Abstract:
A power margin tracking control method and system for a multi-terminal high-voltage direct current converter station are provided. A power adjustment factor is introduced on the basis of a droop coefficient, to realize a self-adaptive regulation of a converter station operation mode to a real-time fluctuation of a wind and solar power. In this way, the system operation stability and the power fluctuation allocation capability in a grid-connected system are improved. Furthermore, a DC voltage deviation in the multi-terminal high-voltage direct current grid is reduced.
Abstract:
An electrical assembly includes a power converter having first and second DC terminals which are connectable to a DC electrical network. The power converter also includes converter limbs connected between the first and second DC terminals. Each converter limb includes an AC terminal that is connectable to a respective AC phase of a multi-phase AC electrical network. Each converter limb also includes limb portions, each connected between a corresponding AC terminal and a respective one of the first and second DC terminals. Each limb portion includes switching element(s). The electrical assembly includes a single grounding circuit having a reactor configured to provide a current path for alternating current with a high impedance to ground and a current path for direct current with a low impedance to ground. The grounding circuit is arranged so that only one of the AC phases is connected to ground via the grounding circuit.
Abstract:
The present invention provides a high voltage regulated DC power supply with full range 24 pulse input for ripple free output for high power RF amplifier, comprising: full range 24 pulse 3 phase 11 kV input system configured to provide uncontrolled low voltage DC bus, low input harmonics and high input power factor; a plurality of DC-DC power modules having their output connected in a series and coupled to the said DC bus voltage; each power module comprising a DC source, an inverter bridge IGBTs operating at predefined duty cycle and staggered to reduce the output ripple and output stored energy; and a combination of feed forward and feedback control circuit adapted to regulate the variations in the input line voltage and the variation in output at various load current to finally obtain ripple free high voltage output.
Abstract:
A high voltage direct current (HVDC) transmission system is provided. The high voltage direct current (HVDC) transmission system includes a rectifier converting alternating current (AC) power into DC power; an inverter converting the DC power into the AC power; DC transmission lines W1 and W2 transmitting the DC power obtained from the rectifier through conversion to the inverter; a first active power measurement unit measuring first active power input to the rectifier; a second active power measurement unit measuring second active power output from the inverter; and a first control unit controlling the operations of the rectifier and the inverter based on the first active power measured and the second active power measured, wherein the first control unit senses oscillation generated in the HVDC transmission system and generates a control signal for damping the sensed oscillation to control one or more of the rectifier and the inverter.
Abstract:
Disclosed embodiments relate to a monitoring system for detecting an error of a harmonic filter in a high voltage direct current (HVDC) transmission system is disclosed. In some embodiments, the monitoring system comprises a harmonic filter including one or more capacitor units, a monitoring sensor unit sensing a voltage of at least one of the one or more capacitor units, and, a control unit monitoring a voltage error of the at least one capacitor unit using the sensing result.
Abstract:
A DC superconducting coaxial transmission system provides electrical transmission of 5,000 megawatts of energy while simultaneously delivering liquid hydrogen. The transmission system includes a coaxial transmission segment including an inner superconductor, an outer superconductor disposed in surrounding relation to the inner conductor, and a dielectric insulator disposed between the inner superconductor and the outer superconductor. Liquid hydrogen surrounds the superconductors. Three phase transformers and poly phase rectifier/inverters provide a DC voltage source to the superconductors from the electrical grid. In one embodiment, a switching circuit connected between the voltage source and the superconductor injects a cancellation current component into the direct current flow. The cancellation current component is polarized to flow in a direction opposite to the direct current flow to produce a current zero, thus enabling safe interruption of the high DC current while minimizing the magnitude of transient voltages during switching.
Abstract:
A high voltage direct current (HVDC) transmission system is provided. The high voltage direct current (HVDC) transmission system includes a rectifier converting alternating current (AC) power into DC power; an inverter converting the DC power into the AC power; DC transmission lines W1 and W2 transmitting the DC power obtained from the rectifier through conversion to the inverter; a first active power measurement unit measuring first active power input to the rectifier; a second active power measurement unit measuring second active power output from the inverter; and a first control unit controlling the operations of the rectifier and the inverter based on the first active power measured and the second active power measured, wherein the first control unit senses oscillation generated in the HVDC transmission system and generates a control signal for damping the sensed oscillation to control one or more of the rectifier and the inverter.
Abstract:
A DC reactor consisting of a coil formed of a superconducting material is provided. It is possible to reduce leakage reactance and to increase critical current by using a coil formed of a high temperature superconducting material and forming a first bobbin of the DC reactor as a toroid shape.
Abstract:
The control circuit includes first and second primary terminals for connection to a DC network, a secondary terminal connected in series between the first and second primary terminals and at least one auxiliary energy conversion element and an auxiliary terminal. The first and second primary terminals have a plurality of modules and a plurality of primary energy conversion elements connected in series therebetween to define a current transmission path, each module including at least one energy storage device, each energy storage device being selectively removable from the current transmission path. The plurality of modules include a first module and a second module the first module being connected in series with at least one primary energy conversion element between the first primary terminal and the secondary terminal to define a first current transmission path portion, and the second module being connected in series with at least one other primary energy conversion element between the second primary terminal and the secondary terminal to define a second current transmission path portion. The auxiliary energy conversion element is connected in series between the secondary and auxiliary terminals, the auxiliary terminal being for connection to ground.
Abstract:
To improve the effect of a filter circuit for the harmonics, which contains an L-C-R series resonant circuit in at least one loop, a variable supplementary current excitation which compensates the residual harmonic current in the consumer arrangement at least approximately, is coupled into the series resonant circuit, the supplementary current excitation preferably being supplied by a compensation transformer which is controlled by the current in the loop, the compensation transformer being excited by a source and controlled by an auxiliary transformer arranged in the loop.