Abstract:
An electron image intensifier includes an input image means having a curved photocathode surface for converting the optical image to an electron image. The electron image is imaged upon an output image means spaced from the input image means, with an annular accelerating anode positioned between for accelerating the electrons to produce the image intensification. An annular gateable electrode is disposed between the input image means and the accelerating anode. The gateable electrode is structured and positioned with an inwardly disposed end portion closely spaced from the perimeter edge of the photocathode surface, and extending along the radius of curvature of the photocathode surface. The structure substantially eliminates any distortion from the gating electrode.
Abstract:
A III-V photocathode layer was bonded to a foreign transparent substrate, preferably glass, by heat treatment. The foreign substrate was selected on the basis of matching thermal expansion characteristics and transparency considerations. The photocathode layer and the foreign substrate were complimentarily shaped, preferably flat, pressed together, and then heat treated. The resulting flexibility and lowered surface tension of the substrate caused the substrate to microscopically conform to microscopic irregularities in the photocathode surface. External pressure was applied across the substrate-cathode interface to facilitate the bonding process. The time required to complete the bonding depended on the pressure and temperature of the heat treating step. An optional silicon dioxide passivating layer was provided between the photocathode layer and the substrate to prevent diffusion into the photocathode of poisonous substances commonly found in glass which are detrimental to the operation of the cathode.
Abstract:
An ultraviolet sensitive gaseous discharge detector has uniform sensitivity over a broad viewing angle. The cathode of the detector has an essentially circular cross-section while the anode has an elongated cross-section. The anode is aligned in a common plane with the cathode with the elongated surfaces of the anode being aligned essentially parallel to the common plane of the electrodes.
Abstract:
An evacuated tube has a face plate and a tubular body with at least a portion of the body having a circular cross section. In the evacuated tube is an electron emissive electrode adapted to release electrons in response to impinging photons or photoelectrons, means for collecting the electrons and an anode. The electron emissive electrode is cup shaped, having an approximate circular top opening through which photons or photoelectrons enter to impinge on the electrode, a circular rim around the periphery of the top opening, and a side opening through which the electrons pass to exit from the electrode. The inside of the electrode is lined with electron emissive material. The electrode is positioned in the portion of the tubular body having the circular cross section with the rim of the electrode substantially parallel to the plane of the circular cross section and having a diameter substantially the same as the diameter of the circular cross section, and with the top opening of the electrode facing the face plate. The means for collecting the electrons is positioned laterally adjacent to the electrode between the side opening and the tubular body.
Abstract:
A phototube includes a cup-shaped apertured electrode interposed between a substantially flat cathode and an electron collection electrode. Anapertured electrode is coaxially secured within the recess of the cup-shaped electrode in parallel spaced-apart facing relation to the cathode.
Abstract:
An electron-optical image tube including a photocathode, an extraction electrode consisting of a mesh on the emission side of the photocathode, and a focussing electrode on the side of the mesh remote from the photocathode, achieves increased time resolution, improved spatial resolution, and reduced magnification at a phosphor screen by making the photocathode to mesh spacing small compared with the mesh to focussing electrode spacing. An improved photocathode plate avoids large electric fields at sharp points on the photocathode surface. Additional annular electrodes and flared deflector electrodes in the drift section of the tube prevent scattering of electrons from the tube walls on to the screen.
Abstract:
A semiconductor plate receives an electron image on a first side, thereof. For an electronically controlled time, the image is integrated and stored in thousands of reversed biased PN junctions connected to micro-sized conductors, in the plate. At a second electronically controlled time, an intensified image is transferred outwardly from the second side of the plate.
Abstract:
An image intensifier or other tube including a photocathode or the like and a channel-type electron multiplier therefor. The multiplier includes a perforated glass plate with a conductive electrode layer evaporated on each of two opposite sides thereof. Each of the electrodes has a plurality of holes therethrough that lie in registration with the plate holes. A layer of titanium is evaporated onto the output electrode. A substantial increase in photocathode life is then achieved. Alternatively, the said three layers need not be employed. Instead, the output electrode itself may be made of titanium. In this case, no other layer need be evaporated over the output electrode.
Abstract:
Photoelectrons emitted from a flat photocathode are collected within an evacuated envelope by a surface of an electrode. The photoelectrons are accelerated by an electron lens system, as an electron stream, within an evacuated cavity between the photocathode and the electrode surface. The photoelectrons are accelerated through two succeeding cavity regions in which the electron trajectories associated with the electron stream are increasingly compressed. A cavity region of lessening compression of the electron trajectories associated with the electron stream is defined between the two cavity regions of increasing compression. The electrode surface is located closely proximate to the cavity region of greatest compression to collect a maximum number of the photoelectrons.