Abstract:
Provided are: a mechanical property measuring apparatus and method that can accurately measure a mechanical property through physical quantities; a substance manufacturing equipment and method that can improve the production yield rate. A mechanical property measuring apparatus (100) comprises: a physical quantity measuring unit (5) configured to measure a plurality of physical quantities of a measured object that includes a substance and a film on a surface of the substance; a classification processing unit (81) configured to select one of a plurality of calculation models (M1, M2, . . . , Mn) for calculating a mechanical property of the substance, based on at least two of the plurality of physical quantities measured; and a mechanical property calculating unit (82) configured to calculate the mechanical property of the substance using the calculation model selected by the classification processing unit (81) and the at least two of the plurality of physical quantities.
Abstract:
The invention relates to a method for observing a magnetic field of a material volume, in particular for determining properties of a workpiece under, in particular, magnetic, mechanical, thermal, and/or electrical excitation of a material volume of the workpiece, wherein the magnetic field of the material volume is sensed as a function of time and of frequency with high frequency resolution.
Abstract:
The present invention provides a surface property inspection method including a step of setting a resistance ratio between resistors R1 and R2 of an AC bridge circuit 20 in a surface properly inspection apparatus 1. The step includes a step for placing a non-surface-treated reference test pieces S on a reference detector 22 and an inspection detector 23 and measuring a first setting output signal while changing the resistance ratio γ, a step for placing the reference test piece S on the reference detector 22, placing a surface-treated setting test piece on the inspection detector 23, and measuring a second setting output signal while changing the resistance ratio, a step for calculating the differential value between the first and second output signals, and a step for setting the resistance ratio so that the absolute value of the differential value is maximized.
Abstract:
Embodiments of the invention relate to polycrystalline diamond (“PCD”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, PCD includes a plurality of diamond grains defining a plurality of interstitial regions. A metal-solvent catalyst occupies at least a portion of the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit a coercivity of about 115 Oersteds (“Oe”) or more and a specific magnetic saturation of about 15 Gauss·cm3/grams (“G·cm3/g”) or less. Other embodiments are directed to polycrystalline diamond compacts (“PDCs”) employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
Abstract:
Embodiments of the invention relate to polycrystalline diamond (“PCD”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, PCD includes a plurality of diamond grains defining a plurality of interstitial regions. A metal-solvent catalyst occupies at least a portion of the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit a coercivity of about 115 Oersteds (“Oe”) or more and a specific magnetic saturation of about 15 Gauss·cm3/grams (“G·cm3/g”) or less. Other embodiments are directed to polycrystalline diamond compacts (“PDCs”) employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
Abstract:
An eddy current sensor that includes: a probe and a computing unit. The probe has an exciting portion and a detecting portion. The exciting portion includes a first excitation coil that is wound around a non-magnetic bobbin so that a center axis direction is oriented in an x-axis direction and a second excitation coil that is wound around the non-magnetic bobbin to intersect with the first excitation coil so that a center axis direction is oriented in a y-axis direction. The detecting portion includes a detection coil that is arranged at the lower one of two intersecting portions of the first excitation coil and the second excitation coil. An eddy current measurement method for determining the thickness of a hardened layer.
Abstract:
A method is disclosed for detecting the T.sub.1 phase in aluminum-lithium alloys through simultaneous measurement of conductivity and hardness. In employing eddy current to measure conductivity, when the eddy current decreases with aging of the alloy, while the hardness of the material continues to increase, the presence of the T.sub.1 phase may be detected.
Abstract:
A method and apparatus for ascertaining internal stresses in a hardened region to be tested for a component made of a predetermined material includes measuring coercive field strength and amplitude of magnetic Barkhausen noise as a function of mechanical stress and hardness in calibration samples of a predetermined material of known hardness and known internal stress. Calibration functions are ascertained from the measured values indicating the dependency of the hardness and the amplitude of the magnetic Barkhausen noise as functions of the hardness and mechanical stress. The coercive field strength and the amplitude of the magnetic Barkhausen noise is measured in a location-dependent manner over the region of the component to be tested. The measured values of the coercive field strength and the amplitude of the magnetic Barkhausen noise are converted in the region to be tested into location-dependent hardness and into location-dependent mechanical stress using the ascertained calibration functions. The location-dependent mechanical stress and the location-dependent hardness in the region to be tested are present independently of one another and are available for further processing.
Abstract:
A method comprises repeatedly magnetizing a test article by a pulsed axially symmetric magnetic field normal to the surface of the test article, and reading the gradient of a residual field. Magnetizing the article is effected by two trains of pulses in two steps: first until a first instant of discontinuance in the growth of the gradient of a remanent magnetic field and then until a second instant of discontinuance, the pulse amplitude of the second pulse train being lower than a maximum amplitude of the second pulse train.An apparatus to carry out the proposed method comprises a pulse shaper 1 for forming pulses of an axially symmetric magnetic field and a measuring circuit for measuring the gradient of a remanent field normal component. According to the invention said apparatus is further provided with a working storage 4, a comparison circuit 5 and a pulse amplitude measuring device 2 for measuring pulse amplitude at the output of the pulse shaper 1. The amplitude measuring device 2 has its inputs connected to the outputs of the comparison circuit 5 and the pulse shaper 1. The inputs of the working storage 4 and the comparison circuit 2 are connected to the output of the gradient measuring circuit 3. The other input of the comparison circuit 5 is connected to the output of the working storage 4. The pulse shaper 1 includes a storage capacitor, charging and discharging circuits of said capacitor, an inhibit circuit and a comparison circuit, a pulse counter, a decoder and a code-to-analog converter electrically connected to one another.