Abstract:
A CCE+ number allocation method reduces the ACK/NACK (Acknowledgment/Negative Acknowledgment) collision probability in a mixed system containing an LTE (Long Term Evolution) system and an LTE+ (Long Term Evolution Advanced) system. A CCE (Control Channel Element)+ number is defined by selecting a number from CCE numbers of the CCE to contain PDCCH (Physical Downlink Control Channel) allocated in a resource element region constituting CCE+ where PDCCH+ is arranged. This can prevent overlapped selection of the CCE number and the CCE+ number even when the PDCCH and the PDCCH+ are simultaneously transmitted, thus making it possible to reduce the collision probability of ACK/NACK correlated to the CCE number and the CCE+ number.
Abstract:
Technology for reducing interference in collocated radios is disclosed. One method comprises logging transmit/receive information from a Bluetooth radio and an OFDMA radio for a repeating Tx/Rx pattern. Data collisions between the radios are identified. A persistent reservation is requested in the OFDMA radio for collisions in the repeating Tx/Rx pattern. A repeating Bluetooth Tx/Rx pattern is derived from the logged data and the collision data. Bluetooth radio communication is accomplished using the Bluetooth Tx/Rx pattern.
Abstract:
Disclosed is a method and apparatus for collision avoidance in a sensor network. The method includes transmitting data by a transmitter; comparing, by the transmitter, a remaining time between the data transmission and a backoff period with a turnaround time taken for the transmitter to switch from a transmit (Tx) mode to a receive (Rx) mode; selectively transmitting, by the transmitter, a busy signal indicating that a channel is in use, according to the comparison result; and receiving, by the transmitter, an acknowledgement (ACK) signal from a receiver after the turnaround time has elapsed.
Abstract:
A master electronic circuit (300) includes a storage (324) representing a wireless collision avoidance networking process (332) involving collision avoidance overhead and combined with a schedulable process (345) including a serial data transfer process and a scheduler, a wireless modem (350) operable to transmit and receive wireless signals for the networking process (332), and a processor (320) coupled with the storage (324) and with the wireless modem (350) and operable to execute the scheduler to establish and transmit a schedule (110) for plural serial data transfers involving the processor (320) and distinct station identifications, and to execute the serial data transfers inside the wireless networking process and according to the schedule so as to avoid at least some of the collision avoidance overhead. Other electronic circuits, processes of making and using, and systems are disclosed.
Abstract:
Disclosed is a method and apparatus for collision avoidance in a sensor network. The method includes transmitting data by a transmitter; comparing, by the transmitter, a remaining time between the data transmission and a backoff period with a turnaround time taken for the transmitter to switch from a transmit (Tx) mode to a receive (Rx) mode; selectively transmitting, by the transmitter, a busy signal indicating that a channel is in use, according to the comparison result; and receiving, by the transmitter, an acknowledgement (ACK) signal from a receiver after the turnaround time has elapsed.
Abstract:
A method of TDM in-device coexistence (IDC) interference avoidance is proposed. In a wireless communication device, a first radio module is co-located with a second radio module in the same device platform. The first radio module obtains traffic and scheduling information of the second radio module. The first radio module then determines a desired TDM pattern based on the traffic and scheduling information to prevent IDC interference with the second radio module. The first radio module also transmits TDM coexistence pattern information based on the desired TDM pattern to a base station. In one embodiment, the TDM coexistence pattern information comprises a recommended TDM pattern periodicity and a scheduling period to maximize IDC efficiency subject to limited level of IDC interference possibility. In one specific example, the TDM coexistence pattern information comprises a set of discontinuous reception (DRX) configuration parameters defined in long-term evolution (LTE) 3GPP standards.
Abstract:
A master electronic circuit (300) includes a storage (324) representing a wireless collision avoidance networking process (332) involving collision avoidance overhead and combined with a schedulable process (345) including a serial data transfer process and a scheduler, a wireless modem (350) operable to transmit and receive wireless signals for the networking process (332), and a processor (320) coupled with the storage (324) and with the wireless modem (350) and operable to execute the scheduler to establish and transmit a schedule (110) for plural serial data transfers involving the processor (320) and distinct station identifications, and to execute the serial data transfers inside the wireless networking process and according to the schedule so as to avoid at least some of the collision avoidance overhead. Other electronic circuits, processes of making and using, and systems are disclosed.
Abstract:
Disclosed is a CCE+ number allocation method which reduces the ACK/NACK (Acknowledgment/Negative Acknowledgment) collision probability in a mixed system containing an LTE (Long Term Evolution) system and an LTE+ (Long Term Evolution Advanced) system. A CCE (Control Channel Element)+ number is defined by selecting a number from CCE numbers of the CCE to contain PDCCH (Physical Downlink Control Channel) allocated in a resource element region constituting CCE+ where PDCCH+ is arranged. This can prevent overlapped selection of the CCE number and the CCE+ number even when the PDCCH and the PDCCH+ are simultaneously transmitted. Thus, it is possible to reduce the collision probability of ACK/NACK correlated to the CCE number and the CCE+ number.
Abstract:
Detecting local cell identifier collision by a base station may be achieved by receiving, at a first base station from a user device, a dedicated identifier associated with a second base station. The dedicated identifier may include or otherwise map to a user device identifier associated with the second base station and a local cell identifier associated with the second base station. Based on the dedicated identifier, it may be determined, at the first base station, that there is a local cell identifier collision between the first base station and the second base station.
Abstract:
Detecting local cell identifier collision by a base station may be achieved by receiving, at a first base station from a user device, a dedicated identifier associated with a second base station. The dedicated identifier may include or otherwise map to a user device identifier associated with the second base station and a local cell identifier associated with the second base station. Based on the dedicated identifier, it may be determined, at the first base station, that there is a local cell identifier collision between the first base station and the second base station.