摘要:
According to the present invention, methods and apparatus are provided for improving the signal quality of received transmission. An adaptive equalizer includes multiple output delay lines. One output delay line is configured to provide gradient elements. Another output delay line is configured with coefficient multipliers calculated using the gradient elements. The coefficient multipliers are used to alter a received signal to more closely correspond to an expected signal. The adaptive equalizer can be used in systems such as optical transceivers.
摘要:
A parameter of an adaptive filter is optimized so that inter-symbol interference having an amount corresponding to an inserted fixed filter remains. A digital signal processing apparatus which is included in an optical signal receiver and processes a digital signal converted from an optical signal is provided with: a linear adaptive filter which applies a dynamically controllable linear transfer function to the digital signal; a maximum likelihood sequence decoder which applies a transfer function of a transmission-path model to a plurality of signal sequence candidates to generate a plurality of reference signals, and decodes a reception signal using maximum likelihood sequence estimation which evaluates the differences between an output signal of the linear adaptive filter and the reference signals to estimate the most likely transmission time sequence; a signal regenerator which generates a signal corresponding to decoded data from the maximum likelihood sequence decoder; a feedback distortion adding filter which adds distortion that is equivalent to the transmission-path model used in the maximum likelihood sequence decoder to an output signal of the signal regenerator; and an adaptive equalization filter control block which updates a tap coefficient of the linear adaptive filter in accordance with an LMS algorithm using the difference between a target signal that is an output signal of the feedback distortion adding filter and the digital signal as an error signal.
摘要:
An audio enhancement system is provided for compensating for distortions (e.g., linear distortions) of a sound signal reproduced by an audio system in a listening room. The audio enhancement system includes analysis filters that generate a plurality of analysis output signals from an audio signal to be enhanced. The system also includes synthesis filters that generate an enhanced audio signal from a number of synthesis input signals. The number of analysis output signals and the number of synthesis input signals preferably are equal. Signal processing elements between the analysis filters and the synthesis filters generate one of the synthesis input signals from a respective one of the analysis output signals to perform an inverse filtering for linearizing an unknown transfer function indicative of the audio system and the listening room in the respective frequency range.
摘要:
An equalizer providing a filtered signal to a data decision unit calculates an amplitude error signal by comparing the filtered signal with the data signal output from the data decision unit, and calculates a squared envelope error signal from the filtered signal. These two error signals are separately weighted according to the absolute value of the amplitude error, the weight of the amplitude error signal decreasing and the weight of the squared envelope error signal increasing as the absolute value of the amplitude error increases. The weighted amplitude error signal and weighted squared envelope error signal are added to obtain an error signal used in updating filter coefficients in the equalizer. Rapid convergence of the filter coefficients is obtained, with small residual error.
摘要:
In one embodiment, a method for training an adaptive filter includes receiving, by a processor from a device, an input signal and a training reference signal and determining a correlation matrix in accordance with the input signal, the training reference signal, and a filter type. The method also includes determining a plurality of coefficients in accordance with the correlation matrix and adjusting the adaptive filter in accordance with the plurality of coefficients.
摘要:
A Fourier transform unit (111) performs Fourier transform on a digital signal on a time axis to generate a frequency domain signal which is a signal on a frequency axis. A filter unit (113) equalizes the frequency domain signal in a frequency domain using N first coefficients. An inverse Fourier transform unit (112) performs inverse Fourier transform on the frequency domain signal processed by the filter unit (113) and returns the frequency domain signal to the digital signal on the time axis. That is, the Fourier transform unit (111), the inverse Fourier transform unit (112), and the filter unit (113) compensate for waveform distortion included in the digital signal using an equalization process (that is, frequency-domain equalization (FDE)) in the frequency domain. A first coefficient setting unit (114) sets N first coefficients used by the filter unit (113) using m (provided N>m) second coefficients.
摘要:
In one embodiment, a method for training an adaptive filter includes receiving, by a processor from a device, an input signal and a training reference signal and determining a correlation matrix in accordance with the input signal, the training reference signal, and a filter type. The method also includes determining a plurality of coefficients in accordance with the correlation matrix and adjusting the adaptive filter in accordance with the plurality of coefficients.
摘要:
In digital communications, a considerable effort has been devoted to neutralise the effect of channels (i.e., the combination of transmit filters, media and receive filters) in transmission systems, so that the available channel bandwidth is utilised efficiently. The objective of channel neutralisation is to design a system that accommodates the highest possible rate of data transmission, subject to a specified reliability, which is usually measured in terms of the error rate or average probability of symbol error. An equaliser normally performs neutralisation of any disturbances the channel may introduce by malting the overall frequency response function T(z) to be flat. Since a channel is time varying, due to variations in a transmission medium, the received signal is nonstationary. Therefore, an adaptive equaliser is utilised to provide control over the time response of a channel. Since an adaptive equaliser is an inverse system of a channel, it amplifies the frequency of noise outside the bandwidth of a channel. In order to reduce the effect of noise, a low pass filter is cascaded with the equaliser. However, the cascaded filter can introduce a negative impact on the speed of adaptation. Therefore, the bandwidth of the cascaded filter is chosen to be very wide at the beginning of the adaptation process. This way, the output reaching the static value will not be delayed. As the output of the adaptive filter is close to the static value, the bandwidth decreases to cancel the effect of noise. The adaptive rule for noise filter can be defined as (I). The constants α and β depend on the level of noise and are chosen by trial and error method. Δ is a variable that is used to change the value of τ and consequently the bandwidth of the filter. Δ acts as an input to the proportional controller. Furthermore, in the same equation, β represents a proportional (P) controller gain (Kp). In order to reduce the disturbance rejection bandwidth, improve speed, resonant frequency and rectify a potential problem, an integral (I) control mode and a differential (D) control mode are proposed to be added to the existing proportional control mode.
摘要:
A Fourier transform unit (111) performs Fourier transform on a digital signal on a time axis to generate a frequency domain signal which is a signal on a frequency axis. A filter unit (113) equalizes the frequency domain signal in a frequency domain using N first coefficients. An inverse Fourier transform unit (112) performs inverse Fourier transform on the frequency domain signal processed by the filter unit (113) and returns the frequency domain signal to the digital signal on the time axis. That is, the Fourier transform unit (111), the inverse Fourier transform unit (112), and the filter unit (113) compensate for waveform distortion included in the digital signal using an equalization process (that is, frequency-domain equalization (FDE)) in the frequency domain. A first coefficient setting unit (114) sets N first coefficients used by the filter unit (113) using m (provided N>m) second coefficients.
摘要:
An adaptive filter is disclosed, having a plurality of computation groups, a plurality of computation circuits, a summation circuit, a slicer circuit, an updating circuit, and a control circuit. Each computation group corresponds to an equalization parameter and has a plurality of memory cells. When the corresponding equalization parameter of a computation group is greater than a predetermined value, the control circuit configures the computation group and the computation circuit to collaboratively generate an output of the computation group. The summation circuit sums up the outputs of the computation groups to produce a filter output. The slicer circuit generates a slicer output according to the filter output. The updating circuit updates the equalization parameters according to the filter output and the slicer output.