Abstract:
An electricity backfeed protection assembly is beneficially installed between a main circuit breaker panel of a structure or dwelling, and a utility meter measuring electricity delivered to the structure or dwelling by a utility provider or other primary power source. The electricity backfeed protection assembly includes a contactor having a coil. A contact protector device is electrically connected to the coil of the contactor. The electrical backfeed protection assembly automatically prevents electricity from a secondary power source (including, without limitation, a portable generator) from backfeeding into supply lines of a primary power source (such as utility lines or equipment).
Abstract:
A transformer assembly comprises at least one transformer having a core. A primary winding is positioned on a first portion, a secondary winding is positioned on a second portion of the core. A neutral winding may be positioned on a third portion of the core. The secondary winding may receive an induced flux produced by an earth surface potential (ESP) via a system ground and/or receive an induced zero sequence flux produced by a non-linear load. The neutral winding may be configured to provide a mitigating flux to the secondary winding. The transformer may also be used as a filter for either GIC or triplen harmonic mitigation. In this case, the primary windings receive the zero sequence current (GIC or triplen harmonics) and the flux may be cancelled in neutral winding such that the zero sequence currents circulate between the zero sequence source and the filter transformer.
Abstract:
The present invention relates to a protective device for protection of an electrical circuit equipped with a smoothing capacitor against reversal of polarity of the input voltage, with an input via which the protective device can be connected to a voltage supply for coupling in an input voltage, with an output via which the protective device an be connected to the electrical circuit to be protected, with a controllable switch which is arranged between an input terminal of the input and an output terminal of the output having the same polarity and which is designed to interrupt a current flow between the input terminal and the output terminal which are connected to one another, and with a control unit which is designed to control the controllable switch, when an applied input voltage with reverse polarity is detected, in such a way that the interruption of the current flow takes place with a time lag relative to a time of the application of the input voltage with reverse polarity. The present invention further relates to a corresponding method, a circuit arrangement with a protective device according to the invention and a vehicle system.
Abstract:
A backflow preventing device includes a backflow preventing element connected between a power source and a load, for preventing a backflow of a current from the load side to the power source side, a commutation device configured to perform a commutation operation of causing a current to flow through an other path connected in parallel to the backflow preventing element, and a controller configured to change a pulse width of a commutation drive signal for controlling the commutation device to perform the commutation operation based on a current flowing through the backflow preventing element, and transmitting the commutation drive signal having the changed pulse width to the commutation device. The controller transmits the pulse to the commutation device only for a necessary time period so that the commutation device performs the commutation operation, to thereby reduce electric power relating to the commutation operation not contributing to the power conversion.
Abstract:
A power generation and control system is easily installed in a consumer household, a business, or and end-user establishment for generating power and preventing power from flowing to a power grid from a consumer circuit during a power outage. A communications transceiver is adapted to transmit an enabling signal for enabling power generation only after the control system has been installed. The control system can be adapted to replace an existing circuit breaker in a household circuit box and prevents power from traveling from consumer power generators to the grid during a power outage. In the same manner that end-users can add appliances to existing circuits, end-users can easily add additional power generation devices without hiring a professional electrician and without worrying about causing harm to utility workman during power outages.
Abstract:
An embodiment high efficiency power regulator comprises a three-terminal converter and a protection device. The three-terminal converter comprises a first terminal coupled to a positive terminal of an input voltage bus, a second terminal coupled to a positive terminal of an output voltage bus and a third terminal coupled to the protection device. The protection device comprises an inrush current limiting element connected in series with a reverse polarity protection device.
Abstract:
A leakage protection outlet includes an upper cover with jacks, an intermediate bracket, a base, a power input end, a power output end, pairs of conductive plug bushes, baffles, a baffle locking mechanism, a reset button including a reset button extension arm, a reset mechanism, and an electromagnetic tripping mechanism. The baffle locking mechanism includes a lock latch, a lock latch keeper, and a reset spring. The reset button is linked to the reset mechanism and is configured to connect the power input and output ends together when pressed. The electromagnetic tripping mechanism is configured to disconnect the power input end from the power output end in response to a leakage current. The pairs of conductive plug bushes correspond to the jacks. The baffles are positioned between the pairs of conductive plug bushes and the jacks. The lock latch rests upon the baffles and the reset button extension arm.
Abstract:
A leakage protection outlet includes an upper cover with jacks, an intermediate bracket, a base, a power input end, a power output end, pairs of conductive plug bushes, baffles, a baffle locking mechanism, a reset button including a reset button extension arm, a reset mechanism, and an electromagnetic tripping mechanism. The baffle locking mechanism includes a lock latch, a lock latch keeper, and a reset spring. The reset button is linked to the reset mechanism and is configured to connect the power input and output ends together when pressed. The electromagnetic tripping mechanism is configured to disconnect the power input end from the power output end in response to a leakage current. The pairs of conductive plug bushes correspond to the jacks. The baffles are positioned between the pairs of conductive plug bushes and the jacks. The lock latch rests upon the baffles and the reset button extension arm.
Abstract:
A network protector is provided with diagnostics which alert a utility of component problems in detail. Selected measurements are used to assess the condition of various components such as for example, main contact electrical resistance, a blown fuse, the availability of sufficient voltage for charging the springs which close the main contacts and adequate voltage for tripping the contacts open. These abnormal operating conditions are transmitted to a remote station at the utility so that proper maintenance can be efficiently provided.
Abstract:
A numerical comparator is disclosed. The numerical comparator employs numerical techniques based upon the behavior of the cylinder unit to compare phasors in real time. In one application of this invention, the torque signal generated by the numerical comparator, M.sub.k+1, is employed to determine whether a fault has occurred in a transmission line. Another application involves employing the output M.sub.k+1 to determine the direction of power flow in the transmission line. In yet another application, the output M.sub.k+1 is used to determine whether a voltage or current has exceeded a predetermined threshold.