Abstract:
A color temperature switching scheme for an LED lighting device is disclosed. The color temperature switching scheme comprises a plurality of different color temperature performances correspondingly generated by a plurality of different paired combinations of a first electric power allocated to a first LED load emitting a light with a first color temperature and a second electric power allocated to a second LED load emitting a light with a second color temperature such that a mingled color temperature between the first color temperature and the second color temperature can be generated thru a light diffuser. For tuning the mingled color temperature of the LED lighting device a reverse yet complementary power adjustment process for distributing a total electric power T between the first LED circuit and the second LED circuit is required such that a total light intensity remains unchanged while the mingled color temperature is being adjusted.
Abstract:
A method of a light color temperature switching control for an LED lamp includes using a first LED lighting load emitting a low color temperature light and a second LED lighting load emitting a high color temperature light, using a light diffuser covering the first LED lighting load and the second LED lighting load to create an effect of a mingled color temperature for the LED lamp, using a power switching circuitry to execute a power allocation algorithm to manage electric powers respectively delivered to the first LED lighting load and the second LED lighting load while keeping a total electric power delivered unchanged to control a diffused light with desired color temperatures. A light intensity of the LED lamp is also adjustable by keeping a ratio of electric power allocation between the first LED lighting load and the second LED lighting load without shifting the mingled color temperature.
Abstract:
A circuit and a method for detecting a current zero-crossing point, and a circuit and method for detecting a load voltage are disclosed. The circuit for detecting current zero-crossing point includes: a load power supply circuit (14), a voltage-dividing resistor (16), a transistor switch (15), a zero-crossing detection circuit (19); the load power supply circuit (14) includes: a load (11), a diode (13), and an inductor (12); one end of the load power supply circuit (14) is connected with the operating voltage input terminal, the other end of the load power supply circuit (14) is connected with a first end of the transistor switch (15) and a first end of the voltage-dividing resistor (16), a second end of the voltage-dividing resistor (16) and a second end of the transistor switch (15) are connected with the ground, the load voltage is controlled by the transistor switch (15), the voltage-dividing terminal of the voltage-dividing resistor (16) is connected to a signal input terminal of the zero-crossing detection circuit (19), the zero-crossing detection circuit (19) is used to determine whether the current of the diode (13) crosses zero to obtain the on time of the diode (13), and the circuit for detecting load voltage uses the on time of the diode (13) and the on time of the transistor switch (15) to obtain the load voltage. The circuits are simple, but with high detection efficiency and low cost.
Abstract:
A switching amplifier includes a plurality of cascade elements, each bridge circuit includes an inductive load coupled between a first leg terminal of one of the at least two leg circuits and a second leg terminal of another one of the at least two leg circuits. A first leg voltage of the first leg terminal have a phase shift relative to a second leg voltage of the second leg terminal, the phase shift is used for causing the inductive load to store electric energy and generating a minimum circulating current—I min or I min sufficient to effect conducting of a corresponding diode; each of the switches is configured to be turned on if the corresponding diode conducts current to effect zero voltage switching of the corresponding switch. The minimum circulating current—I min or I min is equal to a constant value.
Abstract:
A zero-crossing voltage detection circuit for detecting a phase voltage of a converter includes a comparator, a first transistor and a second transistor. The first transistor has a first base, a first collector and a first emitter. The first base couples with the first collector. The first emitter receives the phase voltage. The first collector provides a first voltage to a first terminal of the comparator. The second transistor has a second base, a second collector and a second emitter. The second base couples with the first base. The second base couples with the second collector. The second emitter receives a ground voltage. The second collector provides a second voltage to a second terminal of the comparator. The comparator compares the first voltage with the second voltage to generate a zero-crossing voltage signal.
Abstract:
An expansion control circuit includes a delay circuit coupled to a first expansion module and a switching circuit coupled to a second expansion module. The switching circuit includes a buffer and a switching module. The buffer is coupled to the first expansion module. The first expansion module outputs a first control signal upon being switched on and outputs a second control signal after a working time. The delay circuit outputs a disconnecting signal upon being switched on. The buffer is switched off upon receiving the disconnect signal. The delay circuit further outputs a connecting signal after a delay time after outputting the disconnecting signal. The buffer is switched on upon receiving the connect signal. The buffer further outputs the second control signal to the switching module upon being switched on. The switching module controls the second expansion module to be switched on v receiving the second control signal.
Abstract:
A microcontroller-based multifunctional electronic switch uses a detection circuit design to convert external motion signals into message carrying sensing signals readable to the microcontroller. Based on the time length of sensing signals and the format of the sensing signals received in a preset instant period of time the microcontroller through the operation of its software program codes written in the OTPROM is able to recognize the working modes chosen by the external signal generating user and thereby selecting the appropriate loops of subroutine for execution. The system and method of the present invention may simultaneously be applicable to detection circuit design using infrared ray sensor, electrostatic induction sensor, conduction based touch sensor or push button sensor for performing multifunction such as controlling the on/off switch, the illumination power and the color temperature within the capacity of a single lighting device or an electrical appliance.
Abstract:
In accordance with these and other embodiments of the present disclosure, an apparatus and a method may include receiving a first input configured to indicate an output voltage of an output node of a switched output stage comprising a pull-down driver device coupled at its non-gate terminals between a ground voltage and the output node and a pull-up driver device coupled at its non-gate terminals between a supply voltage and the output node. The method may also include receiving a second input configured to indicate a gate voltage of a gate terminal of a first one of the pull-up driver device and the pull-down driver device. The method may further include detecting direction of an output current flowing into or out of the output node based on the first input and the second input.
Abstract:
A power supply unit for use with thermostats or other like devices requiring power. A power supply unit may be designed to keep electromagnetic interference emissions at a minimum, particularly at a level that does not violate governmental regulations. A unit may be designed so that there is enough power for a triggering a switch at about a cross over point of a waveform of input power to the unit. Power for triggering may come from a storage source rather than line power to reduce emissions on the power line. Power for the storage source may be provided with power stealing. Power stealing may require switching transistors which can generate emissions. Gate signals to the transistors may be especially shaped to keep emissions from transistor switching at a minimum.
Abstract:
One embodiment provides A DC-DC converter system that includes a high side switch and a low side switch coupled to a power supply, each switch is configured to transition from an on state to an off state and from an off state to an on state to deliver current to an inductor and a load. This embodiment also includes low side driver circuitry configured to control the conduction state of the low side switch and configured to drive the low side switch with a first gate driving signal during a first mode of operation and with a second gate driving signal during a second mode of operation. The first gate driving voltage is stronger than the second gate driving signal and the second gate driving signal is configured to cause a slower switch transition of the low side switch compared to the first gate drive control signal.