estimation error due to the interpolation. The pixels on the detected edges and around their vicinity are also measured, and an aging pattern of the entire display is obtained by re-interpolating the entire measured set of data for the initially measured pixels as well as the pixels around the detected edges. The estimation error is reduced particularly in the presence of aging patterns having highly spatially correlated areas with distinctive edges.
US09536464B2

The present invention provides a display panel and a display method thereof, and a display device. The display panel comprises a plurality of sub-pixel arrays, each sub-pixel array is composed of eight sub-pixels arranged in two rows and four columns. In each sub-pixel array, four sub-pixels in a same row include three color sub-pixels and one compensation sub-pixel, the three color sub-pixels include one red sub-pixel, one green sub-pixel and one blue sub-pixel, colors of two sub-pixels in a same column are different from each other. The display method comprises: causing a plurality of color sub-pixels with the same color near a sub-pixel position to display, so that the required color component is displayed at the sub-pixel position under an average effect of the color sub-pixels with the same color; and performing display compensation on a sub-pixel position by using a plurality of compensation sub-pixels near the sub-pixel position.
US09536446B2

A motion simulation system includes actuators having a planetary gearbox engaged with and driven by a servomotor engaged with a crank. A connector rod is engaged with the crank of each actuator, and engaged with a platform configured to attach to a vehicle. A control system is operable with each electric servo motor of each actuator for delivering control for providing a simulated motion to the top plate. Control data is sent to the servomotors using a msec data send and receive rate, with internal processing within the nano-second range. Such update rates coupled with a real time, dynamically responsive motion controller results in a desirably smooth and accurate simulator motion. The control system includes a washout filter for transforming input forces and rotational movements. One to six degrees of freedom systems having smooth performance with high payload capability are provided.
US09536445B2

The disclosed embodiments include systems and methods for creating trails indicative of a learned process. In one embodiment, a user provides a title and user input for generating the learned processed is received. Nodes are created to represent steps of the learned process in response to the user input. Information for each of the steps is associated with each of the nodes. The nodes are connected in an order for performing the learned process. The connected nodes are visually displayed as a trail for one or more users to perform the learned process.
US09536441B2

An aspect of the present invention relates to an online test platform adapted to facilitate the development, delivery, and management of educational tests with interactive participation by students, teachers, proctors, and administrators even when some or all of them are remotely located. The platform may include administrator interfaces, test proctor interfaces, and test taker (e.g. student) interfaces to allow each participant to view, navigate, and interact with aspects of the online test platform that are intended to meet their needs.
US09536426B2

Systems and methods to determine a speed limit violation by a vehicle. A locator device coupled to the vehicle receives GPS location coordinates from a satellite. The systems and methods determine the speed of the vehicle using the received coordinates or the functions of an engine control module. The speed limit of the segment of roadway on which the vehicle is traveling is identified based on the coordinates, and the vehicle speed is compared to the speed limit to determine whether the vehicle is violating the speed limit for the segment of roadway. The systems and methods alert any interested parties, such as the vehicle driver or a fleet manager, of the speed limit violation.
US09536425B1

A system and method for providing increased traffic carrying capacity of a road, such as a highway, by modifying an existing roadway from, for example, four lanes to five lanes, to create an additional travel lane. The system and method dynamically changes the width of travel lanes using, for example, embedded pavement lights, or other lighting arrangements, in lieu of traditional painted lane lines. As traffic volumes increase and speeds decrease along the road, an intelligent transport system (ITS) sends a congestion signal to the overhead lane controls and dynamic message signs (DMS) along the entire road segment of interest. The posted speed limits are changed, and the lane markings are controlled to dynamically increase the number of lanes in the road segment to five, for example, of narrower widths until traffic volumes reduce and the number of lanes can be returned to four, for example, with normal speed limits.
US09536387B2

A system including a bill or note validator of a gaming machine, a host computer, and a game credit meter. The bill or note validator is adapted to receive and recognize at least a first currency and a second currency, each issued by a different jurisdiction, and is further adapted to encode a monetary denomination of the second currency. The host computer is adapted to receive the encoded monetary denomination of the secondary currency, to decode the encoded monetary denomination and to determine an amount of game credit to be credited to the player. The game credit meter is adapted to store a total amount of game credit purchased by the player of the gaming machine including game credit purchased by the player in response to the player inserting one or more bills or notes of either or both currencies into the gaming machine.
US09536373B2

