摘要:
A converter apparatus and methods of operation thereof are disclosed. In an example, a converter unit of a bipole converter apparatus comprising a neutral connection having a breaker switch is disclosed. In the event of a DC fault, the fault condition may be monitored and it is determined whether a breaker switch operation condition is met. The breaker switch is opened when the breaker switch operation condition is met. In one example, the breaker switch operation condition may comprise a current level.
摘要:
Electrical devices, methods of operating an electrical device for use with a multiway switch system, and methods for connecting an electrical device with a load device and a multiway switch system for controlling the load device are described. In one embodiment, an electrical device for use with a multiway switch system includes an alternating current (AC) power interface configured to connect to at least one of a live wire and a neutral wire of an AC power supply, a load regulator module configured to regulate a load device that is connected to the neutral wire of the AC power supply, an output power interface configured to connect to the multiway switch system and to output a voltage to a switch of the multiway switch system, and a microcontroller module configured to control the load regulator module in response to a switching of the multiway switch system.
摘要:
The preferred embodiments of the present invention use synchronized mechanical switches to support electrical switching circuits. Due to near perfect impedances of mechanical switches as well as accurate timing control mechanisms, the preferred embodiments of the present invention provide significant improvements in power efficiency and cost efficiency of first stage power input circuits.
摘要:
Wall mountable touch panels are described. In one embodiment, a wall mountable touch panel for controlling a load device includes a touch sensor configured to receive a user touch input and to control the load device based on the user touch input and a power interface configured to receive a low-voltage direct current (DC) power signal for powering the touch sensor. Other embodiments are also described.
摘要:
A wireless power transmitting device may transmit power wirelessly to a wireless power receiving device. The wireless power receiving device may be a portable electronic device with an array of wireless power receiving coils that receive wireless power from wireless power transmitting coils in the wireless power transmitting device. Each receiving coil in the array of wireless power receiving coils may be coupled to a respective rectifier. Control circuitry of the wireless power receiving device may be configured to determine which rectifiers to enable for synchronous rectification. The control circuitry may be configured to enable at least one rectifier based on the alternating-current voltages produced by each coil in the array of receiving coils. The control circuitry may also be configured to enable at least one rectifier based on the output current from each rectifier.
摘要:
Electrical devices, methods of operating an electrical device for use with a multiway switch system, and methods for connecting an electrical device with a load device and a multiway switch system for controlling the load device are described. In one embodiment, an electrical device for use with a multiway switch system includes an alternating current (AC) power interface configured to connect to at least one of a live wire and a neutral wire of an AC power supply, a load regulator module configured to regulate a load device that is connected to the neutral wire of the AC power supply, an output power interface configured to connect to the multiway switch system and to output a voltage to a switch of the multiway switch system, and a microcontroller module configured to control the load regulator module in response to a switching of the multiway switch system.
摘要:
This disclosure provides an electrical switch based on tunneling electric contacts. Electrodes of the switch are formed to have reciprocal apparent contact surfaces, each smooth such that a compressed (in contact) composite mean asperity height between these surfaces is significantly smaller than an electron tunneling length of the switch. A movement mechanism is used to physically move one or both electrodes to vary the gap between electrodes to be greater than/less than the electron tunneling length. In select embodiments, the movement mechanism is electrically actuated and is amenable to relatively high frequency operation. The nano smooth surfaces provide for a tunneling switch where current flow is not primarily dependent on contact force between electrodes, and leads to a highly conductive ON state exceeding high performance, high-contact force mechanical switches, while also being amenable to high frequency operation.
摘要:
Electrical devices are described. In one embodiment, an electrical device suitable for installation in an electrical gang/patress box includes an alternating current (AC) to direct current (DC) transformer configured to transform an AC power signal that is accessible from within the electrical gang/patress box into a DC power signal, a load regulator module configured to regulate a load device in response to the DC power signal, a microcontroller module configured to control the load regulator module in response to the DC power signal, and a connector configured to output a DC voltage signal having a voltage that is lower than the voltage of the AC power signal in response to the DC power signal. Other embodiments are also described.
摘要:
Various embodiments of the teachings herein include a rectifier. The rectifier may include: a rectifier circuit formed with current valves with microelectromechanical systems (MEMS) switches; and a switching controller driving the MEMS switches to switch and open. The switching controller opens the MEMS switches when a voltage feeding the rectifier falls below a minimum distance from a zero voltage.
摘要:
Various embodiments of the teachings herein include a rectifier. The rectifier may include: a rectifier circuit formed with current valves with microelectromechanical systems (MEMS) switches; and a switching controller driving the MEMS switches to switch and open. The switching controller opens the MEMS switches when a voltage feeding the rectifier falls below a minimum distance from a zero voltage.