Abstract:
An inductive-capacitive filter includes a first insulating-conductive strip wound around a winding axis, where the first insulating-conductive strip includes a first conductive strip joined with a first insulating strip. An inductive-capacitive filter assembly includes a first and a second insulating-conductive strip concentrically wound around a winding axis, the first insulating-conductive strip including a first conductive strip joined with a first insulating strip, and the second insulating-conductive strip including a second conductive strip joined with a second insulating strip.
Abstract:
A combiner circuit can be implemented as a coupling circuit having a common node and configured to couple the common node to one of first and second groups of filters through a first path and to couple the common node to the other group through a second path. The coupling circuit can be further configured such that the impedance provided by each filter of the one of the first and second groups for a signal in each band of the other group results in the signal being sufficiently excluded from the first path.
Abstract:
An inductive-capacitive filter includes a first insulating-conductive strip wound around a winding axis, where the first insulating-conductive strip includes a first conductive strip joined with a first insulating strip. An inductive-capacitive filter assembly includes a first and a second insulating-conductive strip concentrically wound around a winding axis, the first insulating-conductive strip including a first conductive strip joined with a first insulating strip, and the second insulating-conductive strip including a second conductive strip joined with a second insulating strip.
Abstract:
A half-bride combiner can be implemented as a coupling circuit having a common node and configured to couple the common node to one of first and second groups of filters through a first path and to couple the common node to the other group through a second path. The coupling circuit can be further configured such that the impedance provided by each filter of the one of the first and second groups for a signal in each band of the other group results in the signal being sufficiently excluded from the first path.
Abstract:
A linear, low noise, high quality factor (Q) and widely tunable notch filter circuit includes one or more first reactive elements coupled between a first filter node and a first node. The notch filter circuit further includes a multi-branch circuit having multiple parallel branches and coupled between the first node and a second node. Each branch of the multi-branch circuit includes at least a switch coupled to a variable capacitor. A notch frequency of the notch filter circuit is tunable by adjusting a capacitance of the variable capacitor.
Abstract:
A capacitor may include a first capacitor plate having a first length. The capacitor may also include an inorganic capacitor dielectric layer on sidewalls and a surface of the first capacitor plate and a second capacitor plate on the inorganic capacitor dielectric layer. The second capacitor plate may have a second length less than the first length of the first capacitor plate. The capacitor may also include a conductive contact landing directly on the first capacitor plate. The conductive contact may land directly on the first capacitor plate by extending through the inorganic capacitor dielectric layer and an organic interlayer dielectric supported by the inorganic capacitor dielectric layer.
Abstract:
A tunable capacitance circuit comprises a plurality of varactor transistors which are coupled in series. An antenna tuner comprises such a tunable capacitance circuit.
Abstract:
Apparatus and methods for high voltage variable capacitors are provided herein. In certain configurations, an integrated circuit (IC) includes a variable capacitor array and a bias voltage generation circuit that biases the variable capacitor array to control the array's capacitance. The variable capacitor array includes a plurality of variable capacitor cells electrically connected in parallel between a radio frequency (RF) input and an RF output of the IC. Additionally, each of the variable capacitor cells can include a cascade of two or more pairs of anti-series metal oxide semiconductor (MOS) capacitors between the RF input and the RF output. The pairs of anti-series MOS capacitors include a first MOS capacitor and a second MOS capacitor electrically connected in anti-series. The bias voltage generation circuit generates bias voltages for biasing the MOS capacitors of the variable capacitor cells.
Abstract:
Semiconductor chip laminates and inductive, capacitive, and electromagnetic shielding laminate structures that can be integrated together to form electronic circuits for use in systems and devices such as smartphones, tablet computers, notebook computers, wearable electronic devices, portable medical devices, servers, networking equipment, industrial equipment, etc. Fabrications of such integrated laminate structures can be modularized into four (4) types of laminates, namely, inductive laminates, capacitive laminates, electromagnetic shielding laminates, and semiconductor chip laminates, which can be vertically laminated together and/or integrated side-by-side with high density to produce the desired electronic circuits, systems, and devices.
Abstract:
Apparatus and methods for high voltage variable capacitors are provided herein. In certain configurations, an integrated circuit (IC) includes a variable capacitor array and a bias voltage generation circuit that biases the variable capacitor array to control the array's capacitance. The variable capacitor array includes a plurality of variable capacitor cells electrically connected in parallel between a radio frequency (RF) input and an RF output of the IC. Additionally, each of the variable capacitor cells can include a cascade of two or more pairs of anti-series metal oxide semiconductor (MOS) capacitors between the RF input and the RF output. The pairs of anti-series MOS capacitors include a first MOS capacitor and a second MOS capacitor electrically connected in anti-series. The bias voltage generation circuit generates bias voltages for biasing the MOS capacitors of the variable capacitor cells.