A method of operating a wagering game comprises detecting receipt of a primary wager for playing a primary wagering game, and activating a first bonus feature in response to one or more first eligibility criteria, the first bonus feature having a first bonus payback percentage. The method further comprises activating a second bonus feature in response to one or more second eligibility criteria, the one or more second eligibility criteria including activation of the first bonus feature. The second bonus feature has a second bonus payback percentage higher than the first bonus payback percentage. The method further comprises displaying a randomly selected outcome of the primary wagering game, and in response to at least one triggering event associated with the first and the second bonus features, conducting the first or second bonus feature if the first and second bonus feature is active.
US09536368B2

There is disclosed an authentication device (10) for authenticating a luminescent security mark, the device comprising: an illumination source (30) configured to irradiate the security mark with a pulse of excitation radiation so as to cause the security mark to emit luminescent radiation that decays with time; a radiation detector configured to detect the luminescent radiation emitted by the security mark; and an optical waveguide (22) positioned relative to the illumination source (30) and the radiation detector and configured so as to guide by internal reflection both excitation radiation emitted from the illumination source towards the security mark, and luminescent radiation emitted by the security mark towards the radiation detector.
US09536367B2

Chip sorting devices and methods of ejecting chips from chip wells are disclosed. In some embodiments, chip sorting devices may include at least one chip ejection unit including at least one finger member selectively movable between a first position outside of at least one channel of a chip conveying unit and a second position within the at least one channel. In additional embodiments, a chip sorting device may include a separating wheel comprising a plurality of chip wells, each chip well configured to hold a plurality of chips. In yet additional embodiments, methods of ejecting a chip from a chip well may include urging a selected chip out of the chip well with the at least one finger member and at least one wall segment of a trailing segmented wall of the chip well.
US09536363B2

An operation communication system is provided including a server, a mobile device, and a reader device. The server and the reader device communicate data with one another via the mobile device. The mobile device may communicates with the reader device via Bluetooth, for example. The mobile device may communicate with the server via the Internet, for example. Associated methods, devices and apparatuses are also provided.
US09536341B1

One embodiment of the present invention sets forth a technique for parallel distribution of primitives to multiple rasterizers. Multiple, independent geometry units perform geometry processing concurrently on different graphics primitives. A primitive distribution scheme delivers primitives from the multiple geometry units concurrently to multiple rasterizers at rates of multiple primitives per clock. The multiple, independent rasterizer units perform rasterization concurrently on one or more graphics primitives, enabling the rendering of multiple primitives per system clock.
US09536338B2

Methods of animating objects using the human body are described. In an embodiment, a deformation graph is generated from a mesh which describes the object. Tracked skeleton data is received which is generated from sensor data and the tracked skeleton is then embedded in the graph. Subsequent motion which is captured by the sensor result in motion of the tracked skeleton and this motion is used to define transformations on the deformation graph. The transformations are then applied to the mesh to generate an animation of the object which corresponds to the captured motion. In various examples, the mesh is generated by scanning an object and the deformation graph is generated using orientation-aware sampling such that nodes can be placed close together within the deformation graph where there are sharp corners or other features with high curvature in the object.
US09536336B2

There is provided an image processing apparatus including a processing unit configured to superimpose a plurality of X-ray images that are based on X-ray detection data representing detection results obtained by detecting a plurality of times in a time-division manner parallel beam X-rays output from a ray source including a plurality of X-ray sources that output parallel beam X-rays.
US09536331B2

Methods and apparatuses for creating an output graphic using a processing device may include receiving one or more elements of a hierarchical data structure, wherein each of the one or more elements includes a value. In addition, the methods and apparatuses may include calculating a total value for the hierarchical data structure by adding the value from the one or more elements and creating relationships that associate the one more elements with the total value. The methods and apparatuses may also include generating a diagram to illustrate the total value and the relationships among the one or more elements and the total value and transmitting the diagram for presentation on a display.
US09536320B1

