Abstract:
An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion, a fixed portion, and a driving assembly. The movable portion is used for connecting to an optical element, wherein the optical element has a main axis. The movable portion is movably connected to the fixed portion. The driving assembly is disposed on the movable portion or the fixed portion for driving the movable portion moving relative to the fixed portion.
Abstract:
A base includes first to third projected portions. A sealing surface of the base is opposed to the housing and equipped with a sealing member. An attachment portion outside the sealing surface is screwed with the housing. A first projected portion projects from the attachment portion toward the housing. The second and third projected portions project relative to the sealing surface toward the housing. A recessed portion between the sealing surface and the first projected portion partially receives and fitted with a spigot protrusion of the housing. The second projected portion is located inside the third projected portion, and the third projected portion is located inside the recessed portion in the radial direction. The second and third projected portions extend along the circumferential direction. The first to third projected portions have projected tip end surfaces located in a same plane and in contact with the housing.
Abstract:
A resolver device includes a stator core and a rotor core supported so as to be freely rotatable with respect to the stator core and configured such that a reluctance component in a gap between the rotor core and the stator core changes in accordance with a relative angle position to the stator core. The stator core includes stator main poles and stator interpoles.
Abstract:
The invention relates to electric motors, in particular reluctance motors, including an armature, containing a magnetizable material. The armature has a plurality of pole shoes, an actuator, which is arranged and mounted movably with respect to the armature, contains a magnetizable material and has at least two magnetizable pole ends, and an even number of coils, which are arranged between the pole shoes and of which the windings surround the armature in such a manner that the coils extend in regions along the armature, such that the armature is magnetizable with the aid of the coils.
Abstract:
An improved motor (90) broadly including a first member (30) and a second member (20) mounted for movement relative to one another. The first member has a plurality of poles (32) spaced substantially equidistantly. The second member has a plurality of arms (22). Each arm includes a plurality of fingers (27), a permanent magnet (29), and a coil (25). The fingers are arranged such that their distal end generally faces toward the poles on the first member. Each permanent magnet has a width that is greater than the pole spacing. Each arm is associated with one of a number of phases. The fingers of the arms within a particular phase are arranged such that they simultaneously align with respective poles when the first and second members are in one position relative to one another.
Abstract:
A laminated stator core 10, formed by laminating stator core sheets 17, each of the stator core sheets 17 punched out from a magnetic metal sheet 32 so as to have a common axis with a rotor core sheet 36 which punched out from the magnetic metal sheet 32 before the stator core sheet 17 is punched out; the stator core sheet 17 including a thin section 24 in a magnetic pole shaft piece 20; the thin section 24 formed by pressing a part or a whole of a magnetic pole shaft piece 20 in a thickness direction, and elongating the same in a radially inward direction; and further the thin section 24 having a thickness within 50-95% of that of the magnetic metal sheet 32 and a radial length within 30-100% of that of the magnetic pole shaft piece 20. This enables a magnetic pole piece 19 to be elongated to form the thin section 24 without adverse effect on magnetic characteristics thereof, and improves caulking accuracy and dimensional accuracy for blanking both of the core sheets 17, 36 from one magnetic metal sheet 32.
Abstract:
An electric rotating machine includes a stator, a rotor, and a plurality of magnetic shields. The stator includes a stator core and a stator coil wound on the stator core. The stator core has a plurality of stator teeth arranged in the circumferential direction of the stator core. The rotor includes a rotor core that has a plurality of magnetic salient poles formed therein. The magnetic salient poles face the stator teeth through an air gap formed therebetween. Each of the magnetic shields is provided, either on the forward side of a corresponding one of the stator teeth or on the backward side of a corresponding one of the magnetic salient poles with respect to the rotational direction of the rotor, to create a magnetic flux which suppresses generation of a negative electromagnetic force that hinders rotation of the rotor.
Abstract:
A plurality of concavities and convexities is provided on tips of all rotor teeth 24 of the SR motor 5. Depths of the concave portions α are deep on an edge side where a stator tooth 23 and rotor tooth 24 first approach and are shallow as a facing area between the stator tooth 23 and rotor tooth 24 increases. Therefore, magnetic resistance between the stator tooth 23 and rotor tooth 24 becomes high at an early stage of the stator tooth 23 and rotor tooth 24 facing each other and becomes low as the facing area between the stator tooth 23 and rotor tooth 24 increases. As a result, torque fluctuation can be suppressed at a time of a large current and a minimum generation torque can be increased at a time of a small current.
Abstract:
An electric motor 1 comprises a rotator 20 rotating relative to a stator 10 and a plurality of teeth 11 winding an exciting coil 12 in the stator 10. The teeth 11 generate a magnetic field directed to the rotator 20 from tip faces 11a and comprise a radially extending part 11A extending in a radial direction of the rotator 20 and a coil winding part 11B formed to be bent from the radially extending part 11A.
Abstract:
The invention relates to an electromechanical wheel brake device, with an electric motor that can press a frictional brake lining against a brake body (brake disk) by a reduction gear (planetary gear) and a rotation/translation conversion gear (ball screw). The invention proposes embodying the electric motor as a transverse flux motor with three phase windings; each phrase winding has a circular, annular excitation winding that is disposed inside U-shaped yokes, which are distributed over the circumference of the excitation winding. This embodiment of the electric motor permits a compact design of the electric motor in an annular, hollow shaft design so that the reduction gear and the rotation/translation conversion gear can be disposed at least partially inside the electric motor.