Abstract:
The invention concerns polyester resins, more particularly polyethyleneterephthalate resins used for making hollow containers, such as bottles for packaging liquid substances, in particular aerated beverages, natural or mineral waters. The invention concerns a polyester comprising at least 92.5% in number of recurrent units derived from terephthalic acid of aliphatic diols having an intrinsic viscosity ranging between 0.45 dl/g and 0.70 dl/g, and an acetaldehyde content less than 3 ppm, preferably less than 1.5 ppm. The invention also concerns a method for obtaining polyester granules with low acetaldehyde content having an intrinsic viscosity in the range mentioned above. Said polyesters are used in particular for making hollow containers such as bottles and more particularly bottles designed to contain foodstuffs sensitive to acetaldehyde.
Abstract:
The present invention relates to a method of producing crosslinked polyester formed-goods characterized by adding 0.005null10 weight part of organic peroxides against 100 weight part of polyester or polyester mixture. The present invention is easy to do a forming process, is possible to improve the mechanical property and formability of foamed-goods, and is possible to add the biodegradation and air permeability to formed-goods selectively. The formed-goods of the present invention is used for wrapping film, wrapping container and foaming goods.
Abstract:
Branched hydroxyl-functional polyester resin having an average hydroxyl functionality of >2, a hydroxyl number of 25 to 300 mg KOH/g, and a number average molecular weight within the range of from 500 to 3,000, which polyester resin comprises polyalkylene oxide groups and, optionally, sulphonate groups, wherein the polyester resin comprises the reaction product of 1) a mixture of carboxylic acids comprising 50 to 80 mole % of an m- and/or p-aromatic and/or cycloaliphatic dicarboxylic acid, 20 to 50 mole % of an aliphatic dicarboxylic acid and/or aliphatic monocarboxylic acid with more than 6 carbon atoms, and, optionally, a tri- or higher-functional acid, and 2) a mixture of alcohols comprising an aliphatic diol with at least 4 carbon atoms and/or a cycloaliphatic diol with at least 4 carbon atoms, a C1-C4 alkoxy polyalkylene oxide glycol and/or C1-C4 alkoxy polyalkylene oxide 1,3-diol having a number average molecular weight of 500 to 3,000, and, optionally, a tri- or higher-functional polyalcohol, wherein the polyester resin has a carboxylic acid number of null20 mg KOH/g (null0.357 meq COOH groups per g of resin) and, optionally, a sulphonate number of null4 mg KOH/g (null0.070 meq sulphonate groups per g of resin), the acid groups being at least partly neutralized.
Abstract:
Heat-shrinkable polyester films suitable for label use, wherein the value of tan null for dynamic viscoelasticity in a main shrinkage direction of the film is 0.15 or higher at 65null C. and takes a maximum of 0.40 or higher at a temperature of 65null C. to 100null C. both inclusive, and the heat shrinkability in the main shrinkage direction of the film after treatment in hot water at 80null C. for 10 seconds is 30% or higher, have excellent shrinkage characteristics over a wide range of temperature extending from low temperatures to high temperatures, particularly in the low temperature range, which may cause only rare occurrence of shrinkage spots, wrinkles, strains, longitudinal sinking, and other defects during heat shrinkage, and which may further have excellent break resistance.
Abstract:
A polyester is provided which facilitates the separation of blood into light and heavy phases via centrifugation in a blood collection vessel. The polyester is useful as a component of a partitioning composition formulated to have appropriate specific gravity to be positioned intermediate the light and heavy blood phases during centrifugation. The polyester composition can be prepared with relative ease compared to prior art polyesters useful in blood partitioning compositions. The polyesters of this invention comprise a dicarboxylic acid member, a polymeric fatty acid, a diol member and a moiety having at least one polymerizable carbon-carbon double bond and at least one functional group capable of reacting with the ends of the polyester chain. The polyesters have a lower viscosity when synthesized and are later cured to increase their viscosity to the desired level.
