摘要:
A method and apparatus for fabricating extremely robust opto-electronic devices on a monolithic support structure is provided. Incorporated into the support structure are registration structures that are used to quickly and accurately align the various components associated with the device, typically eliminating the need for manual component alignment. The registration structures are fabricated using conventional lithographic techniques, offering alignment accuracy of a micrometer or less. Utilizing the registration structures, a gain module is fabricated that is comprised of at least a pump laser, an optical element, and a solid state gain medium. The pump laser is preferably a semiconductor diode laser that pumps the edge of the gain medium, thus eliminating many of the difficulties that arise from end pumping the medium. The optical element, interposed between the pump laser and the gain medium, collimates and/or focuses the emissions from the pump laser onto the laser medium in such a manner as to optimize the efficiency of the module. The gain module may include several pump lasers, thus increasing the achieved output power. The gain module preferably projects through a cutout in a miniature optical bench. The optical bench is comprised of a material with a very low coefficient of thermal expansion, thus providing thermal stability. The surface of the optical bench is metallized, preferably in a pattern of gold pads. Optical components to be attached to the optical bench are metallized as well, thus allowing the components to be soldered into place. The optical bench is used to form various laser systems utilizing the integral gain module.
摘要:
A semiconductor laser device (100) comprises a first semiconductor laser element (31) and a second semiconductor laser element (32) of different wavelengths, which are mounted on a heat sink block (2) directly or through a sub-mount provided on the heat sink block. The optical axes (A, B) of the semiconductor laser elements are substantially parallel to each other. The first and second semiconductor laser elements (31, 32) are mounted on the heat sink block (2) in such a manner that a relationship of 0≦L≦d1+d2≦160 &mgr;m is satisfied, where d1 is a distance between the optical axis (A) of the first semiconductor laser element (31) and the center axis (O) of a condenser lens (71) arranged in front of the semiconductor laser device (i.e., faced to the emission surfaces of the semiconductor laser elements), d2 is a distance between the optical axis (B) of the second semiconductor laser element (32) and the center axis of the condenser lens, and L is a distance between the optical axes of the first and second semiconductor laser elements.
摘要:
Multi-layer, semiconductor devices are configured to reduce stress by the removal of much of the structure which does not actually contribute to device performance. In one embodiment, trough between mesas which define light emitting facets in a laser diode bar are etched well into the substrate to remove all layers of different compositions there. In another embodiment, troughs are also etched in the backside of the substrate of a laser diode structure where the troughs are aligned along axes perpendicular to the axes of the mesas. The removal of stress permits more accurate alignment of the multiple facets along a single axis when the laser bar is bonded to a heat sink. The accurate alignment minimizes the placement constraints on the position of a microlens for achieving maximum power output and coupling efficiency for optical fibers coupled to the microlens.
摘要:
The invention provides a semiconductor laser module with an electronic cooling device prevented from experiencing a lowering of the optical frequency response characteristic level in a band used for public communications. By changing the inductance of the ground line between module package and chip-mounted carrier of the semiconductor laser module, the resonance frequency of a resonance circuit made up by including the ground line is shifted so as to deviate from the frequency band of public communications used by a modulation signal transmitting device.
摘要:
A laser assembly including a silicon base and method are provided for assembling lasers on a platform in a reliable, low cost process that is suitable for high volume production. The platform can be a monolithic silicon base which has high thermal conductivity, a low coefficient of thermal expansion, and whose features can be formed with close tolerances in a low cost, reliable manner. Materials with similar coefficients of thermal expansion are used in order to maintain alignment during unexpected heating and cooling. Furthermore, a method is described that substantially eliminates the need for adhesives to bond laser components to a platform. The resultant laser can be very robust, stable, and can provide reliable operation over extended time periods.
