Abstract:
A hydraulic auxiliary axle steering control system is provided. In detail, there is provided a hydraulic auxiliary axle steering control system that can perform quick, precise, and safe control by changing an auxiliary axle steering control angle in accordance with a vehicle speed to problems with instability of driving, wear of tires, and a turning radius when a vehicle is driven at a low speed.
Abstract:
A hydraulic steering unit includes a pressure port connected to a main flow path and a tank port connected to a tank flow path, and a working port arrangement having left and right working flow paths. A first bridge arrangement has first left and first right orifices connected to the main flow path and to first left or first right connecting points, respectively, each connecting point associated respectively with the left or right working flow paths, and second left and second right orifices connected to the tank flow path and to the first left or first right connecting points, respectively. A second bridge arrangement has a similar orifice arrangement connected to second left or second right connecting points. The first and second bridge arrangements have different steering characteristics. Selection means for connecting one of the bridge arrangements between the pressure port and the working port arrangement are provided.
Abstract:
A hydraulic steering unit (1) is described comprising a supply port arrangement having a pressure port (8) connected to a main flow path (6) and a tank port (T) connected to a tank flow path (7), a working port arrangement having a left working port (L) connected to a left working flow path (9) and a right working port (R) connected to a right working flow path (10), a bridge arrangement (14) of variable orifices having a first left orifice (A2L) connected to the main flow path (6) and to the left working flow path (9), a first right orifice (A2R) connected to the main flow path (6) and to the right working flow path (10), a second left orifice (A3L) connected to the left working flow path (9) and to the tank flow path (7), and a second right orifice (A3R) connected to the right working flow path (10) and to the tank flow path (7). Such a hydraulic steering unit should allow comfortable steering. To this end a measuring motor arrangement is arranged in one of the left working flow path (9) and the right working flow path (10), the measuring motor arrangement (15) having a first measuring motor (16) and a second measuring motor (17).
Abstract:
A hydraulic steering unit (1) is described, said hydraulic steering unit (1) comprising a supply port arrangement having a pressure port (P) connected to a main flow path (3) and a tank port (T) connected to a tank flow path (4), a working port arrangement having a left working port (L) connected to a left working flow path (5) and a right working port (R) connected to a right working flow path (6), a bridge arrangement (14) of variable orifices having a first left orifice (A2L) connected to the main flow path (3) and to the left working flow path (5), a first right orifice (A2R) connected to the main flow path (3) and to the right working flow path (6), a second left orifice (A3L) connected to the left working flow path (5) and to the tank flow path (4), and a second right orifice (A3R) connected to the right working flow path (6) and to the tank flow path (4). Such a hydraulic steering unit should be operated together with a pressure source of fixed displacements. To this end an idle flow path (15) branches off the main flow path (3), wherein a variable idle orifice (An) is arranged in the idle flow path (15), the idle orifice (An) being open in neutral position and closing out of neutral position.
Abstract:
Steering boxes currently available on the market in order to convert the rotation of the steering wheel into the angular rotation of the wheels are not suitable to be partially built into the rim of the wheels of an electric car. In addition, existing boxes do not allow the independent rotation of the wheels or wide turning radii. These limitations are overcome using a system comprising: a body into which at least one motor is built using corresponding supports, which motor(s) actuate(s) the steering rotation axle of each steered wheel in the upper part of the body, and, in the lower part, a transmission gearbox and a stationary circular crown gear with which driving pinions mesh, said pinions rotating about the crown gear, thereby rotating the entire body and the rotation axle of the wheel built into the body together with suitable means.
Abstract:
An assembly for supporting a vehicle chassis on a wheel of the vehicle includes a frame pivotably connected to the vehicle chassis at a connection location and a wheel attachment component slidingly coupled with the frame. The wheel attachment component is positioned on a first side of the connection location and is configured to pivot in unison with the frame and to move between a plurality of operating positions relative to the frame. A suspension component regulates motion transfer between the frame and the attachment component and is positioned on a second side of the connection location opposite the attachment component. An adjustment actuator is configured to shift the attachment component between any of the plurality of operating positions relative to the frame. The adjustment actuator is functionally independent of the suspension component.
Abstract:
An electrohydraulic power steering system includes a sensor for detecting steering information, a motor pump unit generating a hydraulic pressure for assisting steering power depending on a driver's steering wheel operation, and a hydraulic cylinder driven with the hydraulic pressure supplied from the motor pump unit to assist the steering power. A control method of the electrohydraulic power steering system includes acquiring steering angle information depending on the driver's steering operation and information on a steering torque applied through a steering wheel at the time of operating the steering wheel; determining a target steering torque depending on the acquired steering angle; and variably controlling a motor rotational speed of the motor pump unit so that the steering torque acquired through the sensor satisfies the target steering torque.
Abstract:
An electro-hydraulic power steering apparatus for an environment-friendly vehicle and a method of controlling the same is provided. In particular, a gear box assists in a steering force of a steering wheel, and a reservoir tank stores hydraulic oil therein. An electro-hydraulic power pump pumps the hydraulic oil via an electric motor to supply the hydraulic oil to the gear box. A first valve is mounted to a hydraulic line through which the hydraulic oil flows from the electro-hydraulic power pump to the gear box, and a second valve is mounted to a hydraulic line through which the hydraulic oil returns from the gear box to the reservoir tank.
Abstract:
An internal gear pump has a first port opening into pumping chambers and provided at one side with respect to a first axis interconnecting a confinement portion of the pumping chambers having a maximum volumetric capacity and a deeply-meshed-engagement portion of the pumping chambers having a minimum volumetric capacity, a second port opening into the pumping chambers and provided at the opposite side with respect to the first axis, a first pressure introduction passage intercommunicating the first port and a first-port side area of a clearance space defined on an outer periphery of an outer rotor, and a second pressure introduction passage intercommunicating the second port and a second-port side area of the clearance space. The clearance space of a direction of a second axis perpendicular to the first axis is dimensioned to be greater than the clearance space of a direction of the first axis.
Abstract:
A compact and inexpensive fluid pressure operated torque amplifier and a power steering system incorporating such torque amplifier to eliminate the need for a separate return fluid conduit. The power steering system (10) includes a fluid pressure operated torque amplifier (12), a reduction gear unit (16) disposed within a cavity (53) of a transmission casing (14), and a steering linkage (20) for wheels. The torque amplifier includes a control valve assembly (24) disposed in a housing (22), a torque amplifier unit (32), a high torque drive shaft (58) and an output shaft (54). The output shaft of the torque amplifier serves as an input member of the reduction gear unit. The torque amplifier also includes a pressurized fluid inlet (78) provided in the housing and a return fluid outlet (61) provided in the output shaft (54), both the inlet and outlet being in communication with the cavity of the transmission casing.