Abstract:
A preblended additive composition and process for the preparation of polyester resins useful in the manufacture of plastic containers such as bottles is disclosed. The additive composition includes a cobalt-containing compound that is preblended with a phosphorous compound. The polyester resin, e.g., a PET resin, may be prepared by reacting ethylene glycol with dimethyl terephthalate (DMT) or terephthalic acid (TA) in an esterification reaction. The additive composition may be prepared by quickly dumping the phosphorus compound into the cobalt compound such as cobalt acetate, and the resulting composition is added to the reactor vessel before the polycondensation reaction. On the other hand, the additive composition may be prepared by slowly dumping the phosphorus compound into the cobalt compound over a period of at least 5 minutes. Such preblending substantially eliminates any yellow or blue color, or haze in the product article.
Abstract:
A process for cooling post solid-stating reactor PET flakes comprises conveying PET flakes from a solid-stating reactor to a first separator in the presence of air and water at an elevated pressure, separating the steam from the partially cooled PET flakes, and conveying the partially cooled PET flakes from the first separator to a second separator in the presence of air at an elevated pressure.
Abstract:
The present invention provides a copolyester resin composition which has good physical properties, biodegradability and processability and a process for preparing and/or producing the same. To improve the biodegradability and physical properties of the copolyester, the present invention applied multi-stage reaction step, and copolyester resin having number average molecular weight of from 30,000 to 70,000, weight average molecular weight of from 100,000 to 600,000, melting point of from 55null C. to 120null C., and melt index of from 0.1 to 30 g/10 minute (190null C., 2,160 g) is obtained. The processability and physical properties of the copolyester resin of the present invention has been greatly enhanced by incorporating (i) an nullaromatic-aliphatic prepolymersnull having number average molecular weight of from 300 to 30,000 and the contiguous repeating unit of aromatic group in the dicarboxylic acid position of nullaromatic-aliphatic prepolymersnull is less than 5. Thus it can be processed by using the conventional processing equipment for polyethylene and polypropylene without any modification.
Abstract:
The present invention relates to slow-crystallizing polyethylene terephthalate resins that possess a significantly higher heating crystallization exotherm peak temperature (TCH) as compared with those of conventional antimony-catalyzed polyethylene terephthalate resins. The polyethylene terephthalate resins of the present invention are especially useful for making hot-fill bottles having exceptional clarity.
Abstract:
A polyester resin, whereby a molded product excellent in a gas barrier property and also excellent in an ultraviolet shielding property, a color tone, etc., and which is particularly suitable for molding a bottle for e.g. a beverage required to have an aroma retention property, and further, a polyester resin, whereby the acetaldehyde content as a molded product is reduced to eliminate an influence over the taste, aroma, etc. of the content, and a process for its production, wherein the polycondensability is improved, are to be presented. A polyester resin produced by polycondensing a dicarboxylic acid component containing terephthalic acid or its ester-forming derivative as the main component, and a diol component containing ethylene glycol as the main component in the presence of (1) a compound of at least one member selected from the group consisting of titanium group elements in Group 4A of the periodic table, via an esterification reaction or an ester exchange reaction, characterized in that the content of copolymerized components other than the terephthalic acid component and the ethylene glycol component, is not more than 4 mol % based on the total dicarboxylic acid component, and in a molded product with a thickness of 3.5 mm injection-molded at 280null C., the difference between the absorbance at a wavelength of 395 nm and the absorbance at a wavelength of 800 nm is at least 0.08, and the difference between the absorbance at a wavelength of 500 nm and the absorbance at a wavelength of 800 nm is at most 0.05; and a process for producing a polyester resin, which comprises polycondensing a dicarboxylic acid component containing terephthalic acid or its ester-forming derivative as the main component, and a diol component containing ethylene glycol as the main component in the presence of (1) a compound of at least one member selected from the group consisting of titanium group elements in Group 4A of the periodic table, (2) a compound of at least one element selected from the group consisting of metal elements of Group Ia of the periodic table, elements of Group IIa of the periodic table, manganese, iron and cobalt, and (3) a phosphorus compound, via an esterification reaction or an ester exchange reaction, characterized in that the amounts of the respective compounds (1), (2) and (3) are such amounts that their contents will be from 0.02 to 0.2 mol as the total amount (T) of atoms of the compound (1), from 0.04 to 0.6 mol as the total amount (M) of atoms of the compound (2) and from 0.02 to 0.4 mol as the total amount (P) of atoms of the compound (3), per 1 ton of the polyester resin.