Abstract:
A multi-component device which is capable of delivering a non-lethal, high-voltage electric shock which can incapacitate a person or animal that is worn as an ordinary article of apparel (clothing) by a person for use as a defensive or offensive weapon that is not distinguishable or identifiable as a weapon. The types of apparel used as this device are regular clothing items such as pants, jackets, vests, shoes and gloves, all of which contain internal high voltage electrodes and wiring, a unique pressure sensitive activation switch, and a separate control unit that is attached to a belt or placed in a pocket which is connected to the clothing item by a separate multiconductor electrical wiring harness. The device is activated by physical contact with target subject.
Abstract:
Methods of activating, enriching, manipulating, and producing macromolecular materials comprising highly conductive multielectron threads are provided together with superior such materials and devices comprising them. Activation methods such as doping the material with charged or uncharged dopants, using electrolysis techniques, and charging the material may be combined with various enrichment techniques that take advantage of reduced viscosity levels such as filtering and fractionation to obtain very high yields when producing conductive films, wires, and diamagnetic materials. Also disclosed are methods for electrically joining conductors and various devices comprising highly conductive macromolecular materials.
Abstract:
A wafer stage including an electrostatic chuck and a method for dechucking a wafer using the wafer stage are provided, wherein, the wafer stage includes an electrostatic chuck support, an electrostatic chuck, a lifting means, and a grounding means including a device for connecting the interconnections for grounding the lifting means. According to the method for dechucking a wafer, when a lifting means is in contact with a rear side of the wafer, the lifting means is grounded. Then, an electrostatic chuck is neutralized by supplying power to electrostatic electrodes, and the wafer is neutralized by supplying plasma to the wafer.
Abstract:
A passive device to neutralize electrostatic charging of transient hydrocarbon fluid when it exits a filter monitor cartridge is described. Filter cartridges containing filter media generate electrostatic charges which flow with the transient hydrocarbon fluid as it exits the filter cartridge using corona discharge.
Abstract:
An electrostatic chuck comprises a dielectric member comprising (i) a first layer comprising a semiconductive material, and (ii) a second layer over the first layer, the second layer comprising an insulative material. The insulative material has a higher electrical resistance than the semiconductive material. An electrode in the dielectric member is chargeable to generate an electrostatic force. The chuck is useful to hold substrates, such as semiconductor wafers, during their processing in plasma processes.
Abstract:
A technique for controlling a switching circuit, such as a relay, includes one or more sensing circuits that generate signals based upon the presence of an actuating object and upon a randomly applied strobe signal. The generated signals are sampled and are used as a basis for determining the state of an output signal. The sensing circuit may generate the signals based upon capacitive coupling with the actuating object. The randomization of the sampling provides enhanced immunity to periodic or cyclic noise. Where more than one sensing circuit is included, the output of the circuits may be considered together for determining the state of the output signal, such as based upon predetermined ranges of signal levels. Signals of the sensing circuit may be sampled in the absence of the strobe to provide an indication of the relative noise level. If the noise level is determined to be elevated, the output signal may not change states.
Abstract:
The invention relates to a compact arrangement for multipole, surge-proof surge arresters, comprising internally wired, encapsulated spark gaps arranged essentially in parallel in a housing. Said spark gaps have facing projecting contact surfaces connected to outer terminals and inner contact bars or bridges. The arrangement also comprises an electronic control or trigger circuit provided on a wiring support. The housing is provided with dividing walls and is through-shaped, the resulting housing chambers accommodating the spark gaps and the terminals. An insulating plate with openings into which spring contact elements are introduced is provided on the upwardly opening housing trough. Above said insulating plate the wiring support is provided. The spring contact elements create an electrical connection between contact points on the underside of the wiring support and the cover of in each case one of the spark gaps. The invention also relates to an encapsulated surge arrester with a spark gap arrangement, comprising two coaxially arranged and at least partially overlapping metallic main electrodes and having oppositely directed connections. Said main electrodes form an arc chamber in conjunction with at least one insulation part. According to the invention, at least one of the main electrodes has an inner expansion chamber, and a preferably radially or axially rotationally symmetrically extending trigger electrode is provided at least in the area of an outer insulation part.
Abstract:
An electronic disabling device includes first and second electrodes positionable to establish first and second spaced apart contact points on a target having a high impedance air gap existing between at least one of the electrodes and the target. The power supply generates a first high voltage, short duration output across the first and second electrodes during a first time interval to ionize air within the air gap to thereby reduce the high impedance across the air gap to a lower impedance to enable current flow across the air gap at a lower voltage level. The power supply next generates a second lower voltage, longer duration output across the first and second electrodes during a second time interval to maintain the current flow across the first and second electrodes and between the first and second contact points on the target to enable the current flow through the target to cause involuntary muscle contractions to thereby immobilize the target.
Abstract:
The present invention is directed to a main element of a surge protector device and its fabrication method which uses breakdown phenomenon of a single high resistive film. A breakdown voltage and a place where breakdown occurs can be precisely controlled. The surge protector device changes from its non-conductive state to conductive state very quickly when a surge is induced and returns quickly to the non-conductive state when a surge is removed if said element is surrounded by oxidizing agent. The main element of the surge protector device of the present invention has a single high resistive film on a single metal bar. The high resistive film has a part or parts where electric field concentrates when a surge induced. A breakdown voltage can be controlled precisely by controlling a size including a thickness of the high resistive film of the part. The part is called a fuse part. The main element includes also at least two parts on said metal bar which are continuous to said fuse part. Electrodes are formed on said at least two parts. Therefore said at least two parts are called pad parts.
Abstract:
An ionizer for eliminating static electricity on a large size substrate. The ionizer comprises a bar and a plurality of pin sets. The pin sets are located on the bar at a given interval, and a power line is located inside the bar. Each pin set comprises a plurality of pins and a plurality of nozzles. The pins connect to the power line, and the nozzles are located around the pins to spray charges on the substrate at a given spraying angle. By setting more pins in each pin set, the covering angle of the ionizer can be enlarged.