Abstract:
A high voltage pulse power delivery system is provided that includes dedicated safety features including fault detection and fault management. Alongside normal communications cabling, the pulse power delivery system provides remote power over standard multi-conductor cabling without dedicated conduit or separation. This simplifies installation of equipment, increases overall speed of deployment, and significantly reduces cost for deployment. The pulse power delivery system is further configured to transport power through a pulse current waveform.
Abstract:
Amplification of a signal by a small circuit size and reduction of a power are achieved.A current controlling current source unit 53 changes an outputting current based on a transition time setting signal tp. A current controlling current source unit 54 changes a drawing current based on a transition time setting signal tn. An amplitude control unit 55 changes a power source voltage supplied to the current controlling current source unit 53 and changes amplitude of a voltage generated by a current outputted from the current controlling current source unit 53, based on amplitude setting signal ap. An amplitude control unit 56 changes a power source voltage supplied to the current controlling current source unit 54 and changes amplitude of a voltage generated by the current drawn by the current controlling current source unit 54, based on amplitude setting signal an. The buffer unit 57 drives a load in accordance with the current outputted from the current controlling current source unit 53 and the current drawn from the current controlling current source unit 54.
Abstract:
An apparatus is configured to provide a voltage rising at the output with a programmable slew rate. The apparatus comprises a ramp-up control circuit module for supplying an increasing output voltage that is output to a load circuit. The ramp-up control circuit comprises an amplifier that receives the output of a plurality of selectable mirrored current sources that build up voltage across a capacitor for programming a selected linear slew rate for the increasing output voltage. The apparatus further comprises a glitch filter circuit for stabilizing the increasing output voltage so as to minimize glitches, including current and voltage stress, in the output voltage.
Abstract:
The present application discloses trapezoidal fire pulse generating methods and devices. According to the devices and methods of the present application, the voltage value of the positive DC control voltage signal, the voltage value of the negative DC control voltage signal, the voltage value of the rise-time DC control voltage signal and a fall-time DC control voltage signal can be determined according to the parameter values of a trapezoidal fire pulse required to be output. Thus, corresponding DC control voltage signals can be generated. Further, the positive DC control voltage signal and the negative DC control voltage signal can be modulated to a square-wave pulse. Then, the rise-time DC control voltage signal, the fall-time DC control voltage signal and the square-wave pulse can be input to a inverse integrator so as to generate a trapezoidal fire pulse. Since there are specific quantitative relations between the rise time and fall time of the trapezoidal fire pulse and the voltage values of the rise-time and fall-time DC control voltage signals, the corresponding rise time and fall time of the trapezoidal fire pulses can be accurately controlled and adjusted so that the output trapezoidal fire pulses can be more stable and accurate.
Abstract:
A PWM control circuit is disclosed. An oscillator generates a triangular signal, received by a limit signal generator to produce a limit signal accordingly. Corresponding to a rising period of the triangular signal, the limit signal sequentially experiences a first holding period, a rising period and a second holding period, wherein the limit signal has a first predetermined value during the first holding period and a second predetermined value during the second holding period. A compare/control circuit compares the limit signal with a detection signal corresponding to a current through a power switch, and controls the power switch accordingly.
Abstract:
A driving circuit for a capacitive load includes a driving signal generating unit that generates a driving signal for driving the capacitive load by using a pair of driving transistors. A power source voltage generating unit generates high-voltage and low-voltage power source voltages that are higher and lower, respectively, than the voltage of the driving signal and applies the voltages to collectors of the driving transistors. The power source voltage generating unit includes a pair of power source transistors and a capacitor. The low-voltage power source voltage is generated in an output side of the power-source transistor pair as a voltage that is in a voltage region lower than that of the driving signal and follows the driving signal. The high-voltage power source voltage is output from a high-voltage terminal of the capacitor, is in a voltage region higher than that of the driving signal, and follows the driving signal.
Abstract:
A trapezoid signal generating circuit has a charging and discharging circuit for a capacitor to generate a trapezoid signal which has less change at its rising portion and falling portion. Current output circuits supply a charging current and a discharging current in accordance with a voltage outputted from a current control circuit, respectively. The current control circuit has a charging and discharging circuit similar to the charging and discharging circuit, and produces an output voltage. This voltage increases in accordance with a linear function for a period from a time point when an input signal changes its level to a time point when the voltage reaches a reference voltage, and decreases thereafter in accordance with a linear function. The current flowing into the capacitor also increases and decreases in accordance with the linear function, so that the terminal voltage of the capacitor increases and decreases in accordance with a quadratic function.
Abstract:
A current control circuit controls a gate potential of a transistor to equalize a load current IL with a trapezoidal wave signal Sb. The trapezoidal wave signal Sb increases at a constant gradient when a drive command signal Sa turns into H level. Due to increase of load current IL, the transistor starts operating in a linear region and a gate voltage VGS abruptly increases. A saturation state detecting circuit turns a current saturation signal Sc into L level when the gate voltage VGS exceeds a reference voltage Vr. A trapezoidal wave generating circuit stops increase of trapezoidal wave signal Sb. When drive command signal Sa turns into L level, the trapezoidal wave signal Sb decreases at a constant gradient. The load current IL decreases according to reduction of trapezoidal wave signal Sb.
Abstract:
A segmented waveform generator comprising a plurality of ramp generators whose outputs are coupled to and summed in a summing circuit to provide a waveform having a desired harmonic content or shape. The ramp generators are triggered by the rising and falling edges of trigger pulses to provide symmetrical segmented waveforms.
Abstract:
An error amplifier receives an on/off signal and supplies an error signal to an integrator. The latter provides a ramp output, which is fed back to the error amplifier whereby the error signal therefrom further is dependent upon the ramp output. The error signal is selectively clamped positively and negatively whereby the resulting ramp output has a constant ramp time, with no ramp on/off delay.