Abstract:
Bearing assemblies and methods of using bearings are provided in the present disclosure. In one embodiment, a bearing ring is provided having a plurality of carrier components removably coupled therewith. Each carrier component may carry one or more bearing elements. Upon wearing of the bearing elements beyond a desired amount, the carrier components may be removed from the bearing ring and installed in a different bearing ring to place the mearing elements at their original bearing surface radius. In another embodiment, individual bearing elements may be radially adjustable relative to the bearing ring to define and redefine the radius of a radial bearing surface.
Abstract:
A housing unit for a caster assembly comprising a hollow housing body forming an inner cavity. A first bearing is connected to the hollow housing body, the first bearing defining a rotational axis through its center, and configured to rotatably support a first portion of a stem supporting a caster for rotation about the rotational axis. A support assembly is connected to the hollow housing body, the support assembly being spaced from the first bearing, the support assembly having bearing segments concurrently defining a plain bearing around the rotational axis, the plain bearing configured to rotatably support a second portion of the stem during rotation about the rotational axis. A pressure-applying component is operatively mounted to the support assembly, the pressure-applying component being selectively displaceable to displace the at least one of the bearing segments toward or away from the second portion of the stem, to increase or decrease a pressure of the bearing segments on the second portion of the stem. The support assembly and the first bearing are configured to rotatably support the stem of the caster to form a swivel joint.
Abstract:
A tilting-pad bearing (1) includes a sleeve (5), a plurality of tilting pads (4), which are arranged in the sleeve (5), wherein an associated spring element (3) is provided between the sleeve (5) and each tilting pad (4), wherein the spring element (3) has at least two sections having a stiffness of different magnitude as a result of varying the thickness of the cross-section (8, 10) of the spring element (3) in the width direction and/or longitudinal direction of the spring element (3).
Abstract:
A wind turbine component includes an inner member and an outer member disposed relative to the inner member, wherein the inner and outer members move relative to each other. A plain bearing is coupled to one of the inner or outer member and configured to provide a fluid film for maintaining separation of and facilitating relative movement between the inner and outer members. A position adjustment mechanism is coupled to the one of the inner or outer member for selectively moving the plain bearing. A position controller may be operatively coupled to the position adjustment mechanism for controlling the position of the plain bearing. The wind turbine component may be a wind turbine generator with the inner member and outer member corresponding to one of the stator and rotor assemblies. Methods for controlling the generator are also disclosed.
Abstract:
A micro drive assembly may comprise a substrate, a micro shaft oriented in-plane with the substrate and at least one micro bearing to support rotation of the micro shaft. The micro shaft and micro bearing may be in or less than the micrometer domain.
Abstract:
A symmetric ultra-precision spindle design in which all forces of constraint are, within the tolerances of manufacturing and assembly processes, symmetrically arranged about its axis. Additionally this design may require little or no external power other than the forces to rotate the spindle.
Abstract:
The screen wiper mechanism has a crank, a connecting rod, a pivot pin and an articulating device which couples the crank to the connecting rod. The structure has, in succession: a head which bears against an engagement surface that is formed, in facing relationship with the head, in a first lateral face of the connecting rod. A cylindrical first shank portion and a cylindrical second shank portion that is of smaller diameter than the first shank portion forms an extension to the first shank. The articulating device also has structure that secures the crank on the second shank portion of the pivot pin against relative axial movement and takes up axial clearance. This structure, moreover, is arranged to be compressed while fastening the structure together during assembly.
Abstract:
A slide puck bearing system is provided comprising members which are intended to slide, move or rotate along or about one another. A slide puck bearing composed of a material such as acetal having a low coefficient of friction is adjustably fixed to a first member and has outer contours mating snugly with the surface contours of a second member. A set screw resides in the slide puck bearing to adjust the positioning of the bearing on the first member to adjust the tension against the second member. The slide puck can be adjusted or replaced throughout the life of the device. The system can be utilized with any devices wherein a member slides, rotates or moves relative to another member.
Abstract:
A fractional horsepower motor has a thrust bearing assembly mounted on the motor shaft to dampen the axial movement of the shaft. The assembly includes a thrust collar formed of resinous material and a thrust plate formed of metal with a wave spring positioned therebetween. Apertures in the thrust plate receive resilient hook projections formed on the thrust collar as a means for coupling the plate to the collar. Torque transmitting projections formed on the thrust collar engage notches formed in the thrust plate. The hook projections and the torque transmitting projections act together to capture and hold the wave spring between the collar and plate.
Abstract:
A tail rotor flapping hinge elastomeric bearing in which the inner and outer races are split and the races have ramped surfaces with the higher slope of the inner races being toward the outer edge of the bearing. The races have a plurality of slope angles and each inner race having a groove therein to facilitate a method of preloading.