Abstract:
Disclosed is a novel chemical-amplification positive-working photoresist composition capable of giving a patterned resist layer with excellent properties such as photosensitivity, pattern resolution, heat resistance and cross sectional profile of the patterned resist layer. The composition is characterized by the use of, as the film-forming resinous component, a hydroxyl-containing resinous ingredient which is a combination of a first resin of which from 30 to 60% of the hydroxyl groups are substituted by acid-dissociable solubility-reducing groups and a second resin of which from 5 to 20% of the hydroxyl groups are substituted by acid-dissociable groups of the same kind as in the first resin in a weight proportion of 1.9 to 9:1.
Abstract:
A resist composition has a polymer containing a carboxyl group with a protective group at a side chain of a monomer unit, the polymer being insoluble to basic aqueous solution and becoming soluble to basic aqueous solution when the protective group of the carboxyl group is eliminated from the side chain, the protective group of the carboxyl group being represented by: where R is a hydrogen atom or a single-bonded hydrocarbon group, n is an integer 1 to 4, and R is bonded to a position other than the ester bonded position.
Abstract:
Disclosed is a chemically amplified positive photoresist composition including a multi-component copolymer having a polystyrene-reduced weight average molecular weight (Mw) of 3,000 to 50,000 and a molecular weight distribution (Mw/Mn) of 1.0 to 3.0, a low molecular weight additive, an acid generator, and a solvent. A resist composition comprising the additive may provide a resist pattern excellent in sensitivity as well as adhesion to substrate and dry etching resistance. Such a resist composition is a promising material greatly suitable for use in the fabrication of semiconductor devices that are expected to have further fineness. Especially, the resist composition is suitable for KrF or ArF excimer laser lithography and thus useful in the fine engineering of less than 0.20 micron patterns.
Abstract:
The present invention provides a photosensitive composition for an infrared laser used for direct plate making, which has high sensitivity and good developing latitude and storage stability, and provides a planographic printing plate in which this composition is used. The positive-type photosensitive composition of the present invention has (a) a macromolecular compound having alkali-soluble groups and (b) a compound that has a phthalocyanine skeleton and has in its molecule at least one group which can form a bond by interaction with an alkali-soluble group in the macromolecular compound (a).
Abstract:
The present invention provides compounds represented by formulas 1a and 1b, and photoresist polymers derived from the same. The present inventors have found that photoresist polymers derived from compounds of formulas 1a, 1b, or mixtures thereof, having an acid labile protecting group have excellent durability, etching resistance, reproducibility, adhesiveness and resolution, and as a result are suitable for lithography processes using deep ultraviolet light sources such as KrF, ArF, VUV, EUV, electron-beam, and X-ray, which can be applied to the formation of the ultrafine pattern of 4G and 16G DRAMs as well as the DRAM below 1G: where R1, R2 and R3 are those defined herein.
Abstract:
Copolymers prepared by radical polymerization of a substituted norbornene monomer and a fluoromethacrylic acid, fluoromethacrylonitrile, or fluoromethacrylate comonomer are provided. The polymers are useful in lithographic phtoresist compositions, particularly chemical amplification resists. In a preferred embodiment, the polymers are substantially transparent to deep ultraviolet (DUV) radiation, i.e., radiation of a wavelength less than 250 nm, including 157 nm, 193 nm and 248 nm radiation, and are thus useful in DUV lithographic photoresist compositions. A process for using the composition to generate resist images on a substrate is also provided, i.e., in the manufacture of integrated circuits or the like.
Abstract:
Thermally imageable lithographic printing plate precursors and heat-sensitive compositions for use in these printing plate precursors are disclosed. The compositions contain an aqueous developer soluble polymer, such as a phenolic resin; a compound that reduces the aqueous developer solubility of the polymer; and optionally, and infrared absorber. Examples of compounds that reduce the aqueous developer solubility of the polymer are those that contain at least one quarternized nitrogen atom, such as quinolinium compounds, benzothiazolium compounds, pyridinium compounds, and imidazoline compounds. On thermal imaging, the irradiated areas become more soluble in the aqueous developer and can be removed to form a positive image.
Abstract:
According to the present invention there is provided a heat ode imaging element for making a lithographic printing plate having n a lithographic base with a hydrophilic surface a first layer including a polymer, soluble in an aqueous alkaline solution and a top layer on the same side of the lithographic base as the first layer which top layer is IR-sensitive and unpenetrable or insoluble for an alkaline developer wherein said first layer and said top layer may be one and the same layer and said first layer and said top layer being the imaging layers; characterized in that said imaging layers have a glass transition temperature of at least 57° C.
Abstract:
Phenolic resin compositions formulated for use in lithographic exposure processes are given a heat treatment at 40-90° C. for at least 4 hours shortly after their coating onto lithographic substrates, to produce lithographic printing forms. It is found that such a heat treatment improves later exposure processes, in particular by rendering the sensitivity of the compositions less variable, over time.
Abstract:
Polymers comprising fluorinated vinyl phenol units and having acid labile groups partially introduced are novel. Using such polymers, resist compositions featuring transparency to excimer laser and alkali solubility are obtained.