摘要:
A support structure for the mounting of laser diode arrays, to facilitate the pumping of a suitably-shaped lasing medium, is constituted by a non-planar, preferably generally annularly-shaped, thermally conductive portion having an outer surface and an inner surface, the inner surface being shaped to accommodate an appropriate number of laser diode arrays to pump the medium. The outer surface may have cooling fins provided on the outside to facilitate the removal of heat from the vicinity of the laser diode arrays. Axial or circumferential cooling passages may be provided to facilitate removal of heat from the vicinity of the lasing medium, as well as the arrays. The lasing medium also may be surrounded by a cooling tube through which coolant flows, to facilitate removal of heat from the vicinity of the lasing medium in particular. A plurality of such support structures may be provided to accommodate higher power requirements, and also to enable greater distribution of laser light around and along the lasing medium, for more uniform pumping and/or power distribution. A method of fabricating the support structure, and a resulting diode laser pump apparatus also are disclosed.
摘要:
A light-source includes a plurality of diode-laser bars. The diode-laser bars are arranged in a parallel array and arranged to emit laser-light in the same direction. The diode-laser bars are mounted on a planar surface of a common heat-sink and are spaced-apart from each other in the emission-direction. Each diode-laser bar has one optical waveguide associated therewith. The optical-waveguides collect laser-light emitted from the diode-laser bars with which they are associated and deliver the collected laser-light to an output-aperture of the light-source. In one arrangement the diode-laser bars are mounted such that the emission-direction is parallel to the planar surface of the heat-sink, and the optical-waveguides are shaped to extend over diode-laser bars adjacent those with which they are associated. In another arrangement the diode-laser bars are mounted on the planar surface via wedge submounts such that the emission-direction is at an acute angle to the planar surface and the spacing of the diode-laser bars is selected such that the optical-waveguides can be straight yet still extend over adjacent diode-laser bars.
摘要:
A cylindrical two-dimensional diode-laser assembly includes fractionally-cylindrical dielectric segments bonded in a circular aperture in a metal heat-sink. Diode laser bars are located in gaps between the segments with light from the diode-lasers directed inwardly. The segments are made by cutting slots in one end of a tube of the dielectric material with the width of the slots corresponding to the width of the gaps and the part of the tube between slots providing the segments. The slotted tube is metallized and the slotted end of the tube is inserted into the heat-sink aperture with an unslotted part of the tube outside the aperture. The slotted part of the tube is bonded in the aperture and the unslotted part of the tube separated from the slotted part leaving the segments bonded in the aperture.
摘要:
A method and apparatus for laser diode bar assembly. A stacked array embodiment provides for efficient cooling of the diode bars and electrical connection between diode bars while maximizing alignment of the diode bars. The spacers are connected to a conductive surface on a heat spreader. In the stacked array, one or more diode bars are alternated in series with two or more conductive spacers, with a series circuit provided from diode bar to diode bar. The spacers hold the diodes spaced apart from insulating grooves in the conductive layer on the substrate. Alternatively, thermally conductive separator fins extend from the heat spreader substrate to contact the diode bars situated between the spacers to promote rapid heat transfer from the diodes while maintaining the diode bars electrically isolated from the conductive layer on the substrate. An apparatus and method are provided for assembling the stacked array assembly. A jig apparatus incorporates a tilted working surface upon which the diode bar/spacers subassembly is placed. Planar vertical walls extend up from the tilted working surface. The tilt to the working surface provides a gravity assist to the proper alignment of the diode bars and spacers against the vertical walls. A clamp squeezes the diode bars and spacers together and against one of the walls to foster optimized alignment and parallelism of the diode bars. A wedged array embodiment of the invention employs a specially grooved substrate. The diode bars are placed in the grooves, and customized wedges are then pressed into the grooves with the diodes therein, the wedges acting to push the diodes into proper parallel alignment in the grooves. Means for providing both series and parallel electrical circuits between diode bars are provided.
摘要:
A monolithic, electrically-insulating substrate that contains a series of notched grooves is fabricated. The substrate is then metalized so that only the top surface and one wall adjacent to the notch are metalized. Within the grooves is located a laser bar, an electrically-conductive ribbon or contact bar and an elastomer which secures/registers the laser bar and ribbon (or contact bar) firmly along the wall of the groove that is adjacent to the notch. The invention includes several embodiments for providing electrical contact to the corresponding top surface of the adjacent wall. In one embodiment, after the bar is located in the proper position, the electrically conductive ribbon is bent so that it makes electrical contact with the adjoining metalized top side of the heatsink.