Abstract:
The rate of degradation of a cooked food product that is maintained at an elevated temperature can be reduced by the use of an encapsulated environment food holder. The encapsulated environment is a small, airtight or semi-airtight containment vessel that retains compositions that escape from a cooked food product over time. The volume of an encapsulated environment is greater than one hundred percent but less than one-thousand percent of the cooked food product volume. By holding single servings or portions of a cooked food product in a small, encapsulated environment palatability or taste of a cooked food product can be extended.
Abstract:
Solar heat collector, especially an evacuated-tube solar heat collector, filled with first solid heat storage and conducting material transfers the solar heat to an electric power heat insulated utensil through second heat conducting/transferring material for cooking foods and making coffee/tea. A set of solar cooking appliance having a solar heat collector filed with a first solid heat storage and conducting material and a solar cooking range filled with third solid heat storage and conducting material. The solar cooking range having a heat insulated enclosed compartment and also having a cooktop. The cooking range having a set of cooking chambers which are in thermal contact with the first and second heat storage and conducting material for cooking food therein. The cooking appliance also has a group of removable parts that cover the cooking chambers separately. An electric power heater provides a backup energy source and electric heat storage.
Abstract:
A two-axis tracking solar cooking system includes a sunlight concentrator, a two-axis solar tracker, sunlight reflectors, an enclosure, an oven or a stove, and other components. The 90-degree offset parabolic reflector has very long focal length so that all concentrated sunlight will enter the oven through a small window at the focal point of the 90-degree offset parabolic reflector. The elevation rotation axis goes through the focal point so that the oven will remain at the same horizontal level all the time. The concentrated sunlight makes it easy to achieve needed cooking temperature. The two-axis tracking design eliminates the need of frequent adjustment. The 90-degree offset design permits having the oven under shade, so that people do not have to expose themselves to sunlight to do solar cooking. The enclosure significantly reduces the risk of burns and fires. It also makes it very easy to control the cooking process.
Abstract:
A passive solar heating unit is disclosed, including a portable heater version of the invention that includes an insulated shell structure, an inclined, vertically shaped window formed within the structure, an insulated door to the structure, a handle, and two operating positions, one for summer and one for winter. The heating unit has a dark exterior to absorb heat and a reflective interior to trap sunlight entering through the window. When used to generate heat sufficient to heat food and other items, the ratio of the interior volume of the unit to the size of the sunlight window is approximately 16:1. Other configurations, for providing heat in other applications, utilize different volume to window size ratios and different shaped windows.
Abstract:
Invented is a solar smelter that also manufactures hot air or hot fluids. A curved parabolic-half-shell focuses the sun's rays unto a crucible, which is buried into the ground. Using a heliostat, the sunlight is reflected horizontally unto an interior reflective wall of the curved parabolic-half-shell. Surrounding the crucible is a thermal-mass with embedded pipes, that manufacture hot and compressed air, or heated gas or fluid. On top of the thermal-mass is a clear transparent-and-insulating-glazing that captures any stray solar rays, adding heat to the thermal-mass. At the foci of the parabolic-half-shell is a crucible for melting rocks, sand, glass or metals, or processing chemicals.
Abstract:
A precipitation (e.g., rain, snow, sleet, etc.) harvesting apparatus 3000 comprising a basic storage chamber or cistern 3002, which comprises an open vessel 3003 (such as a children's inflatable pool) and an optional primary catchment membrane 3004 which is placed over and attached to the open vessel 3003 to form the storage chamber 3002. An optional extended membrane 3005 is shown extending upward and away from vessel 3003 and is shown optionally supported by optionally inflatable or collapsible support tubes 3006 which are in turn fastened to the ground 3008 or other surface on which the apparatus 3000 is resting using tie lines, cables, strings and/or the like 3010 which are attached to ground stakes 3012. A liquid dispensing conduit 3014 is shown connected to and leading away from the storage vessel 3003 for draining harvested rainwater or other liquid 3016 contained within the storage chamber. The apparatus also includes a filter 3018 located, for example, in proximity to the center of the catchment membrane 3004, wherein the membrane has an opening or port 3017 optionally located in proximity to the center of the membrane 3004.
Abstract:
Melting metals using solar energy is not new, but is new is making the technology ergonomic, and easy to use. Invented is a half-shell-parabolic-dish reflector, which has in front an adjustable flat planar reflector. When the sun is overhead, the sunlight reflects off the flat planar reflector to a half-shell-parabolic-dish, which redirects the light to a crucible for smelting metals, which is also the focus of the sunlight. The entire assembly rotates on top of a turntable, which can be steel wheel, floating on compressed air, bicycle wheels, or other suitable methods. The entire assembly rotates about a crucible located at the focal of the sun's rays. A smaller version of the smelter can be used for solar cooking.
Abstract:
This invention provides a unique Solar/Electromagnetic Energy Cell, Solar/Electromagnetic Energy Collector which can be used to harness solar energy, Solar Lamp which provides light from the output provided by Energy Collector/Cell, Solar Heating Element which can provide energy for cooking food, water heater, room heater or any heating application.
Abstract:
Positioning a radiation collection device such as a solar oven using a positioning system attached to an outside of a building structure. The positioning system allowing the collection device to be positioned in a plurality of locations where at least one of the plurality of locations is away from the building structure to allow the radiation collection device to collect solar radiation.
Abstract:
A two-axis tracking solar concentrator system includes a sunlight concentrator, a Fresnel lens, a two-axis solar tracker, sunlight reflectors, an enclosure, a sunlight conversion device, and other components. The lens has very long focal length so that all concentrated sunlight will enter the sunlight conversion device through a small window. The elevation rotation axis goes through the focal point so that the sunlight conversion device will remain at the same horizontal level all the time. The concentrated sunlight makes it easy to achieve a needed temperature. The two-axis tracking design eliminates the need of frequent adjustment. An offset design permits having the sunlight conversion device under shade, so that people do not have to expose themselves to sunlight to do solar cooking. The enclosure significantly reduces the risk of burns and fires. It also makes it very easy to control the heating or cooking process.