Abstract:
A method includes a) counting whole periods of a signal during a first period of a reference signal, b) repeating step a) for each period of the reference signal until a first duration is equal to a first quantity of periods of the reference signal, and c) determining a first average of the whole periods. The method also includes repeating at least one of steps a) to c) and at each repetition shifting a start of the counting of step a) by at least one period of the reference signal, and in steps b) and c) accounting for whole periods of the signal already counted during the at least one preceding group of steps a) and b). The method includes determining a second average of the first averages, and determining the frequency of the signal from the second average and the frequency of the reference signal.
Abstract:
A frequency coincidence detection circuit for detecting frequency edges for each of a plurality of periodic digital signals. The circuit generates count indicators for each of the periodic digital signals and compares each of the count indicators to a programmable sensitivity input to determine a coincidence window for the corresponding one of each of the periodic digital signals. The circuit determines a signal coincidence of the coincidence windows. In another embodiment, a frequency coincidence detection method is provided. The method detects frequency edges for each of a plurality of periodic digital signals, generates count indicators for each of the periodic digital signals and compares each of the count indicators to a programmable sensitivity input to determine a coincidence window for the corresponding one of each of the periodic digital signals. The method determines a signal coincidence of the coincidence windows.
Abstract:
In an embodiment, present application describes a system and method to detect the alignment of multiple clocks in multi-clock domains system. In some variations, multiple clocks are derived from one or more reference clocks using various PLLs. The derived clocks maintain frequency relationship with the reference clock. In some variations, a relationship between the frequencies of various clocks is used to generate the alignment signals in the domain of one of the clocks.
Abstract:
A comparator compares a first binary input signal and a second binary input signal each binalized. A generator generates a reset signal at each rising edge or each falling edge of the first input signal. A counter counts the second input signal at each timing determined by the reset signal. The counted value represents a ratio of each frequency of the first input signal and the second input signal. A subtractor calculates a difference between the counted value and a set value representing a predetermined ratio of each frequency of the first input signal and the second input signal. An integrator integrates the difference. The integrated value represents a phase difference of the frequencies of the first input signal and the second input signal.
Abstract:
Within the differential detection demodulator, the received signal is first quantized by a limiter amplifier and then subjected to frequency conversion by a frequency converter including: an exclusive OR element; a running average generator consisting of a shift register and an adder; and a comparator. In response to the output of the frequency converter, the phase comparator outputs a relative phase signal representing the phase shift of the received signal after frequency conversion relative to the phase signal representing the phase shift of the received signal after frequency conversion relative to the phase reference signal. The phase comparator includes: an exclusive OR element; an absolute phase shift measurement means consisting of an adder and D flip-flop arrays and; and a D flip-flop serving as a phase shift polarity decision means. Alternatively, the phase detection circuit for generating the relative phase signal may include: a half-period detection means consisting of a delay element and an exclusive OR element; a phase reference signal generation means consisting of a modulo 2N counter; and a phase shift measurement means consisting of a phase inversion corrector and a D flip-flop array. The delay element delays the relative phase signal by one symbol period and the subtractor outputs the phase difference signal representing the phase transition over each symbol period of the received signal. The decision circuit obtains the demodulated data from the phase difference signal.
Abstract:
Within the differential detection demodulator, the received signal is first quantized by a limiter amplifier 10 and then subjected to frequency conversion by a frequency converter 50 including: an exclusive OR element 51; a running average generator 52 consisting of a shift register 53 and an adder 54; and a comparator 55. In response to the output of the frequency converter 50, the phase comparator 60 outputs a relative phase signal representing the phase shift of the received signal after frequency conversion relative to the phase reference signal. The phase comparator 60 includes: an exclusive OR element 61; an absolute phase shift measurement means 62 consisting of an adder 63 and D flip-flop arrays 64 and 65; and a D flip-flop 66 serving as a phase shift polarity decision means. Alternatively, the phase detection circuit 400 for generating the relative phase signal may include: a half-period detection means 901 consisting of a delay element 401 and an exclusive OR element 402; a phase reference signal generation means 902 consisting of a modulo 2N counter 403; and a phase shift measurement means 903 consisting of a phase inversion corrector 500 and a D flip-flop array 404. The delay element 40 delays the relative phase signal by one symbol period and the subtractor 41 outputs the phase difference signal representing the phase transition over each symbol period of the received signal. The decision circuit 42 obtains the demodulated data from the phase difference signal.
Abstract:
The present patent application discusses a frequency translation apparatus for altering the effective frequency of the phase information of an input signal (115). The input signal (115) has a first phase (.theta.(t)) and a first frequency (f.sub.i). The phase of the input signal is extracted and digitized at a second frequency (f.sub.o), forming a second N-bit digital phase signal (.theta.'(t))(311). The frequency translation apparatus generates a third digital phase signal (319) which approximates the difference between .theta.(t) and .theta.'(t). Then, the frequency translation apparatus combines the second digital phase signal and the third digital phase signal, forming a fourth digital phase signal (307) substantially approximating the first phase signal.
Abstract:
In a differential-detection demodulator circuit, a PSK modulated signal is compared with a locally oscillated signal to obtain a phase difference between the two signals, whereupon the phase difference is demodulated. A phase detector circuit of the digital type outputs the phase difference signal. The digital phase comparator circuit compares plural reference signals, which give predetermined delays to the locally oscillated signals having carrier frequencies, with the inputted modulated signals. Preferably, a pulse signal having a phase difference between the inputted modulated signal and the locally oscillated signal is produced, and the pulse width of this pulse signal is measured by a counter. By digitalizing the entire phase comparator, it is possible to realize demodulation with low electrical power consumption and simple circuit construction.
Abstract:
Clock monitors for circuits having a plurality of oscillators. The clock monitors produce an error indication when one oscillator is determined to be outside of a desired operating range or beyond a defined threshold with respect to a second oscillator. The clock monitors include a synchronizer configured to receive a clock signal from a first oscillator of the plurality of oscillators and synchronize the received clock signal with a second oscillator and to produce a synchronized clock signal. The clock monitors can include a counter configured to produce a count value based on synchronized clock signal. The clock monitors include comparison circuitry configured to receive the count value and produce an error indication when the count value is outside a predetermined range. The clock monitors may be used to ensure correct clock operation for different transition scenarios, e.g., turning on or off a certain clock or power domain.
Abstract:
Clock monitors for circuits having a plurality of oscillators. The clock monitors produce an error indication when one oscillator is determined to be outside of a desired operating range or beyond a defined threshold with respect to a second oscillator. The clock monitors include a synchronizer configured to receive a clock signal from a first oscillator of the plurality of oscillators and synchronize the received clock signal with a second oscillator and to produce a synchronized clock signal. The clock monitors can include a counter configured to produce a count value based on synchronized clock signal. The clock monitors include comparison circuitry configured to receive the count value and produce an error indication when the count value is outside a predetermined range. The clock monitors may be used to ensure correct clock operation for different transition scenarios, e.g., turning on or off a certain clock or power domain.