摘要:
An estimation device for a cylinder intake air amount and an internal EGR rate in an internal combustion engine is provided which is capable of making an estimation with a high degree of accuracy in a small number of adaptation constants. The estimation device calculates a volumetric efficiency corresponding value and the internal EGR rate based on an exhaust efficiency (a linear function of intake pipe internal pressure) which is an index indicating an amount of residual gas which is an exhaust gas after combustion remaining in the cylinder without being discharged from the cylinder to an exhaust pipe, and an intake efficiency (a linear function of intake pipe internal pressure) which is an index indicating an amount of air coming into the cylinder from the intake pipe excluding the residual gas.
摘要:
An estimation device for a cylinder intake air amount in an internal combustion engine is obtained which can estimate an amount of air actually sucked into a cylinder with a high degree of accuracy by using a physical model of an intake system. A volumetric efficiency corresponding value is calculated based on an exhaust efficiency (a linear function of intake pipe internal pressure) which is an index indicating an amount of residual gas which is an exhaust gas after combustion remaining in the cylinder without being discharged from the interior of the cylinder to an exhaust pipe, and an intake efficiency (a linear function of intake pipe internal pressure) which is an index indicating an amount of air coming into the cylinder from an intake pipe excluding the residual gas, whereby the estimation is carried out to a high degree of accuracy with a small number of adaptation constants.
摘要:
A knock control apparatus for internal combustion engine includes: a knock signal normalization unit that normalizes a knock signal extracted from an output signal of a knock sensor; a knock determination threshold setting unit that sets a knock determination threshold on the basis of the normalized knock signal; a knock intensity computation unit that calculates knock intensity on the basis of the normalized knock signal and the set knock determination threshold; a knock determination unit that determines a presence or absence of a knock on the basis of the calculated knock intensity; and a knock correction amount computation unit that calculates a knock correction amount to correct the calculated knock intensity in a case where an occurrence of a knock is determined. The knock signal normalization unit normalizes a standard deviation of the knock signal by dividing the knock signal by an average value of the knock signal.
摘要:
A control apparatus for an internal combustion engine includes: an abnormal combustion detection unit for detecting an abnormal combustion due to self-ignition occurring; a pre-ignition determination unit for detecting abnormal combustion occurrence timing based on abnormal combustion detection information to determine whether or not the abnormal combustion is the pre-ignition based on comparison between pre-ignition determination timing and the abnormal combustion occurrence timing; a heat-source pre-ignition determination unit for determining whether the pre-ignition is the heat-source pre-ignition or the compression pre-ignition based on comparison between the abnormal combustion occurrence timing set by the pre-ignition determination timing and heat-source pre-ignition determination timing; a first avoidance unit for avoiding the heat-source pre-ignition in a case where the pre-ignition is determined as the heat-source pre-ignition; and a second avoidance unit for avoiding the compression pre-ignition in a case where the pre-ignition is determined as the compression pre-ignition.
摘要:
A knock control apparatus includes: a knock sensor for detecting knock of an internal combustion engine; a signal processing section for calculating a knock intensity; and knock determination level setting sections: for calculating an average value of the knock intensity; for calculating, based on the average value, an overall variance of the knock intensity of an entirety of a frequency distribution, a higher variance of the knock intensity above the average value, and a lower variance of the knock intensity below the average value; for calculating a standard deviation of the knock intensity from the overall variance; for presetting a value allowing the frequency distribution of the knock intensity to be a predetermined confidence interval as a confidence coefficient; and for setting a sum of the average value and a value obtained by multiplying the standard deviation by the corrected confidence coefficient as a knock determination level.
摘要:
In throttle control, a throttle opening is set with sufficient control accuracy in accordance with the operating state of an engine despite variations in a throttle body and various kinds of sensors. A target effective opening area is calculated from a target amount of intake air, an atmospheric pressure, an intake pipe internal pressure and an intake air temperature by using a flow rate formula for a throttle type flow meter. A target throttle opening is calculated from a correlation map. An actual effective opening area is calculated from the amount of intake air, the atmospheric pressure, the intake pipe internal pressure, and the intake air temperature by using the above-mentioned flow rate formula, and a learning throttle opening is calculated from the correlation map. The target throttle opening is corrected by a throttle opening learning value calculated from a deviation between the target throttle opening and the learning throttle opening.
摘要:
A control apparatus for an internal combustion engine prevents variation of an air fuel ratio even upon introduction of purge air. A delay time occurring until the intake air detected, after having arrived at the combustion chamber through a surge tank, influences an air fuel ratio sensor, a delay time occurring until purge air containing evaporated fuel generated upon purging a canister, after having arrived at the combustion chamber through the surge tank, influences the air fuel ratio sensor, and a delay time occurring until fuel supplied by an injector, after having arrived at the combustion chamber, influences the air fuel ratio sensor, are represented by simplified physical models. A purge rate in the combustion chamber or in the neighborhood of the air fuel ratio sensor is calculated by using the physical models, and a purge air concentration and a fuel correction amount are calculated based on the purge rate thus obtained.
摘要:
Provided is a control device for an internal combustion engine, capable of controlling acceleration-response characteristics, performing an operation at an optimal fuel-efficiency point, and learning variation factors in an internal combustion engine provided with a supercharger including a wastegate valve. A target throttle-valve upstream pressure is calculated based on a target charging efficiency and a rotation speed. An exhaust-gas flow rate is calculated based on an air/fuel ratio and an intake-airflow rate. A target compressor driving force is calculated based on a target intake-airflow rate and a target throttle-valve upstream pressure. A wastegate-valve control value is calculated from the exhaust-gas flow rate and the target compressor driving force by using the relationship in which the relation expression expressing the characteristics of the exhaust-gas flow rate and the target compressor driving force depends only on the wastegate-valve control value.
摘要:
A pre-ignition estimation/control device includes: an octane number estimation module for estimating an octane number of a fuel based on detection signals received from an intake air temperature sensor, a water temperature sensor, etc; a pre-ignition-occurrence-index calculation module for calculating a pre-ignition occurrence index based on the estimated octane number and the like; a pre-ignition-occurrence-index correction module for correcting the pre-ignition occurrence index so as to cause the pre-ignition more likely to occur; an effective-compression-ratio-boundary calculation module for calculating a boundary of an effective compression ratio based on the pre-ignition occurrence index; an intake-cam-phase-advance calculation module for calculating a phase advance of an intake cam based on the boundary of the effective compression ratio and the like; and an intake-cam-phase control module for controlling an intake-cam variable phasing system based on the phase advance of the intake cam, to thereby restrict a change in phase advance.
摘要:
Provided is a control device for an internal combustion engine, capable of controlling acceleration-response characteristics, performing an operation at an optimal fuel-efficiency point, and learning variation factors in an internal combustion engine provided with a supercharger including a wastegate valve. A target throttle-valve upstream pressure is calculated based on a target charging efficiency and a rotation speed. An exhaust-gas flow rate is calculated based on an air/fuel ratio and an intake-airflow rate. A target compressor driving force is calculated based on a target intake-airflow rate and a target throttle-valve upstream pressure. A wastegate-valve control value is calculated from the exhaust-gas flow rate and the target compressor driving force by using the relationship in which the relation expression expressing the characteristics of the exhaust-gas flow rate and the target compressor driving force depends only on the wastegate-valve control value.