This invention focuses specifically on the use of epipolar lines and the use of matrix transformations to coordinate cameras. This invention organizes cameras in a manner which is intuitive and effective in perceiving perspectives which are not normally possible; to calculate range precisely; to allow redundancy; to corroborate feature recognition; and to allow perspectives from angles from which no cameras exist. By enabling remote scene reconstruction with a limited set of images, transmission bandwidth is greatly conserved.
US09536298B2

Method for detecting a surface flaw of an object using an electronic device includes requesting a detection device to control a camera unit to capture a current image of a test object placed on the detection device. The current image includes a sidewall image and a reflected image. The method obtains the current image, and detects whether the sidewall image has a surface flaw. When the sidewall image has a surface flaw, a rotation angle of the test object is determined based on the reflected image. The method obtains a standard sidewall image of a standard object stored in a storage device of the electronic device, based on the rotation angle, compares the sidewall image with the standard sidewall image, and determines and displays a position of the surface flaw on a sidewall of the test object based on the comparison.
US09536296B2

Assembly and quality of an electronic cigarette (“e-Cig”) may be tested and verified using imaging techniques. Infrared (“IR”) imaging may identify whether a temperature is uniform in an e-Cig during usage. Potential burning locations may be identified through the imaging by identifying locations whose temperature is unusually high or non-uniform. This temperature information may be used to calibrate the power of the e-Cig.
US09536293B2

Deep convolutional neural networks receive local and global representations of images as inputs and learn the best representation for a particular feature through multiple convolutional and fully connected layers. A double-column neural network structure receives each of the local and global representations as two heterogeneous parallel inputs to the two columns. After some layers of transformations, the two columns are merged to form the final classifier. Additionally, features may be learned in one of the fully connected layers. The features of the images may be leveraged to boost classification accuracy of other features by learning a regularized double-column neural network.
US09536292B2

A method adjusts an auto exposure target in an auto-exposure operation on a sequence of images, such as a sequence of infrared images. The method comprises: obtaining a histogram of at least one of the images; applying a weighted histogram table to the histogram to obtain weighted histogram bins wherein at least some bins in the histogram containing saturated pixels are assigned a higher weighting value and at least some bins in the histogram containing unsaturated pixels are assigned a lower weighting value, and summing the weighted histogram bins to obtain a saturation score and decreasing an auto exposure target for an auto exposure operation when the saturation score exceeds a first threshold value, and increasing the auto-exposure target when the saturation score is below the first threshold value and the image is underexposed.
US09536287B1

A digital image processing technique, such as an image warping operation, is stored in a pre-computed lookup table (LUT) prior to image processing. The LUT represents a pixel-to-pixel mapping of pixel coordinates in a source image to pixel coordinates in a destination image. For vectors containing only inlier pixels, a fast remap table is generated based on the original LUT. Each SIMD vector listed in the fast remap is indexed to the coordinates of one of the source pixels that maps to one of the destination pixels in the vector. Other SIMD vectors that contain at least one outlier pixel are listed in an outlier index. For each vector indexed in the fast remap, linear vector I/O operations are used to load the corresponding source pixels instead of using scatter/gather vector I/O load operations via the LUT. The remaining outlier pixels are processed using scatter/gather I/O operations via the LUT.
US09536285B2

An image processing method, a client device, and an image processing system are provided. The method includes: detecting by a client device an image to be processed to obtain image information, and uploading the image information to a server; receiving by the client device at least one case related to the image, the at least one case being obtained by the server according to the image information and sent by the server; and processing the image by the client device according to the at least one case related to the image. The client device includes: a detection module, a receiving module, and a processing module. The system includes the foregoing client device and a server, where the server includes: a receiving module, a selection module, and a sending module. The method not only achieves simple and fast image processing but also improves adjustability during the processing process.
US09536284B2

