Abstract:
In certain embodiments, a valve assembly can comprise a housing, a valve body and a nozzle. The housing can define a first inlet and a second inlet. The valve body can be positioned within the housing and configured to rotate between a first position for a first fuel type and a second position for a second fuel type different from the first. A control knob is operatively coupled to the valve body and to an air shutter such that rotation of the control knob controls the state of the valve body and the position of the air shutter.
Abstract:
In certain embodiments, an apparatus can comprise a dual fuel pilot assembly. The pilot assembly can comprise a first fuel dispenser, a second fuel dispenser, an igniter and at least one of a thermocouple, and a thermopile. The pilot assembly can be configured to direct heat from combustion of one of either a first fuel or a second fuel to the at least one of the thermocouple and the thermopile.
Abstract:
In certain embodiments, an apparatus can comprise a dual fuel pilot assembly. The pilot assembly can comprise a first fuel dispenser, a second fuel dispenser, an igniter and at least one of a thermocouple, and a thermopile. The pilot assembly can be configured to direct heat from combustion of one of either a first fuel or a second fuel to the at least one of the thermocouple and the thermopile.
Abstract:
A cooking appliance equipped with at least one regulating valve having a rotary regulator organ. The rotary regulator organ has an actuating shaft a plurality of peripheral openings adapted for regulating a flow of gas through the regulating valve. In a first angular position the rotary regulator organ is adapted to supply a constant flow Qmin of a first type of fuel through a first peripheral opening. In a second angular position, successive to the first angular position, the rotary regulator organ is adapted to supply a constant flow Qmin of a second type of fuel through a second peripheral opening. In one implementation a feature that rotates with the actuating shaft is adapted to engage a feature on the cooking appliance to limit the rotation of the rotary regulator organ to the first angular position.
Abstract:
A gas switch capable of adjusting fire intensity finely includes a gas switch capable of adjusting fire intensity finely, comprising a switch body inside which a guide is installed, a valve set that revolves inside the switch body and includes a hollow valve and a pilot valve moving elastically through the valve, a drive component installed inside the switch body, which contains a rotating rod that can move along and rotate round the same shaft of the valve set, a guide rod placed on the rotating rod and leaning on the guide, a regulating block installed movably at one end of the rotating rod and leaning against the pilot valve, and a connecting component for linking the drive component with the valve set flexibly.
Abstract:
The cooking appliance (1) having a control panel (2) is equipped with one or more gas flow (Q) regulating valves, wherein the rotary regulating plug (6) is provided with various peripheral through holes (16-19). The control knob (9) being interchangeable for fitting to the actuating shaft (7), is chosen from the two units available, one and the other permitting different angular limit positions of the regulating plug (6) for the supply of a constant minimum gas flow Qmin, adjusted each one for a different type of gas N gas or LP gas. The outlet conduit (5) of the valve is equipped with a further injector nozzle (21,23) for adjusting a constant gas flow Qmax to be fed into the conduit (25) of the correspondent burner, when the cooking appliance is supplied with a LP gas.
Abstract:
A gas regulating valve includes a valve housing. A tubular valve member is received in the valve housing, defines a valve space, and is formed with a valve seat. The valve seat defines a valve opening, and divides the valve space into a gas feed portion and a gas supply portion. A valve stem is provided with a valve piece that extends into and that is axially movable relative to the valve member. Rotation of the valve stem results in corresponding rotation of the valve member and further results in translation of the valve piece. Translation of the valve piece toward and away from the valve opening enables the valve piece to respectively reduce and increase amount of gas flowing from the gas feed portion into the gas supply portion through the valve opening.
Abstract:
A three position retaining valve wherein a slide in a rotating valve element has a seal which controls the connection of the inlet to the outlet for only one of three passages in the valve element. Preferably, the body, handle, valve element and slide are plastic and the handle and valve elements are unitary. The valve element is retained in the body by a flanged retaining ring and snap ring. The flanged retaining ring also retains a stop for the slide in the valve element. The handle includes a race and recesses cooperating with a stop and detent respectively on the body for the three positions.
Abstract:
An apparatus and method for controlling damping force characteristics of respective vehicular shock absorbers in which vehicular vertical behavior(s) at the position(s) of the vehicular body which are forward by a predetermined distance from a tread of rear left and right road wheels are determined, the positions including front left and right road wheel sides, and corresponding vertical behavior signals are derived. Control signals for front left and right and rear left and right road wheel side shock absorbers are formed on the basis of respective processed signals having frequency-dependent characteristics formed from the vehicular behavior signal(s). The damping force characteristics of front left and right road wheel side shock absorbers are controlled on the basis of the control signals formed on the basis of the processed signal based on the front left and right road wheel vehicular behavior signals. Those of rear left and right road wheel side shock absorbers are controlled on the basis of the control signals formed on the basis of the processed signals based on the front position vehicular vertical behavior signal at the position forward from the tread between the rear left and right road wheels. The phases of the control signals V are generally matched with vehicular behavior velocity signals which would actually be generated at rear road wheel arranged positions of the vehicle.
Abstract:
A fuel control device, system using the device and method of making the same are provided, the device comprising a housing having a passage therethrough for interconnecting a fuel source with a main burner, a throttle valve unit disposed in the passage for throttling fuel flow through the passage to the burner, and a selector operatively interconnected to the throttle valve unit to operate the same, the throttle valve unit comprising a pair of members one of which is substantially stationary and the other of which is rotatable relative to the one member, the one member having a face and having an aperture interrupting the face thereof and passing therethrough, the other member having a face disposed in sliding engagement with the face of the one member for controlling the effective opening of the aperture for fuel flow therethrough, the selector being operatively interconnected to the other member to rotate the same relative to the one member and thereby control the flow of fuel through the passage, the other member having an opening interrupting the face thereof and being adapted to overlap the aperture in various positions therewith for controlling fuel flow therethrough, the other member comprising a plug valve member.