摘要:
An internal combustion engine control apparatus can reliably detect abnormality in a crank angle position signal to ensure a fail safe function upon occurrence of the abnormally. A fuel injection signal and an ignition signal is generated based on the result of cylinder identification performed by a cylinder identification part and the crank angle position of the crank angle position signal. An abnormality determination part determines whether the crank angle position signal is abnormal. The cylinder identification part includes a cylinder identification resetting part for resetting the current content of the cylinder identification performed by the cylinder identification part upon determination of abnormality. The cylinder identification resetting part includes a fuel injection and ignition signal stopping part for stopping the fuel injection signal and the ignition signal, and a cylinder identification information clearing part for clearing previous cylinder identification information earlier than the last crank angle position signal upon determination of abnormality.
摘要:
The method serves for input signal correction of a misfire detection function and for cylinder equalization in an internal combustion engine, especially of a motor vehicle. Here, it is provided that a control for the input signal correction (10) and a control of the cylinder equalization (11) are activated alternatively by an alternative circuit unit (12).
摘要:
In an ignition device for an engine 1, a spark plug 14 is operated to emit sparks with respect to the fuel-air mixture, so that the fuel-air mixture is ignited. A protrusion 19 provided on a flywheel 6 mounted on a crankshaft 5 is revolved with the rotation of the crankshaft 5. A magnet pickup 21 detects the passage of the protrusion 19. When the protrusion 19 passes near the magnet pickup 21, the magnet pickup 21 outputs a detection signal, in a pulse manner, having a peak value in response to the passing speed of the protrusion. When the detection signal outputted from the magnet pickup 21 exceeds a predetermined threshold value, the electronic control unit (ECU) 18 operates to activate the spark plug 14 through an ignition coil 15 so that the ignition timing is advanced or delayed in accordance with the difference in rotational speed of the shaft 5, i.e., of the engine 1.
摘要:
The invention discloses a method and apparatus for controlling the idle speed of an engine that provides uniform control efficiency and rapid control response. An embodiment of the invention activates the ignition system based on a target ignition timing, which corresponds to a target torque ratio and is found using a predetermined relationship between ignition timing and torque ratio. The target torque ratio is calculated based on engine speed and engine load.
摘要:
A crank angle position signal is generated which corresponds to rotational angles of a crankshaft and includes a specific signal for obtaining reference crank angle positions of cylinders. A cylinder identification signal is generated corresponding to the respective cylinders in accordance with the rotation of at least one of an intake-side cam and an exhaust-side cam which are subjected to VVT control. Correlation between the reference crank angle positions and cylinder groups is specified based on a combination of the reference crank angle positions and the cylinder identification signal. Cylinder identification ranges of a prescribed angular length in consideration of an advance angle and a retard angle are set based on the reference crank angle positions. The cylinders are identified based on the reference crank angle positions whose correlation with cylinder groups within each of the cylinder identification ranges has been specified, and the cylinder identification signal.
摘要:
An improved method and system for the control of an engine system such as the spark timing. The control senses the speed variations either during a portion of a complete cycle and a complete cycle and/or from cycle to cycle in order to determine the load on the engine from preprogrammed maps based upon the engine characteristics. From this load and the speed reading, it is possible to obtain the desired engine control. In addition the timing is set in this method only under certain specified conditions and only in response to certain specific parameters. This not only reduces the costs of the system by reducing the number of sensors, but also permits adjustments to be made more rapidly.
摘要:
An ignition-timing controlling apparatus for an internal combustion controls a basic ignition timing during cranking of the engine so as to correctively shift the basic ignition timing toward a retard angle side when the number of times of ignitions occurring in the combustion chamber of the engine are detected to have reached a predetermined number of times after the start of cranking operation. The amount of corrective shifting of the basic ignition timing toward the retard angle side is set by the ignition-timing controlling apparatus, on the basis of a temperature rise in the combustion chamber that is estimated by the detection of the number of times of ignitions. The ignition practically conducted by the internal combustion engine during cranking of the engine is controlled so as to meet with the correctively shifted ignition timing to thereby prevent both a reduction in the developed torque due to an excessive advance of the basic ignition timing, and generation of reverse torque, and to enhance the cranking performance of the internal combustion engine.
摘要:
A two-cycle internal combustion engine has an ignition timing that varies with engine speed. A plurality of ignition patterns (the relationship between ignition timing and engine speed) are used. The engine exhaust gas temperature is sensed and is used to determine the particular ignition pattern used at a particular time.
摘要:
A system for controlling an ignition timing of an internal combustion engine, in which an ignition timing advancing correction amount is determined based on at least the detected engine coolant temperature, and it is determined whether the engine is under a predetermined cold starting condition. When the result is affirmative, the ignition timing is advanced beyond the MBT. This arrangement is based on the inventors finding that the gas temperature rises at the combustion stroke, but drops little after the expansion stroke. With this, the increased fuel amount for compensating the engine output loss caused by ignition timing advancement can effectively be utilized to heat the engine coolant, thereby facilitating and improving the engine warm-up.
摘要:
An engine control system quantifies engine acceleration advances ignition timing in accordance with the quantified engine acceleration. The control system includes a controller that receives signals indicative of engine speed and crankshaft angle and periodically determines whether the engine acceleration falls into one of four quantified ranges of acceleration: a rapid acceleration range, a moderate acceleration range, a gradual acceleration range; and a range of de minimis acceleration (i.e., substantially no acceleration). The controller then adjusts ignition timing according to engine speed and to the particular acceleration range. In doing so, the controller determines a desired ignition timing by referencing ignition timing maps stored in the memory of the control system. Each map corresponds to one of the acceleration ranges. By quantifying acceleration into several ranges, the controller can better tailor ignition timing to optimize engine performance and provide smoother acceleration, regardless of the degree of acceleration. The ride of the watercraft during accelerations consequently improves.