Abstract:
A magnetic memory device for selectively writing one or more memory cells in the memory device includes a plurality of global write lines for selectively conveying a destabilizing current, the global write lines being disposed from the memory cells such that the destabilizing current passing through the global write lines does not destabilize unselected memory cells in the memory device, each global write line including a plurality of segmented write lines operatively connected thereto. The memory device further includes a plurality of segmented groups, each segmented group including a plurality of memory cells operatively coupled to a corresponding segmented write line, each segmented write line being disposed in relation to the plurality of corresponding memory cells such that the destabilizing current passing through the segmented write line destabilizes the corresponding memory cells for writing. A plurality of segmented group select switches, each group select switch being operatively connected between a corresponding segmented write line and a global write line, includes a group select input for receiving a group select signal, the group select switch completing an electrical circuit between the corresponding segmented write line and the global write line in response to the group select signal. The memory device further includes a plurality of bit lines operatively coupled to each of the memory cells for selectively writing the state of the memory cells.
Abstract:
A system and method for determining the logic state of a memory cell in a magnetic tunnel junction (MTJ) memory device based on the ratio of the current through the cell at different bias points are disclosed. A memory cell in an MJT memory device is sequentially subjected to at least two different bias voltages. The current through the cell at each of the bias voltages is measured, and a ratio of the different currents is determined. The ratio is then compared with a predetermined value to determine the logic state of the cell. The predetermined value can be a known value. Alternatively, the predetermined value can be determined by application of the system and method to a reference cell having a known logic state.
Abstract:
A magnetic memory device capable of preventing complication of the structure of an amplifier (sense amplifier) and enabling high-speed reading is provided. In this magnetic memory device, a memory cell is formed by a pair of first and second storage elements exhibiting a ferromagnetic tunnel effect and a pair of first and second transistors while an amplifier detects potential difference between a bit line and an inverted bit line connected to the pair of first and second storage elements. Thus, data can be readily read. Further, the value of a small current flowing to the bit line may not be detected dissimilarly to a case of forming the memory cell by a storage element exhibiting a ferromagnetic tunnel effect and a transistor. Consequently, the structure of the amplifier is not complicated. Further, no amplifier having a complicated structure may be employed, whereby high-speed reading is enabled.
Abstract:
A data storage device comprises at least one array of memory elements arranged in a plurality of rows and columns; coding means for coding an input data into a form having a balanced proportion of null1nulls and null0nulls, said coding means comprising means for applying an output of a pseudo random bit sequence generator to said incoming data, wherein the coded data is stored in the array of memory elements such that the null1nulls and null0nulls are spatially distributed relatively evenly across the plurality of memory elements; and decoding means for decoding the coded data read from the plurality of memory elements, into the original data.
Abstract:
Magnetic spin polarising and magnetisation rotation device with memory and writing process, using such a device. According to the invention, the device includes a means of polarising the spin of electrons, which consists of a magnetic layer (20) whose magnetisation is perpendicular to the plane of magnetisation of the respective anchored (12) and free (16) layers. The magnetisation in the free layer (16) then rotates within a plane, which is either the plane of the layer, or a perpendicular plane. Application in the manufacture of magnetic memories.
Abstract:
A magnetic control device including an antiferromagnetic layer, a magnetic layer placed in contact with one side of the antiferromagnetic layer, and an electrode placed in contact with another side of the antiferromagnetic layer, wherein the direction of the magnetization of the magnetic layer is controlled by voltage applied between the magnetic layer and the electrode. In particular, when an additional magnetic layer is further laminated on the magnetic layer placed in contact with the antiferromagnetic layer via a non-magnetic layer, the direction of the magnetization of the controlled magnetic layer can be detected as a change in the electric resistance. Since such a magnetic control device, in principle, responds to the electric field or magnetic field, it forms a magnetic component capable of detecting an electric signal or a magnetic signal. In this case, the direction of the magnetization basically is maintained until the next signal is detected, so that such a device also can form an apparatus. Thus, a magnetic control device capable of controlling the magnetization with voltage and magnetic component and a memory apparatus using the same are provided.
Abstract:
A method and system for providing and using a magnetic random access memory are disclosed. The method and system include providing a plurality of magnetic memory cells, a first plurality of write lines, and a second plurality of write lines. The first plurality of write lines is a plurality of magnetic write lines. At least one of the plurality of magnetic lines and at least one of the second plurality of write lines each carrying a current for writing to at least one of the plurality of magnetic memory cells. Preferably, the plurality of magnetic write lines have soft magnetic properties and are preferably magnetic bit lines. For magnetic tunneling junction stacks within the magnetic memory cells, the magnetic bit lines are preferably significantly thicker than and closely spaced to the free layers of the magnetic memory cells.
Abstract:
A plurality of word lines (WL1) are provided in parallel to one another and a plurality of bit lines (BL1) are provided in parallel to one another, intersecting the word lines (WL1) thereabove. MRAM cells (MC2) are formed at intersections of the word lines and the bit lines therebetween. MRAM cells (MC3) are provided so that an easy axis indicated by the arrow has an angle of 45 degrees with respect to the bit lines and the word lines. Thus, an MRAM capable of cutting the power consumption in writing is achieved and further an MRAM capable of reducing the time required for erasing and writing operations is achieved.
Abstract:
A magnetic random access memory (MRAM) is disclosed. In order to achieve high integration, the MRAM includes a word line formed in an active region of a semiconductor substrate, and used as a read line and a write line; a ground line and a lower read layer positioned on opposite sides of the active region of the semiconductor substrate; a seed layer contacting the lower read layer, and being overlapped with the upper portion of the word line; an MTJ cell contacting the upper portion of the seed layer at the upper portion of the word line; and a bit line contacting the MTJ cell, and crossing the word line in a vertical direction.
Abstract:
A memory device comprising a plurality of bit lines and a plurality of word lines forming a cross-point array. A memory cell is located at each of the cross-points in the array. A bit decoder and word decoder are coupled to the bit lines and word lines, respectively. A first series of switch circuits are coupled to and located along the adjacent bit lines resulting in the array being divided into segments along the adjacent bit lines such that a shortened programming current path is provided which results in decreased resistance across the device.