Abstract:
A method of fighting a fire drives a first fire-extinguishing liquid from at least one spray head or sprinkler at a fire with a low-pressure pump. Thereafter it drives a second fire-extinguishing liquid from a liquid container and the spray head or sprinkler at the fire with a first propellant gas from at least one gas container, at least some of the first propellent gas remaining in the gas container after all of the second fire-extinguishing liquid has been driven from the liquid container. Still thereafter it again drives the first fire-extinguishing liquid from the spray head or sprinkler at the fire with the low-pressure pump, the low-pressure pump being driven by the first propellant gas that was remaining in the gas container.
Abstract:
An embodiment of the present invention includes an advanced adjustable density misting delivery system (AMDS) for detecting and neutralizing a fire. The AMDS includes a bladder containing a fire suppressant material, a pump operatively connected to the bladder via a tube, and a nozzle operatively connected to the pump and the bladder via the tube. The AMDS also includes a controller electrically connected to the pump and a sensor in communication with the controller, where the sensor is configured to detect a parameter that indicates the presence of the fire. The controller is configured to transition the pump from a deactivated state to an activated state when the sensor detects the parameter, such that in the deactivated state the pump does not operate, and in the activated state the pump causes the fire suppressant to flow from the bladder, through the tube, and out the nozzle.
Abstract:
An improved fire extinguishing system is proposed which uses both water and a fire extinguisher chemical. When a fire alarm senses an abnormally high temperature, a fire extinguisher will be sprinkled first. Only if this fails to extinguish the fire, water will be sprinkled from the water nozzle. This prevents damage of overdischarge of water. There is no fear of water spreading a fire caused by a flammable liquid.
Abstract:
A wireless system network for managing GPS-tracked stationary spraying systems and GPS-tracking mobile spraying systems deployed on a wireless communication network for supporting the defense of property against wildfires. Each GPS-tracking spraying system includes an electronic circuit or device for (i) automatically tracking the spraying of property with environmentally-clean anti-fire (AF) liquid contained in a storage tank, (ii) automatically monitoring the level of environmentally-clean anti-fire liquid in the storage tank, and (iii) generating and transmitting electronic signals to a remote center so that a service can automatically replenish the storage tank of the GPS-tracking spraying system when the level of environmentally-clean anti-fire liquid falls below a predetermined level in the storage tank. This ensures the systems are ready to spray environmentally-clean anti-fire liquid on property before the incidence of wildfire in a proactive manner.
Abstract:
The invention relates to an inert gas fire-extinguishing system for reducing the risk of and extinguishing fires in a protected room. So as to have the inerting of the protected room ensue according to different variable sequences of events, the inert gas fire-extinguishing system includes a pressure-reducing device having at least two parallel branches, wherein each parallel branch has a pressure-reducing mechanism. Each parallel branch is connectable to a high-pressure collecting line and a low-pressure extinguishing line via a controllable valve, whereby each pressure-reducing mechanism is designed to reduce a high input pressure to a low output pressure according to a known pressure-reducing characteristic curve.
Abstract:
The present invention describes systems and methods which provide a moisture barrier that douses or diffuses buoyant burning debris, particularly hot embers, from a bush and/or brush fire (e.g., wildfires). By strategic placement of the devices and/or apparatus as disclosed, a method of preventing the destruction of dwellings and roof-containing structures by exploiting heat convection is provided.
Abstract:
The present invention relates to a concrete structure for constructing a building floor and a building floor construction structure including the same. The present invention provides a concrete structure for constructing a building floor which forms a building floor foundation, including: a concrete main body to store fire-extinguishing water for fire suppression; and a fire-extinguishing water injection unit to inject the fire-extinguishing water stored in the concrete main body, and a building floor construction structure including the same. According to the present invention, the concrete structure for forming a building floor stores fire-extinguishing water, and thus early fire suppression is possible, building floor construction is facilitated, and excellent inter-floor sound insulation properties are provided.
Abstract:
A system for fighting a fire includes a plurality of containers containing liquid nitrogen. Thermally activated release mechanisms are each connected to one of the containers. Each thermally activated release mechanism is configured to release the liquid nitrogen from a connected container when a predetermined safety threshold temperature is reached, so that the released liquid nitrogen produces an expanding volume of cold nitrogen vapor. A central storage container stores liquid nitrogen. The central storage container is connected to each of the plurality of containers. A sensor system activates refilling of a respective container with liquid nitrogen from the central storage container when the amount of liquid nitrogen in the respective container is below a predetermined threshold.
Abstract:
A building fire escape system, comprising an auxiliary descending device, the auxiliary descending device being a sliding pole (6) or a spiral chute (6′), and at least one refuge chamber, the refuge chamber being a fireproof spatial structure integrated with the building. The inside of the refuge chamber is divided into a first space (2) and a second space (3) by fire partitions (1, 4). The first space (2) communicates with the interior space of the building. The second space (3) communicates with the exterior space of the building. The fire partition (4) is provided with a fireproof door (11) connecting the first space with the second space. Any two neighboring refuge chambers are interconnected. The fire partition is provided with an observation window (12). The first space and the second space are provided with an air supply pipe (14) and an air exhaust pipe (15). Disposed at the top of the refuge chamber is a water tank (16) connected to the fire main pipe (17). Drencher devices (9) are disposed in the first space.
Abstract:
The present invention describes systems and methods which provide a moisture barrier that douses or diffuses buoyant burning debris, particularly hot embers, from a bush and/or brush fire (e.g., wildfires). By strategic placement of the devices and/or apparatus as disclosed, a method of preventing the destruction of dwellings and roof-containing structures by exploiting heat convection is provided.