摘要:
This is a near-field detection optical component operating in transmission. It includes at least one portion (11b) forming at least one grating (11) of diffraction microstructures (11a) succeeding one another over several periods (p), this grating (11) being capable of converting evanescent waves (16), which are established between the component and an object (12) located in the near field, when it reflects or emits radiation having a wavelength, into propagating waves (16′) by a diffraction effect during transmission through the portion (11b) forming the grating (11) of diffraction microstructures (11a). The period (p) of the grating (11) being of the order of magnitude of the wavelength of the radiation.Application to near-field detection devices.
摘要:
Near-field electromagnetic devices having an opaque metallic screen with a fractal iterate aperture are provided. More specifically, the aperture is obtained by application of a self-similar replacement rule to an initial shape two or more times. Alternatively, the aperture can be obtained by application of a self-similar replacement rule one or more times to an initial C-shape. Such apertures tend to have multiple transmission resonances due to their multiple length scales. Fractal iterate apertures can provide enhanced transmission and improved spatial resolution simultaneously. Enormous improvement in transmission efficiency is possible. In one example, a checkerboard fractal iterate aperture provides 1011 more intensity gain than a square aperture having the same spatial resolution. Efficient transmission for fractal iterate apertures having spatial resolution of λ/20 is also shown. The effect of screen thickness and composition can be included in detailed designs, but do not alter the basic advantages of improved transmission and spatial resolution provided by the invention.
摘要:
An optical microcantilever capable of reducing loss when propagating light. An optical microcantilever 10 comprises a support 1, an optical waveguide 2, a light-blocking film 3, a reflecting film 4, a pointed tip 5, a microscopic aperture 6 formed at the end of the tip 5, and a mirror 7 for reflecting propagating light H propagated from a light input/output end 8 of the optical waveguide 2 towards the microscopic aperture 6.
摘要:
A surface texture measuring probe (60) includes a probe head (65), a first supporting body (61), a second supporting body (62), a piezoelectric element (63) and a balancer (64). The first supporting body includes a first supporter (611) having an inner space, and a plurality of beams (613) respectively extending from equiangular arrangement positions of the first supporter toward the center and supporting the probe head (65) at the tip end thereof. The second supporting body (62) includes a second supporter (621) and a holder (622) supported by a plurality of beams (623) respectively extending from equiangular arrangement positions of the second supporter towards the center. The piezoelectric element (63) is disposed between the probe head and the holder, and formed to vibrate in an axial direction.
摘要:
To date, the probes of scanning near-field optical microscopes were aimed at creating electromagnetic field characteristics that are maximally localized near a nano-sized point (miniature apertures and tips, fluorescent nano-particles and molecules, dielectric and metal corners). Alternatively, the probe field, which is distributed within a larger area, can ensure the super-resolution as well. For this purpose, the field spectrum should be enriched with high spatial frequencies corresponding to small sample dimensions. As examples of such near-field probes, we propose and theoretically study the models of optical fibers with end-faces containing sharp linear edges and randomly distributed nanoparticles. These probes are more robust than the conventional probes and their fabrication is not concerned with nanoscale precision. The probes enable waveguiding of light to and from the sample with marginal losses distributing and utilizing the incident light more completely. Numerical modeling shows that, even with substantial measurement noise, the suggested probes can resolve objects that are significantly smaller than the probe size and, in certain cases, can perform better than miniature nanoprobes.
摘要:
An improved near-field scanning optical microscope probe is disclosed. The near-field scanning optical microscope probe includes a probe body and two electrodes extending from the probe body to form a probe tip. In addition, a light-emitting diode is disposed between the two electrodes at the probe tip to act as a light source for the near-field scanning optical microscope probe.
摘要:
An optical microcantilever capable of reducing loss when propagating light. An optical microcantilever 10 comprises a support 1, an optical waveguide 2, a light-blocking film 3, a reflecting film 4, a pointed tip 5, a microscopic aperture 6 formed at the end of the tip 5, and a mirror 7 for reflecting propagating light H propagated from a light input/output end 8 of the optical waveguide 2 towards the microscopic aperture 6.
摘要:
The invention relates to a near-field antenna comprising a dielectric shaped body having a tip. The shaped body is characterized in that at least the surface of the tip is metallized, thereby enhancing the sensitivity of devices comprising the near-field antenna, for example, spectroscopes, microscopes or read-write heads.
摘要:
An embodiment relates generally to resonant structure. The resonant structure includes a substrate and a nano-bowtie antenna deposited over the substrate. The resonant structure also includes an enclosure deposited over the substrate and surrounding the nano-bowtie antenna, where the enclosure is configured to raise an enhancement level in the nano-bowtie antenna.
摘要:
Sensors and systems for electrical, electrochemical, or topographical analysis, as well as methods of fabricating these sensors are provided. The sensors include a cantilever and one or more probes, each of which has an electrode at its tip. The tips of the probes are sharp, with a radius of curvature of less than about 50 nm. In addition, the probes have a high aspect ratio of more than about 19:1. The sensors are suitable for both Atomic Force Microscopy and Scanning Electrochemical Microscopy.