摘要:
An apparatus for performing a frequency multiplication of an mm-wave wave signal is provided. The apparatus includes a first differential circuit that is capable of receiving a 0° phase component of an input signal and a 180° phase component of the input signal having a first frequency. The first differential circuit provides a first output signal that is twice the frequency and is in −phase(0°) based on the 0° the 180° phase components of the input signal. The apparatus also includes a second differential circuit that is capable of receiving a 90° phase component of the input signal and a 270° phase component of the input signal, and provide a first output signal that is twice the frequency and out of phase(180°). The apparatus also includes a differential transformer that is configured to receive the first output signal and the second output signal. The differential transformer is configured to provide a differential output signal that has a second frequency that is twice the first frequency.
摘要:
The disclosure discloses a multiplexer based frequency extender comprising a preamplifier to receive a RF input signal and output a pre-amplified RF signal, at least one frequency multiplier or at least one frequency divider, and a multiplexer. The multiplexer comprises multiple differential pairs, each differential pair comprises a corresponding bias current control circuit that switches ON or OFF a bias current flowing through a corresponding differential pair. The at least one frequency multiplier or the at least one frequency divider receives the pre-amplified RF signal and outputs a frequency-multiplied RF signal or a frequency-divided signal. The multiplexer couples to receive the pre-amplified RF signal, the frequency-multiplied RF signal and/or the frequency-divided signal, the multiplexer selects a signal from the received signals and outputs based on the selected signal a multiplexer output signal.
摘要:
A high frequency divider involves a plurality of differential latches. Each latch includes a pair of cross-coupled P-channel transistors and a variable resistance element. The latch is controlled to have a lower output resistance at high operating frequencies by setting a multi-bit digital control value supplied to the variable resistance element. Controlling the latch to have a reduced output resistance at high frequencies allows the 3 dB bandwidth of the latch to be maintained over a wide operating frequency range. The variable resistance element is disposed between the two differential output nodes of the latch such that appreciable DC bias current does not flow across the variable resistance element. As a consequence, good output signal voltage swing is maintained at high frequencies, and divider current consumption does not increase appreciably at high frequencies as compared to output signal swing degradation and current consumption increases in a conventional differential latch divider.
摘要:
A prescaler circuit according to an exemplary aspect of the present invention includes a first flip-flop circuit that detects second output data and outputs the detected data as first output data, and a second flip-flop circuit that detects the first output data and outputs the data as the second output data. The first flip-flop circuit includes a master-side latch circuit that generates intermediate data, a slave-side latch circuit that detects the intermediate data and outputs the data as the first output data, and a control signal switching circuit that selects and outputs the first output data as a control signal in a mode where the frequency is divided by 3, and selects and outputs a predefined fixed signal as a control signal in a mode where the frequency is divided by 4. The master-side latch circuit generates the intermediate data based on the second output data and the control signal.
摘要:
Various embodiments of a flip-flop and a frequency dividing circuit are provided. In one aspect, a flip-flop includes an input stage and a latch stage. The input stage is capable of converting an input signal to an output signal under the control of a first clock signal and a second clock signal. The latch stage is capable of latching the output signal under the control of a third clock signal and a fourth clock signal. The first clock signal, the second clock signal, the third clock signal and the fourth clock signal have different phases.
摘要:
A high frequency divider involves a plurality of differential latches. Each latch includes a pair of cross-coupled P-channel transistors and a variable resistance element. The latch is controlled to have a lower output resistance at high operating frequencies by setting a multi-bit digital control value supplied to the variable resistance element. Controlling the latch to have a reduced output resistance at high frequencies allows the 3 dB bandwidth of the latch to be maintained over a wide operating frequency range. The variable resistance element is disposed between the two differential output nodes of the latch such that appreciable DC bias current does not flow across the variable resistance element. As a consequence, good output signal voltage swing is maintained at high frequencies, and divider current consumption does not increase appreciably at high frequencies as compared to output signal swing degradation and current consumption increases in a conventional differential latch divider.
摘要:
An injection-locked frequency divider for dividing a frequency of an injection signal and obtaining a frequency divided signal is provided. The injection-locked frequency divider includes a signal injection unit and an oscillator. The signal injection unit includes a first input terminal and a second input terminal for receiving the injection signal. The received injection signal exhibits a phase difference of 180° between the first input terminal and the second input terminal. The oscillator includes an inductor unit and a variable capacitance unit. The injection-locked frequency divider is featured with a wide injection locking range, and can be realized with a low operation voltage, and therefore can be conveniently used in different kinds of hybrid ICs.
摘要:
A programmable frequency multiplier device which includes a frequency doubler section configured to receive an input signal having a frequency f, and to output doubled signals, each of the doubled signals having a frequency 2n×f (n=0, 1, 2, . . . ); a selector section configured to select a plurality of the doubled signals output from the frequency doubler section, and to output the plurality of the selected doubled signals as selected signals; and a frequency summation section configured to multiply the selected signals, and to output a multiplied signal having a frequency fout=f×(m020+m121+ . . . +mk2k+ . . . +mn2n), wherein mk=0 or 1, and k=0, 1, . . . , n.