Abstract:
Provided are: a mechanical property measuring apparatus and method that can accurately measure a mechanical property through physical quantities; a substance manufacturing equipment and method that can improve the production yield rate. A mechanical property measuring apparatus (100) comprises: a physical quantity measuring unit (5) configured to measure a plurality of physical quantities of a measured object that includes a substance and a film on a surface of the substance; a classification processing unit (81) configured to select one of a plurality of calculation models (M1, M2, . . . , Mn) for calculating a mechanical property of the substance, based on at least two of the plurality of physical quantities measured; and a mechanical property calculating unit (82) configured to calculate the mechanical property of the substance using the calculation model selected by the classification processing unit (81) and the at least two of the plurality of physical quantities.
Abstract:
A nondestructive testing system for testing the strength of a gear (15) that has been subjected to vacuum carburization is disclosed. A detection coil (33) embedded in a resin member (32) having a wedge-shaped cross section is placed in proximity to a bottom land (44) of the gear, and the carburized depth of the bottom land is measured to test the strength of the gear.
Abstract:
An eddy current sensor that includes: a probe and a computing unit. The probe has an exciting portion and a detecting portion. The exciting portion includes a first excitation coil that is wound around a non-magnetic bobbin so that a center axis direction is oriented in an x-axis direction and a second excitation coil that is wound around the non-magnetic bobbin to intersect with the first excitation coil so that a center axis direction is oriented in a y-axis direction. The detecting portion includes a detection coil that is arranged at the lower one of two intersecting portions of the first excitation coil and the second excitation coil. An eddy current measurement method for determining the thickness of a hardened layer.
Abstract:
An eddy current sensor that includes: a probe and a computing unit. The probe has an exciting portion and a detecting portion. The exciting portion includes a first excitation coil that is wound around a non-magnetic bobbin so that a center axis direction is oriented in an x-axis direction and a second excitation coil that is wound around the non-magnetic bobbin to intersect with the first excitation coil so that a center axis direction is oriented in a y-axis direction. The detecting portion includes a detection coil that is arranged at the lower one of two intersecting portions of the first excitation coil and the second excitation coil. An eddy current measurement method for determining the thickness of a hardened layer.
Abstract:
A nondestructive testing system for testing the strength of a gear (15) that has been subjected to vacuum carburization is disclosed. A detection coil (33) embedded in a resin member (32) having a wedge-shaped cross section is placed in proximity to a bottom land (44) of the gear, and the carburized depth of the bottom land is measured to test the strength of the gear.
Abstract:
The invention provides a method and apparatus for monitoring subsurface chromium depletion from a steel member, such as a pyrolysis pipe. In the harsh conditions of a pyrolysis furnace, chromium within the pipe 16 migrates towards the pipe surface which results in the formation of a chromium depleted layer 14. This layer can provide useful data about the condition and operation of the furnace. The degree of chromium depletion is measured by using a magnetic source of known strength to create a magnetic field in the surface region of the pipe 16. An estimate of the thickness of the chromium depleted layer 14 is determined from the resultant magnetic flux, which can be measured by a hall element arranged at substantially 45° to the longitudinal axis of the magnet.
Abstract:
A method is disclosed for detecting the T.sub.1 phase in aluminum-lithium alloys through simultaneous measurement of conductivity and hardness. In employing eddy current to measure conductivity, when the eddy current decreases with aging of the alloy, while the hardness of the material continues to increase, the presence of the T.sub.1 phase may be detected.
Abstract:
A method comprises repeatedly magnetizing a test article by a pulsed axially symmetric magnetic field normal to the surface of the test article, and reading the gradient of a residual field. Magnetizing the article is effected by two trains of pulses in two steps: first until a first instant of discontinuance in the growth of the gradient of a remanent magnetic field and then until a second instant of discontinuance, the pulse amplitude of the second pulse train being lower than a maximum amplitude of the second pulse train.An apparatus to carry out the proposed method comprises a pulse shaper 1 for forming pulses of an axially symmetric magnetic field and a measuring circuit for measuring the gradient of a remanent field normal component. According to the invention said apparatus is further provided with a working storage 4, a comparison circuit 5 and a pulse amplitude measuring device 2 for measuring pulse amplitude at the output of the pulse shaper 1. The amplitude measuring device 2 has its inputs connected to the outputs of the comparison circuit 5 and the pulse shaper 1. The inputs of the working storage 4 and the comparison circuit 2 are connected to the output of the gradient measuring circuit 3. The other input of the comparison circuit 5 is connected to the output of the working storage 4. The pulse shaper 1 includes a storage capacitor, charging and discharging circuits of said capacitor, an inhibit circuit and a comparison circuit, a pulse counter, a decoder and a code-to-analog converter electrically connected to one another.