Abstract:
A stopping noise reduction circuit for a start motor comprises a battery generating a power supply to drive the start motor, a key switch for controlling an on/off of the power supply, a solenoid having a permanent magnet, P and H coils, and a movement contact to drive the start motor, and further comprises a B1 terminal grounded inside the solenoid, an M1 terminal connected to an M terminal of the start motor, and a resistor coupled with the B1 or M1 terminal. In the stopping noise reduction circuit, upon an off condition of the key switch, the movement contact of the solenoid is connected to the B1 and M1 terminals such that more induced current than an induced current flowing into the P and H coils, in a current induced by a rotator of the start motor, flows to ground via the resistor within a short flow time.
Abstract:
A control circuit and method for DC motors is disclosed in the present application. The control circuit may comprise a voltage monitoring unit for monitoring the output voltage of the DC power supply, a switching circuit for controlling the operation of the DC motor, and a PWM signal output unit to output PWM signal for controlling the switching circuit. The PWM signal output unit may be configured to regulate the duty cycle of the output PWM signal based on the results of the voltage monitoring unit. In this way, motors with different resistances may work continuously in a stabilized state. Also, it may detect when a load like motor is heavy loaded or overloaded, stop motor from starting, and avoid overtime working due to the drop of supply voltage damaging the load like motor. When the voltage of power supply is higher than the rated voltage of the motor, it may regulate the input voltage value of power supply to avoid the increase of excitation current of motor with the increase of the applied voltage, thereby avoid the loss of iron core.
Abstract:
An apparatus and method for resetting a motor controller. It is determined whether a tripping of the motor controller is accompanied by an undesired condition elsewhere in a power system wherein an alternating current bus receives alternating current power from a generator, a power converter converts the alternating current power on the alternating current bus to direct current power on a direct current bus, and the direct current power on the direct current bus powers the motor controller. In response to a determination that the tripping of the motor controller is accompanied by the undesired condition, it is determined whether the undesired condition is less than a threshold for more than a time delay. The motor controller is reset in response to a determination that the undesired condition is less than the threshold for more than the time delay.
Abstract:
An electric motor includes a rotor and a stator. Apart of the rotor includes a first frictional portion forming a movement locus. The stator includes a second frictional portion which brakes and stops the rotation of the rotor by a mechanical frictional force produced by contact between the second frictional portion and the first frictional portion, and a braking actuator which does not allow application of braking by shifting the second frictional portion away from the first frictional portion during power supply to the electric motor, and allows application of braking by pressing the second frictional portion against the first frictional portion during cutoff of power supply to the electric motor.
Abstract:
A motor start circuit for an AC induction motor employs a DC relay whose NC contacts are placed in series with the start capacitor. A half full-wave rectifier arrangement has an AC input connected to the junction of the relay switch and the start capacitor, and DC outputs applied across the relay actuator coil. In the event of intermittent application of power to the motor, any residual charge on the start capacitor will feed current to the actuator coil to hold the relay switch open until the residual charge has decayed sufficiently, to avoid damage to the motor from capacitive discharge. A high magnetic retentivity core can be used to hold the relay off for sufficient time for stored energy to dissipate.
Abstract:
An inverter system for driving an induction motor is disclosed. The inverter system for driving an induction motor comprises: a rectifying circuit for rectifying a three-phase AC voltage and outputting the same; a smoothing circuit for smoothing the rectified voltage and outputting the same; a controller for detecting a DC link voltage of the smoothing circuit, determining a power failure mode, a normal mode or a power restoration mode according to the detected DC link voltage and predetermined elapsed time, and outputting a voltage pulse signal according to the mode; and an inverter for converting the DC voltage outputted from the smoothing circuit into an AC voltage of variable frequency and variable voltage according to the voltage outputted from the controller and outputting the converted AC voltage in order to drive the induction motor.
Abstract:
According to some embodiments, system and methods are provided, comprising an electrical installation; one of a permanent magnet motor and a permanent magnet generator; a circuit operative to provide current to operate one of the motor and the generator; one or more sensors coupled to the electrical installation, wherein the one or more sensors are operative to detect an overcurrent in the circuit and to generate an overcurrent signal; one or more inductors; and an inductance module control operative to: receive the overcurrent signal from the one or more sensors; determine how to insert one or more inductors to reduce an amplitude of the overcurrent; activate the one or more inductors based on the determination; and deactivate the one or more inductors when the overcurrent is not detected. Numerous other aspects are provided.
Abstract:
A motor control system includes a drive motor and a deck motor that are connected to a battery, an ECU, and a key switch. The key switch acquires that an operation unit has been turned on, and transmits a restart permission signal to the ECU. When SOC of the battery reaches or falls below a first threshold set in advance, the ECU performs a step of disabling all the motors, and when the restart permission signal is received, the ECU performs a step of executing a decelerated travelling mode where the disabled state of the drive motor is released and an allowed speed of the drive motor is reduced.
Abstract:
A motor control system includes a drive motor and a deck motor that are connected to a battery, an ECU, and a key switch. The key switch acquires that an operation unit has been turned on, and transmits a restart permission signal to the ECU. When SOC of the battery reaches or falls below a first threshold set in advance, the ECU performs a step of disabling all the motors, and when the restart permission signal is received, the ECU performs a step of executing a decelerated travelling mode where the disabled state of the drive motor is released and an allowed speed of the drive motor is reduced.
Abstract:
A motor control system includes a drive motor and a deck motor that are connected to a battery, an ECU, and a key switch. The key switch acquires that an operation unit has been turned on, and transmits a restart permission signal to the ECU. When SOC of the battery reaches or falls below a first threshold set in advance, the ECU performs a step of disabling all the motors, and when the restart permission signal is received, the ECU performs a step of executing a decelerated travelling mode where the disabled state of the drive motor is released and an allowed speed of the drive motor is reduced.