Abstract:
According to an embodiment, there is provided with an oscillator including: a clock circuit, a power supply current source and an oscillating circuit wherein the clock circuit generates a clock signal, the power supply current source generates a power supply current according to the clock signal, and the oscillating circuit generates an oscillation signal of a higher frequency than a frequency of the clock signal based on the power supply current and a received signal from an input terminal, the received signal having amplitude of a predetermined level or more.
Abstract:
A super-regenerative receiver uses controlled Q-quenching and may limit the resonant tank circuit amplitude by loading the tank circuit as soon as regenerative oscillation is detected. An amplitude detector is coupled to the regenerative amplifier and controls a Q loading circuit coupled to the tank circuit of the regenerative amplifier. The amplitude detector turns on the Q loading circuit which then stops the regenerative amplifier from oscillating, and the Q-loading remains on for a brief time to insure that the regenerative amplifier has stopped oscillating. After the brief time, the Q loading circuit is turned off and the regenerative amplifier goes into oscillation again. This cycle repeats controllably over and over, resulting in a lower self-induced noise floor and improved received signal sensitivity. The super-regenerative receiver may be used in the very low frequency (VLF), low frequency (LF), medium frequency (MF), high frequency (HF), very high frequency (VHF) and super high frequency (SHF) ranges to receive continuous wave (CW), amplitude modulated (AM) and frequency modulated (FM) radio signals.
Abstract:
A super-regenerative receiver is provided with a regenerative oscillator controlled by a frequency sweep circuit to control the bandwidth at which the receiver can receive a signal. A quench control circuit controls both the regenerative oscillator and the frequency sweeping circuit to “turn on” at the same time. The frequency sweep circuit forces the regenerative oscillator to function as a center frequency movable bandpass filter allowing the receiver to automatically tune to the actual transmitter frequency ftx to provide the best reception. This allows the receiver/filter bandwidth to be very narrow. The receiver operates as an amplitude detector, as well as a frequency or phase detector, thereby allowing the same receiver to detect AM (ASK) signals and FM or FSK signals without adding a frequency discriminator.
Abstract translation:超再生接收机设置有由频率扫描电路控制的再生振荡器,以控制接收机可以接收信号的带宽。 淬火控制电路同时控制再生振荡器和扫频电路“同时”。 频率扫描电路迫使再生振荡器用作中心频率可移动带通滤波器,允许接收机自动调谐到实际的发射机频率f x tx,以提供最佳的接收。 这允许接收器/滤波器带宽非常窄。 接收器作为幅度检测器以及频率或相位检测器工作,从而允许相同的接收机在不添加鉴频器的情况下检测AM(ASK)信号和FM或FSK信号。
Abstract:
A high sensitivity of a Super-Regenerative Radio Frequency Receiver and its method is provided in the embodiment of the present invention. By using a common-mode feedback circuit and by replacing the rectifier with a feedback integral-rectifier, the rectifier, the low-pass filter, and the slicer will not be saturated during operation so that the output of the slicer is correctly generated, and the sensitivity of the Super-Regenerative Radio Frequency Receiver is greatly improved as a result.