A method and a system are described where the quality of an image can be modified, using formatted information related to the defects of the appliances of the chain of appliances. The method may include compiling directories of sources of formatted information related to the said appliances, searching automatically for this formatted information related to the appliances of the said chain of appliances, modifying the said image automatically by image-processing software or components by taking into account the formatted information. Additionally, the formatted information may be modified as a function of variable characteristics of the image to be processed and of the chain of appliances. Thus, it is possible to process the images derived from appliances that may be of diverse origins and that have been commercialized gradually over time, such as photographic or video images in optical instrumentation, industrial controls, robotics, metrology, etc.
US09536280B2

Provided is a transmitting apparatus including an image obtaining unit configured to obtain image data having pixel information including color information and having a first resolution, an image conversion unit configured to delete the color information of at least a portion of pixels of the obtained image data, to rearrange the pixel information of a plurality of pixels, and to convert the image data having the first resolution into image data having a second resolution lower than the first resolution, and an output unit configured to output, to a transmitter, the image data whose resolution has been converted from the first resolution into the second resolution by the image conversion unit, the transmitter having a maximum resolution of image data which the transmitter is allowed to wirelessly transmit to a receiving apparatus, the maximum resolution being the second resolution.
US09536277B2

An asynchronous medical image processing system is described that includes a real-time controller connectable to a medical imaging device, a graphics processing unit (GPU) connectable to a display device, and a central processing unit (CPU) that executes an operating system and related application(s). The real-time controller is directly connected to a memory of the GPU and performs respective operations asynchronously with respect to the CPU. The real-time controller additionally obtains medical imaging data, generates instructions for the medical imaging-data and transmits the medical imaging data and the instructions to the memory of the GPU. The GPU additionally receives and processes the medical imaging data based on the instructions from the real-time controller and instructions sent independently from the CPU.
US09536265B2

Various embodiments relate to intelligently activating and deactivating a trading tool element of a trading tool to improve a user's confidence in the trading tool. By dynamically activating and deactivating elements on the trading screen, the trading tool effectively increases a user's confidence in placing a trading order, canceling a trade order, or both, for example, by eliminating or reducing undesirable options. Undesirable options might include those that are risky, contrary to a particular trading strategy, would result in a loss of money, and so on. Such an embodiment can improve the overall speed at which a user places or cancels a trade order by, among other things, effectively increasing the user's overall confidence in the trading tool.
US09536260B2

Methods, systems, and computer program products for providing business communication services are disclosed. A computer-implemented method may include detecting a communication initiated by a user, analyzing the detected communication to determine an intended recipient of the communication, determining whether the recipient is responsive to the communication, determining whether to provide visual information associated with the recipient to the user in response to the communication, analyzing one or more prior transactions involving the user and the recipient, identifying a reason that the user initiated the communication with the recipient, determining one or more preferences of the user to generate a personalized user interface comprising the visual information, generating the personalized user interface for the user comprising the visual information, and displaying the personalized user interface to the user in response to the communication, for example, when the recipient is unable to respond to the communication.
US09536256B2

An electronic social networking environment enables the transfer of stored value between users of the environment. A transfer may be in the form of a gift from one user to another. The stored value may represent actual currency or virtual currency. The stored value may be redeemed within or outside the electronic social networking environment, and may be redeemed with one or more merchants. The stored value may be redeemed for a physical item or service or for a virtual item or service.
US09536254B1

A system and method for providing a current, standardized and comprehensive vehicle condition report while also creating lead generation data. Embodiments described herein can process vehicle information, vehicle appraisal, and computerized arrangements that enable shoppers to investigate, locate, specify, requisition, purchase, or otherwise exchange information concerning vehicles.
US09536247B2

A mobile communication terminal, a method for transmitting/receiving data by a mobile communication terminal in a communication system, and a communication system comprising at least one mobile communication terminal are provided. The terminal includes a communication module for performing short-distance communication, a context engine for extracting a tag from contents data, and a controller for generating the contents data, generating profile information using the tag, and controlling the communication module to broadcast the profile data and the contents data.
US09536244B1

Providing access to manage content via a web service is disclosed. A business object that includes a method configured to access a content item comprising a body of managed content is received. The business object is processed to project as a web service a content management functionality associated with the object, including by exposing a method of the business object as a web service operation.