Abstract:
An image forming apparatus having a recording head with a plurality of printing elements comprising: a first quantization unit that performs a first quantization process on input image data to calculate N-level data by using a screen parameter corresponding to a screen condition of a target device; a conversion unit that converts the N-level data to M-level data (M>N); a configuring unit that configures printing density for each of the printing elements for each scan, using the M-level data; a second quantization unit that performs a second quantization process on the printing density for the scan of interest, using constraining information for the scan of interest; and a generating unit that generates the constraining information for the scan of interest, from the printing density configured for the preceding scan and the result of the second quantization process for the preceding scan.
Abstract:
An image forming apparatus includes a recording head including a plurality of printing elements each of which offsets at least in a auxiliary-scanning direction one another and ejects droplets toward a recording medium. The image forming apparatus further includes a main scanning unit configured to scan the recording head, relative to the recording medium, in a main scanning direction perpendicular to the auxiliary-scanning direction. The image forming apparatus still further includes a auxiliary-scanning unit configured to scan the recording head, relative to the recording medium, in a main scanning direction perpendicular to the auxiliary-scanning direction. The image forming apparatus still yet further includes a controller configured to control the printing head, the main scanning unit and the auxiliary-scanning unit to form dots in rows arranged in the auxiliary-scanning direction at a first predetermined interval, and columns arranged in the main scanning direction at a second predetermined interval while performing main scans and sub-scans repeatedly. The controller controls the printing head, the main scanning unit and the auxiliary-scanning unit to form first dots in an area of the printing medium at first alternate columns by a first main scan, and to form second dots in the area by a second main scan at second alternate columns different from the first alternate columns. The second dots are shifted, relative to the first dots, a first predetermined distance smaller the first predetermined interval.
Abstract:
An image recording apparatus records an image on a recording medium by causing a recording head having an arrangement of a plurality of recording elements to conduct its main scanning for the recording medium interrelatedly in the direction opposite to the arrangement of the recording elements. The apparatus comprises a setting device to set the number of main scannings by the recording head; a main scanning device to perform recording by plural numbers of main scannings with respect to one pixel by causing the recording head to conduct its main scannings for the same recording area of the recording medium in accordance with the number set by the setting device; and a sub-scanning device to cause the recording head and the recording medium to be sub-scanned interrelatedly per main scanning in an amount smaller than the width of the arrangement of the recording elements of the recording head. Hence, even if a disabled ejection occurs in one scanning at the time of recording by a multi-scanning, the missing dot is complemented by the following scan to make it possible to obtain an image having no image defects at all times.
Abstract:
A multiple resolution imaging system employs an array of imaging devices each tracing a helical pattern on a recording medium. The imaging devices may be activated sequentially along multiple interlaced helical paths to allow a selectable image resolution with reduced imaging artifacts.
Abstract:
The present invention provides a solid state image sensor, an image scanner, and an image scanning program which realize substantial shortening of the total scan time of one screen of an original even if a required time for one cycle of processings is not shortened. In order to achieve this object, a solid state image sensor of the present invention includes: two or more linear arrays of photosites in which plural photosites for accumulating charge according to incident light are closely and one-dimensionally arranged in one direction; and a transfer part for transferring array by array the charge accumulated in each of the photosites of these two or more linear arrays, in which the two or more linear arrays of photosites are closely arranged in a direction perpendicular to the one direction in a rectangular region which is long in the one direction.
Abstract:
An image forming method for a color dot matrix printer prevents image quality from being deteriorated at the boundary between two nearby image areas which are developed by consecutive main scans. A paper is fed in a subscan direction by an amount which is one half of the width of a plurality of deflection steps, which is covered by one main scan, thereby developing an overlapping print area. The overlapping print area is subdivided at desired one of the deflection steps either column by column or color by color, an image segment in each of the resulting subregions being printed out by one of consecutive main scans.
Abstract:
An image processing apparatus includes a storage and processing circuitry. The storage is configured to store a dither table in which a plurality of dither patterns are recorded, each of the dither patterns being formed with a halftone dot screen in which an output area ratio that is a proportion of void halftone dots per unit area corresponds to any one of gradation values of image data. The processing circuitry is configured to read a gradation value for each region in image data input for each toner color, decide a dither pattern to be applied to the read gradation value, read out the decided dither pattern from the dither table, and perform dither processing of applying the read dither pattern to the region in the image data.
Abstract:
An image forming apparatus having a recording head with a plurality of printing elements comprising: a first quantization unit that performs a first quantization process on input image data to calculate N-level data by using a screen parameter corresponding to a screen condition of a target device; a conversion unit that converts the N-level data to M-level data (M>N); a configuring unit that configures printing density for each of the printing elements for each scan, using the M-level data; a second quantization unit that performs a second quantization process on the printing density for the scan of interest, using constraining information for the scan of interest; and a generating unit that generates the constraining information for the scan of interest, from the printing density configured for the preceding scan and the result of the second quantization process for the preceding scan.
Abstract:
In order to form a high-quality image, upon execution of multi-pass printing using a printing head with a plurality of nozzles, an image processing apparatus calculates, using a scan duty setting unit (105), scan duty data for respective nozzles for each scan of the printing head in accordance with input image data. A halftone processor (108) generates a dot pattern to be formed by applying N-ary processing based on predetermined constraining condition information to the calculated scan duty data. A constraining condition information calculation unit (111) generates constraining condition information to be referred to by the halftone processor (108) at the time of the next scan. The constraining condition information is set so that the phase of a next dot pattern to be generated has an opposite phase relationship in a low frequency region with respect to the already printed dot pattern.
Abstract:
An image recording apparatus records an image on a recording medium by causing a recording head having an arrangement of a plurality of recording elements to conduct its main scanning for the recording medium interrelatedly in the direction opposite to the arrangement of the recording elements. The apparatus comprises a setting device to set the number of main scannings by the recording head; a main scanning device to perform recording by plural numbers of main scannings with respect to one pixel by causing the recording head to conduct its main scannings for the same recording area of the recording medium in accordance with the number set by the setting device; and a sub-scanning device to cause the recording head and the recording medium to be sub-scanned interrelatedly per main scanning in an amount smaller than the width of the arrangement of the recording elements of the recording head. Hence, even if a disabled ejection occurs in one scanning at the time of recording by a multi-scanning, the missing dot is complemented by the following scan to make it possible to obtain an image having no image defects at all times.