Abstract:
The present invention is directed to nanoparticulate active agent compositions comprising lysozyme as a surface stabilizer. Also encompassed by the invention are pharmaceutical compositions comprising a nanoparticulate active agent composition of the invention and methods of making and using such nanoparticulate and pharmaceutical compositions.
Abstract:
The present invention provides a nanostructured device comprising a substrate including nanotroughs therein; and a lipid bilayer suspended on or supported in the substrate. A separation method is also provided comprising the steps of supporting or suspending a lipid bilayer on a substrate; wherein the substrate comprises nanostructures and wherein the lipid bilayer comprises at least one membrane associated biomolecule; and applying a driving force to the lipid bilayer to separate the membrane associated biomolecule from the lipid bilayer and to drive the membrane associated biomolecule into the nanostructures.
Abstract:
The present invention is directed to nanoparticulate active agent compositions comprising lysozyme as a surface stabilizer. Also encompassed by the invention are pharmaceutical compositions comprising a nanoparticulate active agent composition of the invention.
Abstract:
The present invention provides a nonostructured device comprising a substrate including nanotroughs therein; and a lipid bilayer suspended on or supported in the substrate. A separation method is also provided comprising the steps of supporting or suspending a lipid bilayer on a substrate; wherein the subtrate comprises nanostructures and wherein the lipid bilayer comprises at least one membrane associated biomolecule; and applying a driving force to the lipid bilayer to separate the membrane associated biomolecule from the lipid bilayer and to drive the membrane associated biomolecule into the nanostructures. A fluidic device for separating particles according to size is provided including a fluidic channel, and a matrix comprising a plurality of protrusions within the fluidic channel, wherein the device provides a driving force to the particles being separated through the fluidic channel; and wherein a flow of the driving force from between the protrusions is divided unequally into a major flow component and a minor flow component, each component flowing between subsequent protrusions in the matrix, such that the average direction of the major flow component is not parallel to the average direction of the driving force, and, when particles are introduced into the matrix, particles having a size less than a predetermined critical size are transported generally in the average direction of the driving force, and particles having a size at least that of the critical size are transported generally in the average direction of the major flow component, thereby separating the particles according to size. Methods for separating particles including steps of separation based on size and affinity are also provided.
Abstract:
Disclosed herein are compositions, methods, and devices related to bilayer and monolayer membranes, their encapsulation in a hydrogel, and their formation. Methods of using the disclose compositions and devices are also disclosed.
Abstract:
The present invention is directed to nanoparticulate active agent compositions comprising lysozyme as a surface stabilizer. Also encompassed by the invention are pharmaceutical compositions comprising a nanoparticulate active agent composition of the invention and methods of making and using such nanoparticulate and pharmaceutical compositions.
Abstract:
The present invention provides a nanostructured device comprising a substrate including nanotroughs therein; and a lipid bilayer suspended on or supported in the substrate. A separation method is also provided comprising the steps of supporting or suspending a lipid bilayer on a substrate; wherein the substrate comprises nanostructures and wherein the lipid bilayer comprises at least one membrane associated biomolecule; and applying a driving force to the lipid bilayer to separate the membrane associated biomolecule from the lipid bilayer and to drive the membrane associated biomolecule into the nanostructures.
Abstract:
The present invention is directed to nanoparticulate active agent compositions comprising lysozyme as a surface stabilizer. Also encompassed by the invention are pharmaceutical compositions comprising a nanoparticulate active agent composition of the invention and methods of making and using such nanoparticulate and pharmaceutical compositions.
Abstract:
The present invention is directed to nanoparticulate active agent compositions comprising lysozyme as a surface stabilizer. Also encompassed by the invention are pharmaceutical compositions comprising a nanoparticulate active agent composition of the invention and methods of making and using such nanoparticulate and pharmaceutical compositions.
Abstract:
Solid Lipid Nanoparticles of platinum compounds, particularly of antitumor platinum complexes are disclosed. The Nanoparticles of the invention are obtained by a process comprising: a) preparing a first microemulsion by mixing a molten lipid, a surfactant, and optionally a co-surfactant and the platinum compound acqueous solution; b) preparing a solution by mixing a surfactant and optionally a co-surfactant in water, heating to complete solution, preferably at the same melting temperature of the lipid used in a) and adding a co-surfactant; c) dispersing the microemulsion obtained in a) into the solution obtained in b) obtaining a multiple microemulsion c); d) dispersing the microemulsion obtained in c) in aqueous medium at a temperature ranging from 0.5° C. to 4° C. obtaining a dispersion of solid lipid microspheres; e) washing with aqueous medium through ultrafiltration the obtained lipid microspheres obtained in d) and lyophilizing, optionally in the presence of a bulking agent and of a cryoprotecting agent.