Abstract:
A carrier powder is thermodynamically stable and conductivity can be easily provided thereto. A carrier powder includes an aggregate of carrier fine particles; wherein: the carrier fine particles include a chained portion structured by fusion bonding a plurality of crystallites into a chain; the carrier fine particles contain titanium oxide; and a ratio of anatase phase/rutile phase of the titanium oxide of the carrier powder is 0.2 or lower.
Abstract:
Provided is a catalyst for preparing cumene and use thereof. The catalyst provided includes a carrier and an active ingredient. The active ingredient includes: ingredient (1), which is palladium element; and ingredient (2), which is one or more selected from a group consisting of alkali metal elements, alkaline earth metals and molybdenum element. When the catalyst is used for preparing cumene by α-methyl styrene hydrogenation, AMS conversion rate is high, and a product cumene has high selectivity.
Abstract:
The present invention relates to a honeycomb structured body including a honeycomb fired body in which multiple through-holes are arranged longitudinally in parallel with one another with a partition wall therebetween, wherein the honeycomb fired body is an extrudate containing ceria-zirconia composite oxide particles and alumina particles, and when the pore size of the partition wall of the honeycomb fired body is measured by mercury porosimetry, and the measurement results are shown as a pore size distribution curve with pore size (μm) on the horizontal axis and log differential pore volume (ml) on the vertical axis, at least one peak is present in each of the pore size ranges of 0.01 to 0.1 μm and 0.1 to 5 μm.
Abstract:
A multi-walled titanium-based nanotube array containing metal or non-metal dopants is formed, in which the dopants are in the form of ions, compounds, clusters and particles located on at least one of a surface, inter-wall space and core of the nanotube. The structure can include multiple dopants, in the form of metal or non-metal ions, compounds, clusters or particles. The dopants can be located on one or more of on the surface of the nanotube, the inter-wall space (interlayer) of the nanotube and the core of the nanotube. The nanotubes may be formed by providing a titanium precursor, converting the titanium precursor into titanium-based layered materials to form titanium-based nanosheets, and transforming the titanium-based nanosheets to multi-walled titanium-based nanotubes.
Abstract:
Provided is a catalyst for preparing cumene and use thereof. The catalyst provided includes a carrier and an active ingredient. The active ingredient includes: ingredient (1), which is palladium element; and ingredient (2), which is one or more selected from a group consisting of alkali metal elements, alkaline earth metals and molybdenum element. When the catalyst is used for preparing cumene by α-methyl styrene hydrogenation, AMS conversion rate is high, and a product cumene has high selectivity.
Abstract:
A carbon nitride heterogeneous catalyst containing rhodium, a method for preparing the catalyst, and a method for preparing acetic acid using the catalyst is disclosed. The heterogeneous catalyst is characterized in that the rhodium metal is contained in carbon nitride which is a support insoluble in a liquid solvent, such as water or alcohol. Thus, the catalyst can easily be separated from a resulting product even by a simple process such as filtration. Accordingly, the carbon nitride heterogeneous catalyst exhibits excellent long-term stability and activity by being capable of overcoming the disadvantages of the method using a conventional homogeneous catalyst and minimizing the phenomenon of rhodium leaching, compared to the results of the conventional homogeneous catalytic reactions. The catalyst can thus be effectively used for the preparation of acetic acid by a carbonylation reaction between methanol and carbon monoxide.
Abstract:
The invention relates to a method for preparing aerogels of individualized carbon nanotubes and to the applications thereof, in particular in the production of composite aerogels and electrochemical compounds. The method of the invention is characterized in that it comprises the following steps carried out in an inert atmosphere: (a) reducing the carbon nanotubes using an alkaline metal in order to obtain a polyelectrolyte salt of carbon nanotubes; (b) exposing said polyelectrolyte salt of carbon nanotubes to an aprotic polar solvent in order to obtain a solution of individualized, reduced carbon nanotubes; (c) freezing said solution of individualized nanotubes; and (d) sublimating the solvent. The invention particularly relates to aerogels of individualized carbon nanotubes obtained by said method, and to the uses of said aerogels.
Abstract:
A catalytic burner is provided. The method of using the catalytic burner utilizes flameless combustion. The absence of a flame results in a more even temperature distribution throughout the length of the burner. The invention lowers the autoignition temperature by placing a catalytic surface within the burner and offers relatively even distribution of heat from the burner. Thus, the amount and location of the combustion reaction can be controlled by varying the amount and distribution of catalyst within the burner.
Abstract:
A composite support including: an ordered mesoporous carbon including mesopores having an average diameter of about 2 nanometers to about 8 nanometers; and silicon carbide dispersed in the ordered mesoporous carbon.
Abstract:
The present invention relates to a catalyst composition for conversion of vegetable oils to hydrocarbon products in the diesel boiling range, comprising a porous support; Group III A or VA element in the range of 1-10 wt %; Group VI B elements in the range of 1 to 20 wt %; Group VIII B elements in range of 0.01 to 10 wt %. The present invention further provides the process for preparing the catalyst composition for conversion of vegetable oils to hydrocarbon products in the diesel boiling range. The present invention also provides the process for conversion of vegetable oils to hydrocarbon products in the diesel boiling range using the catalyst composition or discarded refinery spent hydro-treating catalyst.